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Abstract—Manipulation in contrast to grasping is a trajectorial
task that needs to use dexterous hands. Improving the dexterity
of robot hands, increases the controller complexity and thus
requires to use the concept of postural synergies. Inspired from
postural synergies, this research proposes a new framework
called kernelized synergies that focuses on the re-usability of same
subspace for precision grasping and dexterous manipulation.
In this work, the computed subspace of postural synergies is
parameterized by kernelized movement primitives to preserve its
grasping and manipulation characteristics and allows its reuse
for new objects. The grasp stability of proposed framework is
assessed with the force closure quality index, as a cost function.
For performance evaluation, the proposed framework is initially
tested on two different simulated robot hand models using the
Syngrasp toolbox and experimentally, four complex grasping and
manipulation tasks are performed and reported. Results confirm
the hand agnostic approach of proposed framework and its
generalization to distinct objects irrespective of their dimensions.

Index Terms—Postural synergies, Kernel trick, Anthropomor-
phic hands, Dexterous manipulation, Probabilistic learning

I. INTRODUCTION

FOR more than three decades, roboticists have been ac-
tively trying to replicate the dexterity of the human hand

and there have been excellent developments in the field of
dexterous robot hands and advanced controls [1][2]. But these
robot hands have failed to achieve the universality and subtle
behavior that characterizes the dexterous manipulation, due to
the limitations of available software and hardware. Building
robot hands for dexterous manipulation that can emulate or
even approach the functionality of humans is challenging
owing to the fact that available sensors and actuators are not
equivalent in size, precision and accuracy to the human mus-
cles and skin. Dexterous manipulation epitomizes the ability
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Fig. 1: Representation of precision grasp and dexterous manipulation

of hands to change the object pose from one configuration to
another and can be achieved by re-grasping, finger gaiting and
rolling/sliding [3].

Dexterous manipulation by finger gaiting inherently depends
upon the stability and configuration of the precision grasp
to determine the minimum number and optimal position of
the fingertips on the object’s surface, as shown in Fig. 1.
However, this is an iterative process and to avoid having to
compute the optimal grasp each time, a database of grasps
can be created and exploited to sample and rank the candidate
grasps [4][5][6]. But, the grasp configurations do not only
depend upon the object but the robot as well. When the
robot has a greater number of degrees of freedom (DOF),
the controller complexity increases. To simplify the control of
dexterous hands, inspiration is taken from the neuro-scientific
behavior of the human brain, that suggests the use of postural
synergies [7][8]. Postural synergies form a reference subspace
of coordinated human movements that are related to the hand
kinematics. The postural synergies are computed from the joint
configurations of the hand using statistical analysis methods
such as:-, principal component analysis (PCA), expectation-
maximization (EM), factor analysis and other analytical di-
mensionality reduction techniques [9][10]. In simple words,
the postural synergies are the reduced control parameters, used
to reproduce certain hand postures without regulating each
joint individually. They are represented by a couple (E, e).

Postural synergies computed on human hands require a
mapping strategy to overlay the corresponding synergistic
motions onto the kinematics of robot hands. There are three
major mapping algorithms i.e, joint-joint mapping, Cartesian-
space mapping and object-based mapping [11][12]. However,
all of these are prone to errors due to dissimilarity in the
kinematics and dimensions of the human and robot hands.
Therefore, robot hands are either tele-operated during tasks or
kinesthetically taught the required skills by a human expert
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[13][14] and the statistical analysis is directly applied to the
robot hand configurations to extract the synergy subspace.
Such a direct use of postural synergies is one of the most
common manipulation strategies used in robot learning [15].

Although, postural synergies have been effectively exploited
in grasping of distinct objects with different robot hand designs
[16][17]. Their application to dexterous manipulation, which
requires continuous coordination among all the fingers, brings
many challenges especially (i) ensuring the close form stability
of the grasping posture, (ii) exploiting smaller but preferably
the same number of control parameters for both the actions i.e,
grasping and manipulation and (iii) computing and utilizing
the synergistic subspace irrespective of the dimensions of the
objects or the configurations of the robot hands. Nonetheless,
a few attempts have been made to use postural synergies
for manipulation as well [18][19] but generally they have
not been effective as they require additional synergies to be
used for different scenarios. This, of course violates the prime
motivation behind their use i.e, simplifying the robot hand
control. Such limitations of postural synergies for continuous
trajectorial tasks, confirm a marginal gap between the grasping
and manipulation sub-spaces and thus require the introduction
of middle-ware to link them. The development of a uniform
synergistic subspace with the application of middle-ware,
defines the problem addressed in this research. However, the
possible intermediate link could be achieved through the use
of a probabilistic kernel trick, which is an instance based
learning approach rather than having to learn some fixed set
of parameters [20]. The probabilistic kernel approach strongly
preserves the grasping and manipulation primitives of the
computed synergy subspace globally and allows its reuse for
different interaction tasks on unknown objects if their poses
could be correctly estimated. This is the main motivation
behind the development of our framework, which has been
termed ”Kernelized Synergies”. The conceptual representation
of kernelized synergies on a shared grasping and manipulation
subspace is shown in Fig. 2. It shows how the same subspace
may be shared between the grasping and manipulation com-
ponents to execute the desired actions on the object.

The rest of this paper is organized as follows; Section-
III discuses the recent research work in the field of postural
synergies and the major contributions of this research. Section-
IV presents the research methodology on the formulation
of kernelized synergies. Section-V details the grasp stability
analysis using the force closure property together with the soft
synergy model for contact compliance. Section-VI evaluates
the performance of kernelized synergies when applied to
two different simulated robot hand models in the SynGrasp
toolbox. Section-VII examines the experimental results ob-
tained using kernelized synergies in four different complex
scenarios and section-VIII gives the final conclusions about
the development, application and outcome of the proposed
framework and its possible extensions to the future work.

II. RELATED WORKS AND OUR CONTRIBUTIONS

For stable grasping and dexterous manipulation, a robot
hand must exploit the dimensions of the object and environ-
mental constraints and a method to address this was introduced

Fig. 2: Conceptual representation of kernelized synergies on the
shared subspace for grasping (g) and manipulation (m), (a) represents
the zero-offset pose of a hand with corresponding synergies in
columns, (b) is the grasping pose obtained at respective values of
synergies (red), (c) denotes the manipulation (continual rotation) of
a grasped object by co-utilizing the grasping subspace (red) and
manipulation parameters (green), (d) shows the quadrature rotation
of grasped objects achieved with the combination of corresponding
manipulation synergies (green). The dotted lines indicate the coordi-
nation among the hand joints in the synergistic subspace.

in [21]. It used tactile information with postural synergies
to make a trade-off between the controller complexity and
kinematic redundancy. This work was limited to the grasping
of known objects in an unstructured environment. However, to
automate and improve the synergy based grasping, a frame-
work was discussed in [22]. It was restricted to synergistic
grasping and did not examine manipulation. Hence, to exploit
the synergy subspace also for manipulation, a technique was
presented in [23] that employed additional synergies for ma-
nipulation but this increased the controller complexity while
failing to adapt to different dimensions of known objects.
Therefore, to add adaptive characteristics to postural synergy
components and benefit from their smaller number, a new
design and control architecture for hands was proposed in [24].
The developed architecture with only two synergies was able
to perform grasping and manipulation of a large variety of
objects. Yet, the framework was hand dependent as intelligence
was embodied into its mechanical structure and it was unable
to achieve the required system dynamics. So, to address the
uncertainties related to the system dynamics during manipula-
tion, a dynamic approach was presented in [25]. This approach
used a kernel technique indirectly to estimate variations in
the geometrical properties of manipulated object but it suffers
from dimensionality due to the inverse cubic dependence of its
kernel matrix. However, the promising potential of this concept
motivated us to use a kernel trick on postural synergies and
to extend this to dexterous manipulations as well.

To the best of our knowledge, there is no single control
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TABLE I: Comparison among the existing state-of-art techniques and
proposed framework.

Parameter Soft
synergies

[18]

Manipulation
synergies

[19]

Complex
synergies

[23]

Our
approach

Task general-
ization

X × × X

Object
adaptation

X × × X

Subspace
retention

× X × X

Task
prioritization

× × × X

Properties
preservation

X × X X

Grasping &
manipulation

× X X X

Task generalization: perform tasks on new objects outside the data set
Object adaptation: adapt to the size and shape of different objects
Subspace retention: same subspace used for grasping & manipulation
Task prioritization: give preferences to tasks based on their priority levels
Properties preservation: preserve the grasping properties of the subspace
Grasping & manipulation: able to grasp and then manipulate objects

framework available to share the same reduced subspace for
precision grasping and dexterous manipulation and this is a key
to the development of kernelized synergies. The major contri-
butions and main objectives of this research are; (1) to extract
postural synergies for robot hand postures corresponding to
grasping and manipulation of training objects and apply Gaus-
sian Mixture Model (GMM) together with Gaussian Mixture
Regression (GMR) to obtain a unified reference synergistic
trajectory, that can be used to reproduce and generalize the
learned skills, (2) to exploit Kernelized Movement Primitives
(KMP), that inherently kernelizes the computed synergistic
subspace so that the learned skills are preserved globally
and can be reused for unknown objects, (3) to incorporate
a force closure quality index as a cost function to measure the
success and stability of grasps established using the kernelized
synergies, and (4) to evaluate the performance, robustness,
and reproducibility of the proposed framework under complex
interaction scenarios. This is at first tested on two different
simulated robot hand models in the Syngrasp toolbox and
later on a real anthropomorphic robot hand for four distinct
tasks i.e, pouring coffee and closing a jar, opening toolbox
latches, grasping and manipulating two objects sequentially,
and playing the board game “carrom”.

To better understand the capabilities of the proposed frame-
work, a comparison is made with other state of art approaches,
used for synergistic grasping and manipulation in Table. I.

III. RESEARCH METHODOLOGY

A. Proposed Framework

Figure 3 represents the block diagram of the proposed
methodology to perform robust, reliable and adaptive grasping
and manipulation with the dexterous robot hand. The method-
ology starts with teaching basic grasping and manipulation
primitives to the robot hand using the training objects in Fig.
4 and recording the corresponding hand joint configurations
q. The vectors of mean hand joints ϑ corresponding to the

Fig. 3: Block diagram of proposed methodology on the formulation
and development of kernelized synergies framework.

recorded hand joint configurations are normalized using PCA
and the respective eigen vectors, called postural synergies
(E, e), are extracted. The coefficients of computed postural
synergy e evolve over the duration of the demonstrations
to provide the corresponding synergistic trajectories e(t). In
order to account for inconsistencies during demonstrations
and obtain a generalized probabilistic trajectory to reproduce
the learned skills, the GMM is applied to approximate the
distribution of synergistic trajectories ρ(e(t)) in terms of
the Gaussian components. The EM algorithm initializes the
Gaussian parameters i.e. weight, mean and co-variance. The
GMR subsequently computes the conditional distribution of
data in the GMM with respect to partially observed data during
EM iterations and outputs the reference trajectory ρ(en|t) for
the demonstrated synergistic trajectories. In order to adapt to
new conditions i.e, new objects, and encode the synergistic
trajectories that exhibit time dependent variance, the KMP
is exploited to generate a parametric synergistic trajectory
ρ(ep(t∗)). The use of the kernel trick (k,K) in the KMP
helps to preserve the probabilistic properties (grasping and
manipulation primitives) of parametric synergistic trajectory
from multiple demonstrations, and alleviates the need for basis
functions (φ,Φ) to be used to estimate it. Geometrical infor-
mation of the object o is first translated into its corresponding
synergistic data, which is then used to modulate the via points
and end points of the reference trajectory and thus the synergy
subspace generates the new task trajectory and with it develops
the capability to adapt to unknown conditions i.e. new objects.
Finally, the mapping from synergy subspace to joint space
helps to perform the desired tasks on the robot hand.

B. Nomenclature

The following list provides the description of different
variables and parameters used throughout the paper:
• θ, ϑ−→Robot hand joint angles and their vector
• q−→Robot hand joint configuration corresponding to

certain posture
• C−→Configuration matrix of mean robot hand postures
• E−→Synergy matrix
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• eg, em−→Grasping and manipulation synergy coefficient
• e(t)−→Interpolated trajectory of synergy coefficient
• N,M−→Number of Gaussian components and distribu-

tions
• π, µ,Σ−→prior, mean and covariance of probablistic

distribution
• Θ(t)−→Matrix of coefficients of parametric trajectory
• φ,Φ−→Basis functions (features) and their matrix
• λ−→Regularization parameter
• k,K−→Kernel function and matrix
• Υ−→Priority coefficient
• Am−→Motion transfer matrix
• p, o−→Position of robot hand contact points and object
• nc.nq, ns−→Number of robot hand contact points, joints,

and synergy coefficients
• Jh∈Rnc×nq−→Robot hand Jacobian matrix
• Ch∈Rnq×nq−→Robot hand joint compliance matrix
• fc∈R3nc−→Vector of robot hand contact forces
• G∈Rnc×nc−→Robot hand grasp matrix
• ξ∈R3−→Vector of robot hand internal forces
• ω∈R6−→Vector of external spatial forces
• Γ(ω, e)−→Cost function evaluating grasp stability

C. Extraction of Grasping and Manipulation Synergies

The postural synergies are the data driven control parame-
ters and are obtained from the statistical analysis (i.e, PCA)
of the hand joint configurations. In this research, the data is
generated by tele-operating the robot hand to perform a range
of precision grasping and dexterous manipulation (rotation
and translation) actions on a series of geometrical objects, as
shown in Fig. 4. The robot hand is taught basic interaction
skills such that the computed synergistic subspace can be
generalized to perform different tasks on distinct daily life
objects. However, for tele-operation, the keyboard interface is
used to actuate the robot hand joints for respective grasping
and manipulation actions. Since, a human subject is tele-
operating the robot hand for the different tasks, the postures
assumed by it mimic the human configurations moderately but
are not exact due to dissimilarity in the respective kinematics
and dimensions. Moreover, for each object, five attempts are
made to ensure that the joint configurations corresponding to
robot hand postures are precisely recorded and registered onto
the desired configuration matrix C. Note that, there were a
few instances when an object lost contact with the hand and
was dropped. Such trials were flagged and excluded from the
data base used to compute the postural synergies.

Let the vector of robot hand joints be denoted by ϑk =
[θk1 , ...., θ

k
12] at the kth training task then the nominal posture

of the robot hand for K trials is defined by Eq. 1

q0 =
1

K

K∑
k=1

ϑk (1)

The mean position of the robot hand is determined by
subtracting the nominal posture from its current joint con-
figuration ϑ̂k=ϑk-q0 and then concatenating them into a row
vector as C=[ϑ̂1......ϑ̂K ]T . The PCA is applied on C and
the reduced subspace of postural synergies (i.e, the subset of

Fig. 4: Training data set obtained by tele-operating the robot hand for
grasping and manipulation primitives on given geometrical objects.
The free hand motions are the contact-less movements with respect
to objects for non-prehensile actions.

predominant principal components numerically characterizing
the synergistic subspace) Ê is obtained [26].

To reproduce the required posture on the robot
hand for a object to be grasped and manipulated,
a proper choice of postural synergy co-efficients
(e) = eg1 + em1, eg2 + em2...egn + emn needs to be
made. Thus, the corresponding synergy co-efficients are
determined by Eq. 2

e = Ê†(ϑ− q0) (2)

Where, the matrix Ê† denotes the pseudo inverse of the
reduced synergy matrix, which consists of two predominant
synergistic components that have a variance greater than or
equal to 85%. This condition defines that the 85% of the
learned robot hand postures can be reproduced by exploit-
ing just two synergistic components. However, this selection
comes with a trade-off between the controller complexity and
better reproduction of hand postures i.e, more synergistic com-
ponents (control variables) generate finer hand configurations,
but it then violates the motivation for using postural synergies
(i.e, bringing simplicity) [7]. Hence, the projection of each
robot hand configuration onto the synergy subspace can be
defined as ϑ̂ = Êe.

The subspace of two predominant postural synergies for a
6 DOF INSPIRE robot hand having 12 joints in Fig. 5 (a)
[27], computed using training objects in Fig. 4, is graphical
shown in Fig. 5 (b and c). It can be seen from Fig. 5 (b and c)
that the meta-carpophalangeal, promixal, and interphalangeal
joints of the index finger, middle finger and thumb are used
in tripod grasping and manipulation of training objects in Fig.
4. In manipulation tasks, especially for translation actions, the
medial angles of all the fingers are strongly activated whereas
for rotational motions, the proximal angles are actuated with
respect to combined values of synergistic components. How-
ever, in all the actions, a difference of 0.256 radians on average
exists over the hand joint configurations in the synergistic
subspace from grasping to manipulation of training objects
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Fig. 5: Polar representation of the computed synergy subspace for a 6 DoF robot hand, (a) is the fully actuated anthropomorphic robot hand,
(b) and (c) represent the participation and cooperation of different joints with distinct combined values of first and second synergies using
respective grasping and manipulation components.

in Fig. 4. Further, it is evident that the first synergy (with
grasping and manipulation components) primarily regulates
the promixal and medial angles of all the fingers and the
second synergy mainly controls the movements of the thumb
and index finger for respective interaction tasks. Moreover, the
relative positions of the thumb and index finger help in moving
from one grasping posture to another while manipulating an
object.

D. Parameterization and Kernelization of Postural Synergies

The synergistic co-efficients e determined in the previous
section for each training object in Fig. 4, are evolved over the
duration of the demonstrations t to obtain the corresponding
synergistic trajectories e(t). In order to capture the joint
probabilistic distributions of these synergistic trajectories, a
GMM is applied and is defined by Eq. 3 [28][29][

t
e

]
∼

N∑
n=1

πnN (µn,Σn) (3)

Moreover, to generate a reference synergistic trajectory
(ê)n

N
= 1 to be followed by the robot hand to reproduce the

taught demonstrations, GMR is applied. This actually defines
the conditional joint probability distribution of the GMM i.e,
en|t∼N (µ̂n, Σ̂n). The conditional mean µ̂n and covariance
Σ̂n of the reference synergistic trajectory are thus computed
by Eq. 4, where µn

t and Σn
tt represent the instantaneous

mean and co-variance respectively.

µ̂n =
N∑

n=1

πnN (tn|µn
tΣn

tt)∑N
n=1N (tn|µn

tΣn
tt)
µn

e + %

Σ̂n =
N∑

n=1

πnN (tn|µn
tΣn

tt)∑N
n=1N (tn|µn

tΣn
tt)
ϕ+ ε

(4)

where;
% =

∑
n
et(

∑
n
tt)−1(tn − µn]t

ϕ = (
∑

n
ee −

∑
n
et(

∑
n
tt)−1

∑
n
te)

ε = (µne +
∑

n
et(

∑
n
tt)−1(tn − µnt)(

∑
n
tt)−1(tn − µnt)T −

(µ̂n)(µ̂n)T

To generalize the learned synergistic subspace to a wider set
of objects, the KMP [30] is exploited to generate a parametric
synergistic trajectory ep(t) and is defined by Eq. 5, where µw

and Σw are the weighted mean and co-variance respectively.

ep(t)∼N (Θ(t)Tµw,Θ(t)T ΣwΘ(t)) (5)

The goal of the parametric synergistic trajectory in Eq.
5 is to follow the reference synergistic trajectory in Eq. 4
and to do so, the Kullback-Leibler (KL) divergence criteria is
applied, that minimizes the distance between two distributions
i.e, Omin(µw,Σw). Hence, the optimal values of weighted
mean and co-variance in Eq. 5 are found by Eq. 6 [30],
with µ = [µ̂1, µ̂2, ....µ̂N ] and Σ = blockdiag(Σ̂1, Σ̂2, ....Σ̂N )
representing the mean and co-variance matrices of the demon-
strated synergistic trajectories respectively.

µw = Φ(ΦT Φ + λΣ)−1µ

Σw = N(ΦΣ−1ΦT + λI)−1
(6)

To preserve the probabilistic properties of grasping and
manipulation synergies so that they can be reused for new
objects, and also to alleviate the use of basis functions whose
number increases exponentially for complex tasks, Eq. 6 is
kernelized in the KMP. The kernel treatment of basis func-
tions used to encode the synergistic trajectory is defined as
k(ti, tj) = φ(ti), φ(tj).

Therefore, for any new input t∗ (new instance on
shape or/and size of object), the expected values of
mean and co-variance of the parametric synergistic com-
ponent are determined by Eq. 7 [30], where k∗ =
[k(t∗, t1), k(t∗, t2), .....k(t∗, tN )] represents the kernel func-
tion for a new object input.

E(ep(t∗)) = k∗(K + λI)−1µ

D(ep(t∗)) =
N

λ
(k(t∗, t∗)− k∗(K + λΣ)−1k∗T )

(7)

Moreover, the kernelized synergies framework can also
prioritize the different grasping and manipulation tasks on the
basis of their assigned weights in the joint probability distri-
bution. For a set of M reference synergistic trajectories, the
corresponding synergistic input {tn, ên,m} assigned with pri-
ority Υn,m∈(0, 1), represented as {{tn, ên,m,Υn,m}Nn=1}Mm=1

should satisfy the condition
∑M

m=1Υn,m = 1. Therefore,
prioritizing the tasks in the kernelized synergy subspace ac-
tually corresponds to the product of its M distributions, with
m = 1, 2, ...M and is thus explained by Eq. 8 [30]

N (µn
T ,Σn

T )∝
M∏

m=1

N (µ̂n,m, Σ̂n,m/Υn,m) (8)
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Algorithm 1: Kernelized synergies
input : ϑi −→ vector of robot hand joints
output: ρ(e(t)) v function(E(e(t),D(e(t)))

1 while (ϑi ∈ ϑk) −→ C do
2 function(C) −→ (E, e);
3 if var(E) ≥ 0.85 then
4 Ê;
5 else
6 ∅−→null matrix;
7 end
8 end
9 forall e = Ê†ϑ̂ do

10 ρ(e(tn)) v N (µn,Σn)

11 ρ(en|t) v N (µ̂n, Σ̂n)
12 ρ(ep(t∗)) v function(E(e(t)),D(e(t)))
13 if Υ6=0 −→ priority exist then

14 ρ(ep(t)) v
M∏
N (µw,Σw/Υ);

15 else
16 ρ(ep(t)) v Omin(µw,Σw);
17 end
18 end

The complete methodology of the kernelized synergies
framework is summarized in Algorithm 1. Wherein, the input
is the given vector of robot hand joints ϑi corresponding
to the existing hand joint configuration q. The output is
the interpolated values of synergistic coefficients ρ(e(t)) in-
terms of expected mean E(e(t)) and co-variance D(e(t)). The
Algorithm 1 starts by defining the configuration matrix (C)
from the mean hand joint configurations ϑ̂ (line 2). The
function (PCA) is applied to the resultant C to compute the
postural synergies (E, e), with the condition that only the
synergistic components having variance greater than or equal
to 85% should be considered and thus the reduced synergy
matrix Ê is obtained (line 3, 4, 5, 6, 7), with reference to
Eq. 2. For all the synergistic components, the synergistic
trajectories ρ(e(tn)) are determined (line 10), according to
Eq. 3 and approximated using GMM-GMR to generate a single
reference trajectory ρ(en|t) (line 11), based on Eq. 4. With
the given reference trajectory, the parametric trajectory for a
new object is defined and kernelized using KMP in-terms of
expected mean and co-variance ρ(ep(t∗)) (line 12), related to
Eq. 7. However, if the priorities Υ exist in the given task, the
resultant synergistic trajectory is the product of M reference
trajectory distributions (line 14), referring to Eq. 8. Otherwise,
it is based on minimizing the distance between the parametric
and reference trajectories to perform the desired task (line
16), in relation to Eq. 6.

E. Object geometry to synergies transformation

The geometry of different objects acts as an environmental
descriptor i.e, via-points and end-points for the reference syn-
ergistic trajectory (en|t) as described in the previous section.
Since, the dimensions of the object are in real coordinates
and thus need to be transformed into respective synergistic

Fig. 6: Transformation from task space into synergistic subspace,
(a) denotes the translational and angular movement indentations for
object grasped by a robot hand, (b) illustrates the possible translation
and orientation of the object as it is being manipulated by the hand.

values. A hard finger contact model [31] is considered for the
robot-object interaction. Referring to Fig. 6, the relationship
between the motion of an object and the contact points of the
robot hand manipulating it, is given by Eq. 9 [32]

ṗ = Am

 ȯ℘
ṙ

 (9)

Where ȯ and ℘ represent the linear and angular velocities of
the object and ṙ denotes the displacement of that object with
respect to the position of the contact points p. The motion
transfer matrix Am is defined by Eq. 10

Am =


I −[p1 − o]x (p1 − o)
· · · · · · · · ·
I −[pi − o]x (pi − o)
· · · · · · · · ·

 (10)

In order to determine the corresponding synergistic values,
the joint configuration of the robot hand is required. The
relation between the robot hand contact points and its joint
configuration is defined by the standard differential kinematics
ṗ = Jhϑ̇. Therefore, the mapping from hand joint velocities
to the corresponding synergistic values is given by Eq. 11

ė = JhAm
†ChÊ

†ϑ̇ (11)

Where, Am
† is the pseudo inverse of the motion transfer

matrix. The compliance matrix Ch defines the free movements
of the joints actuated by the respective servos, thereby compen-
sating the friction, damping and shear effects. This matrix is
one of the robot hand design parameters and depends upon the
mechanical configuration of the joints, the transmission system
employed and the type of servos used. For our robot hand, the
Ch is determined from its corresponding joint stiffness matrix
Kh = 1.65I12

Nm
rad (i.e, Ch = 1/Kh), with I12 representing a

12 × 12 identity matrix. The value of Kh is provided by the
robot hand manufacturer in the data-sheet [27].

F. Synergy to Joint Space Mapping

Once the kernelized synergies for a particular task are
determined, the next step is to command the robot hand to
execute it. To comply with the hand joint control, the mapping
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Fig. 7: Practical interpretations of the grasp quality index in the kernelized synergies framework on an anthropomorphic robot hand, (a),
(c), and (e) represent the robot hand grasping objects in bipodal, tripodal and quadrapodal postures without considering the cost function
(Γ(∆e)) and in (b), (d), and (f) the given cost function (Γ(∆e)) is used to improve the configuration that fingers adopt on the object surface.

is performed from the synergistic subspace to the joint space
using Eq. 12

q = Êe+ ϑ0 (12)

Where, ϑ0 denotes the initial robot hand joint vector. It must
be noted that the dimensions of Ê depend upon the number
of postural synergies considered (i.e, two in our case based on
85% variance criteria) to approximate the respective grasping
and manipulation configurations.

IV. GRASP STABILITY ANALYSIS

The desired contact forces are not only required to hold the
object in a stable position but also to avoid damage to the
object or the robot itself. The joint torque of a DC motor
is related to its current by τ = KmI

2, where Km is the
motor design constant. According to differential kinematics,
the relationship between contact forces and joint torques is
defined by fc = Jhτ . Therefore, there exists a kineto-static
duality between the synergistic forces and velocities and hence
the force synergies η∈Rns are given by Eq. 13.

η = ÊTJh
T fc (13)

With the model in Eq. 13, the co-efficients of the kernelized
synergies are modulated until the steady state contact forces
are obtained. This must occur within the defined threshold
on the motor current to ensure the grasp stability. Moreover,
the force closure property is considered to evaluate the grasp
quality of the proposed framework [33]. The problem is
formulated as minimizing the cost function Γ to ensure the
grasp stability. The general solution to the problem of contact
forces balancing the grasped object is described by Eq. 14

fc = G†ω + ξ∆qref (14)

Where, G† is the pseudo-inverse of the grasp matrix and
∆qref is the change in joint reference position. The matrix
ξ maps the joint positions to the internal forces generated
during the hand-object interaction. Now, the change in the
joint positions can be defined in the synergistic subspace by
∆qref = S∆e and ∆q = ∆qref −Ch∆τ , which is the model
of soft synergies. The grasping problem can now be formulated
in terms of the synergistic control framework by Eq. 15

fc = G†ω + ξ∆e (15)

With reference to Eq. 15 and using the Coulomb’s friction
cone criteria, the synergy-based grasp quality index using force
closure property is defined as minimizing Γ with respect to ∆e.
Let Ωp

i,j∈Rk represents the set of grasp variables (i.e, the syn-
ergistic coefficients e) that fulfill the friction cone constraints
σ with a small positive margin p, where k is the dimension
of ξ. Intuitively, σ defines the ratio between the normal and
tangential forces applied by the robot hand on a given object,
that need be within the pre-defined threshold to avoid slippage.
Therefore, for the i − th contact and j − th constraint, Γ is
the summation of terms:Γ(ω, e) =

∑
i

∑
jΓi,j(ω, e), defined

by Eq. 16 [34]

Γi,j =

{
(2σ2

i,j(ω, e))
−1 e ∈ Ωp

i,j

aσ2
i,j(ω, e) + bσi,j(ω, e) + c e /∈ Ωp

i,j

(16)

Where, a, b, and c are the constants conditioned by the prop-
erties of Γ. The inverse of Γ is the grasp margin limit which
must be respected to prevent violation of the friction cone
constraints. It is essential in planning the dexterous manipula-
tion. Note that, the contact points between the robot hand and
objects are arbitrarily being defined by a human subject based
on their experience, which ensures that they resemble the real
ones and are iteratively updated to minimize Γ. However, in
the absence of perceptual feedback, the contact information for
all the objects (training, testing and experimenting) is manually
being defined but it has nothing to do with the performance
and robustness of the kernelized synergies framework. The
framework can incorporate different sensory modalities that
update the information about the environment (objects and
surroundings) in Eq. 11, depending upon the nature of tasks,
system conditions and user preferences [35][36].

To incorporate the force closure property into the kernelized
synergies, the second correction term from Eq. 16 is included
in the desired reference synergistic trajectory, such that the
movements of the fingers are against the gradient of Γ. The
main goal is to reproduce the synergistic movements that
minimize Γ and this is formulated by Eq. 17, with κq < 0
being a constant gain, chosen experimentally according to the
system dynamics.

∆e = κq
∂Γ

∂e
∆t (17)

To understand the practical implementation and evaluation
of Γ(∆e), the anthropomorphic robot hand in Fig. 5 (a) is used
to perform grasping of distinct objects in different postures,
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Fig. 8: Training trajectories of two principal synergistic coefficients
for the Barrett and Dexmart hands using given geometrical objects.

as shown in Fig. 7. It is evident from Fig. 7 that the robot
hand fingers are more evenly distributed around the surface
of objects by using cost function Γ(∆e) in Fig. 7 (b, d, f)
than without it in Fig. 7 (a, c. e). This is due to the fact that
the distance between the fingers and the centroid of the object
is reduced and thus the area of the polygon formed by these
finger contact points is improved. In the following section, the
application of Γ(∆e) is numerically evaluated on two different
robot hand models in the Syngrasp toolbox, which gives an
enriched understanding of how it improves the grasp stability.
The improved grasp stability is shown by the reduced values
of Γ, which is due to the optimized kerenlized synergistic
control, according to Eq. 17.

V. SIMULATION ANALYSIS

The proposed framework of kernelized synergies is nu-
merically evaluated on two different robot hand models in
the SynGrasp MATLAB toolbox [37]. The first model is an
anthropomorphic under-actuated Dexmart hand having 20 DoF
with size and kinematics structure very similar to a human
hand [38]. The other model is a Barrett Hand, which is a three
fingered fully actuated robot hand with 8 joints and 4 DOFs
[39]. Both the robot hand models are trained using the same
geometrical objects, as shown in Fig. 4 and the corresponding
trajectories of the synergistic coefficients are reported in Fig.
8. The simulations are performed with MATALAB2019b on a
2.6-GHZ Intel Core i5, 8-GB RAM computer.

To examine the application of kernelized synergies on the
given robot hand models, the precision grasping and manip-
ulation (rotation) of three distinct objects, of different shapes
and sizes i.e, cube, sphere and cylinder, are considered in
Fig. 9. Due to the compliance, introduced by the kernelized
synergies, the contact forces between the object and hand
are compensated for using the hard finger contact model,
according to Eq. 15. It can be seen in Fig. 9 that both the
hands are able to adapt to the varying dimensions of objects
and also maintain the grasp stability according to force closure
optimization criteria in Eq. 17. The logarithmic values of cen-
troid (polygon formed by contact points between the hand and
object) independently and then together with Γ(∆e), computed
for all the different grasps, on both the robot hands are reported
in Table. II. It is evident from Table. II that the use of the
force closure quality index (Γ(∆e)) significantly improves the
grasp stability thereby reducing the unnecessary margin at
the contact points (centroid). Moreover, the reduced values
of (centroid+Γ(∆e)) when using the Dexmart hand confirm
its better performance for stably grasping and manipulating
objects due to its greater dexterity as compared to Barrett hand.

TABLE II: Quantitative computation of force closure quality index
for both the robot hand models.

Hand Object Grasp Centroid Centroid+Γ(∆e)
Cube Tripodal 6.2 × 108 2.3 × 107

Barret Sphere Bipodal 5.1 × 107 3.7 × 106

Cylinder Tripodal 2.6 × 109 4.1 × 107

Cube Tripodal 2.8 × 108 1.7 × 106

Dexmart Sphere Bipodal 8.7 × 106 6.5 × 105

Cylinder Quadrapodal 1.8 × 109 2.2 × 107

The kernelized synergistic profile of the Dexmart hand,
when grasping and manipulating the objects is shown in
Fig. 10. Figs. 10 (a and b) show the trajectories of two
synergistic coefficients computed using Eq. 2, that evolve over
the total duration of the demonstrations. In order to find the
correlation among such synergistic trajectories, the GMM is
applied according to Eq. 3. This is illustrated in Fig. 10
(c), where the red ellipses are the corresponding Gaussian
components approximating the given synergistic trajectories.
For such probabilistic trajectories, to achieve the desired poses
under different conditions, the reference trajectory in Fig.
10 (d) is determined using Eq. 4. For any new object, the
proposed framework updates the via points and end points of
the reference trajectory according to Eq. 7 such that the new
object can be grasped and manipulated, as shown in Fig. 10
(e). Figs. 10 (f and g) represent the updated trajectories of two
synergistic components for the selected three objects and their
corresponding synergistic velocity profiles with desired via-
points being marked in Figs. 10 (h and i). It is evident from the
synergistic velocities that the hand experiences an overshoot
for a short duration when it breaks contact with the objects.
Such a behaviour is observed primarily due to two reasons; (i)
the release of energy stored as tension in the tendons of the
hand, and (ii) the change in inertia of the robot hand fingers,
which arises during the transition from a contact to a non-
contact state. However, it also reflects that the PD gains of the
low level robot hand controller are properly tuned. This means
that there is only a small overshoot with a short settling time.

VI. RESULTS AND DISCUSSION

To experimentally evaluate the performance of the proposed
framework, four distinct complex interaction tasks are consid-
ered. All the tasks are still based on the basic grasping and
manipulation primitives taught to the robot hand. Note that the
appropriate values of the synergistic co-efficient eg and em in
all the following experiments are determined according to Eq.
11. However, Eq. 11 partially depends upon the dimensions
of the working object and thus for each task, the values of eg
and em happen to be different but are still the members of the
computed reduced synergistic subspace Ê.

For task1, the robot hand utilizes its rotation manipulation
primitives to pour the coffee from the paper cup into the glass
and to close a jar, as shown in Fig. 11 and Fig. 12 respectively.
For the coffee pouring task, the robot hand holding the paper
coffee cup with eg1 = 0.46, eg2 = 0.17, is required to pour
the coffee into empty glass on the table in Fig. 11 (a).
The paper coffee cup is oriented with em1 = 0.47 to 0.54,
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Fig. 9: Simulation analysis of kernelized synergies for two different robot hands. In the first row (a-f), the Dexmart hand is grasping and
manipulating (rotating) three distinct objects of different shapes and sizes and in the second row (g-l), the Barrett hand is performing similar
actions on the given objects but due to its limited dexterity it only exhibits two different postures i.e, bipodal and tripodal except quadrapodal

Fig. 10: Kernelized synergistic profile of the Dexmart hand when grasping and manipulating three objects, (a and b) represent the trajectories
of the first two synergistic coefficients on the training data set, (c) is the relative trajectory approximated by Gaussian components shown
in red ellipses , (d) is the final reference trajectory generated by the GMR with its mean value shown by the green curve and the range of
its variance indicated by the shaded red area, (e) is the updated reference trajectory for grasping and manipulation (rotation) of the three
distinct objects, (f-g) are the parametric synergistic trajectories reproduced over the set of three via-points (for three objects), (h-i) show the
velocities of corresponding synergistic coefficients during interactions (contact and non-contact states) with the objects.

em2 = 0.18 to 0.27 and the coffee starts to flow into a glass
gradually depending upon the degree of orientation of fingers,
as demonstrated in Figs. 11 (b) and (c). Finally, the cup is
rotated backwards with em1 = 0.54 to 0.47, em2 = 0.27 to
0.18 so that only the required amount of coffee is poured
into a glass, as shown in Fig. 11 (d). When closing the
jar in Fig. 12 (a), the robot hand first grasps the lid with
eg1 = −0.27, eg2 = 0.16 and then places it on top of the
jar at a desired position, as shown in Figs. 12 (b) and (c)
respectively. Finally, the robot hand turns the lid in a clockwise
direction at em1 = −0.31 to −0.39, em2 = 0.17 to 0.21, to

screw it onto the jar, as illustrated in Fig. 12 (d). It must be
noted that both the tasks are performed primarily with the
fingers without any compensation at the wrist level.

During task2, the robot hand uses its translation manipula-
tion primitives to open the toolbox latches with the required
pulling action, as shown in Fig. 13. Fig. 13 (a) illustrates
the toolbox with latches that are initially closed as marked
in yellow and the robot hand first assumes the desired pose at
eg1 = −0.12, eg2 = 0.25 and then opens the first and second
latches with its index and middle fingers at em1 = 0.16 to
0.23, em2 = −0.17 to −0.05 by utilizing its translation prim-
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Fig. 11: A robot hand pouring coffee from a paper cup into a glass, (a) illustrates the initial configuration of the hand when grasping the
coffee cup and the empty glass on the table, (b and c) show the flow of coffee into the glass at a rate determined by the relative movements
of the fingers, (d) demonstrates the reoriented pose of coffee cup to stop the flow of coffee into the glass

Fig. 12: A robot hand closing a jar, (a) illustrates the jar and its lid, (b) demonstrate the robot hand grasping the lid in a tripod (3 fingered)
precision grasp, (c) shows the scenario where the lid is placed on the jar while maintaining a stable grasp, (d) displays the final pose of jar
with the lid being screwed onto it.

Fig. 13: A robot hand opening a toolbox using its learned translation manipulation primitive from the kernelized synergy subspace, (a) is
the toolbox with both of its latches closed initially, (b) represents the scenario in which the robot hand assumes a tripod (3 fingered) pose
with its little and ring fingers being closed, (c) illustrates the robot hand opening the first latch of toolbox with its index and middle fingers,
(d) shows the similar robot hand action to open the second latch.

itives to generate the corresponding outward force, as shown
in Figs. 13 (b), (c) and (d) respectively. Due to the compliance
introduced by the kernelized synergies, the interaction between
the fingertips and the latches is modulated from 0.85 N/sec to
1.23 N/sec during the pulling action, according to Eq. 15.

Task3 is about assigning priorities to the synergistic com-
ponents according to Eq. 8 to grasp two objects sequentially
and then manipulate one of them while maintaining a stable
grasp, as shown in Fig. 14. In this case, the kernelized
synergies exploit their priority characteristics to close two
parts of the hand separately to grasp and manipulate distinct
objects consecutively. Fig. 14 (a) illustrates the open hand
configuration at eg1 = eg2 = em1 = em2 = 0, with both eg1
and eg2 having priority Υ = 0.5. This allows the hand to
close its two parts separately, as shown in Fig. 14 (b), where
the robot hand grasps the first object with the little and ring
fingers at eg1 = −0.04, eg2 = 0.05 and then it grips the second
object in the tripod posture with eg1 = −0.11, eg2 = 0.22, in
Fig. 14 (c). Finally, the second object is rotated clockwise
at em1 = −0.02 to 0.11, em2 = 0.25 to 0.36 such that it

is manipulated without disturbing the pose of the first object
in Fig. 14 (d). These features of kernelized synergies help in
performing different multi-digit tasks such as writing with a
pencil while holding a rubber, tightening a bolt while griping
an extra nut, holding and pressing a spray and many others.

In task4, the robot is playing the board game “carrom”, as
shown in Fig. 15. This task requires precise grasping of the
striker to move it to the desired position of attack and then
perform the appropriate pushing motion, needed to guide the
striker towards the goal pieces on the board. In Fig. 15 (a),
the robot hand grasps the striker at eg1 = −0.24, eg2 = 0.18.
It is then moved to a desired position on the board using
the robot arm motion, as illustrated in Fig. 15 (b). The
robot hand releases the striker at this desired location with
eg1 = −0.19, eg2 = 0.14. The robot arm assumes the pose to
bring the fingertips of the robot hand near the striker edge, as
shown in Fig. 15 (c). The robot hand first stretches the fingers
at em1 = 0.51 to 0.59, em2 = 0.05 to −0.08 in Fig. 15 (d)
and then releases its index and middle fingers, and thumb at
em1 = 0.1 to −0.07, em2 = −0.04 to 0.08 such that the striker
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Fig. 14: A robot hand controls its two parts independently by assigning priories to the synergistic components to grasp two different objects
sequentially and manipulating one of them, (a) is the open hand configuration of the robot hand, (b) shows the grasping of the first object
with the little and ring fingers, (c) is the sequential grasping of the second object with the thumb, index and middle fingers in a tripod
configuration, (d) illustrates the clockwise orientation of the second object using its manipulation rotation primitive.

Fig. 15: Robot playing the carrom board game with the proposed framework, (a) is the initial configuration of the hand and striker in a
restricted zone, (b) shows the hand grasping the striker with its thumb, index, and middle fingers in one of its taught precision postures, (c)
shows the pose of hand when releasing the striker in the attacking zone, (d) represents the pose of hand which is stretched to develop the
required pushing force, (e) illustrates the pushing action of the hand on the striker which leads it to the center to spread the pieces.

gets pushed towards the pieces in the center, as shown in Fig.
15 (e). The surface of the board is smooth and the friction
between the striker and board is ignored, which is normal in
this game. The weight of the striker is 15 grams, so a force
of 1.25 N, calculated using robot hand’s motor currents, is
applied to push the striker towards the center. The pushing
motion in this task corresponds to the general postures taught
to the robot in the free hand configuration during the training
phase in Fig. 4.

VII. CONCLUSIONS

This research has proposed, developed and tested a new
framework, called kernelized synergies to address the lim-
itations in using postural synergies for complex interaction
tasks. In particular, it deals with the issues of convergence and
computation constraints and their subsequent deficiency when
performing continuous trajectorial tasks i.e, manipulations.
This framework instead of determining new synergies, reuses
the same learned synergy subspace for both precision grasping
and dexterous manipulation of distinct daily life objects.

In the development of the kernelized synergies framework,
the postural synergies, computed by tele-operating the robot
hand during elementary grasping and manipulation primitives,
evolved over the duration of the demonstrations to obtain the
corresponding synergistic trajectories. These synergistic trajec-
tories were approximated using a GMM-GMR model in terms
of Gaussian components. This not only takes into account the
inconsistencies in the demonstrations but also learns a gener-
alized probabilistic trajectory that can be used to reproduce the
taught postures during model inference. However, to grasp and
manipulate a new object, the KMP was exploited to deal with

environmental descriptors i.e, via-points and end-points, and
hence was able to adapt to the new shape and size respectively.
The parametric synergistic trajectory, kernelized by the KMP,
preserved the grasping and manipulation characteristics so that
the same computed synergistic subspace can be reused for
new objects. The proposed framework was initially tested in
simulated environments using the Syngrasp toolbox on two
different robot hand models. The stability of postures was
evaluated and reported using a force closure quality index.
The lower values of this metric for an anthropomorphic robot
hand indicated its higher dexterity on stably grasping objects.
For real-time experimental evaluation, four complex tasks
similar to the daily life activities i.e, pouring coffee and
closing a jar, opening toolbox latches, sequentially grasping
and manipulating two objects, and playing the carrom board
game, were performed and discussed. The results confirm that
the proposed framework bridges the gap between the grasping
and manipulation sub-spaces and is a hand agnostic approach
provided the demonstration are carried out on the robot hand
of interest.

Current limitations of proposed frame, include manual in-
ception of grasping points, the approximation of the joint
torques from the fingertips’ positions, and testing for a small
number of rigid daily life objects. Future work will seek to
address these shortcomings through the use of combined and
integrated visual and tactile information to incorporate run-
time object detection, pose estimation and adaptation to a dy-
namic environment. This will also consider fine manipulation
of a greater range of objects including soft objects. In addition,
the capacity of the current framework to prioritize different
tasks at different levels will be exploited in motion planning
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of non-holonomic co-manipulation tasks. Finally, other kernel
functions will be tested to examine their effects on perfor-
mance and robustness in dealing with complex prehensile and
non-prehensile manipulation tasks.
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