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Abstract—A method for fast visual grasping of unknown ob-
jects with a multi-fingered robotic hand is presented in thispaper.
The algorithm is composed of an object surface reconstruction
algorithm and a local grasp planner, evolving in parallel. The
reconstruction algorithm makes use of images taken by a camera
carried by the robot arm. A virtual elastic reconstruction surface
is placed around the object. The surface shrinks toward the object
until some points intercept the object visual hull. Then, attractive
forces with respect to the border of the visual hull are generated
so as to compensate for the elastic forces: when an equilibrium
between those forces is reached, the surface takes the form of the
object shape. Running in parallel to the reconstruction algorithm,
the grasp planner moves the fingertips on the current available
reconstruction surface, towards points which are optimal (in a
local sense) with respect to a number of indices weighting both
the grasp quality and the kinematics configuration of the hand.
This method, referred to as parallel visual grasp, may represent
a valid candidate for applications where online grasp planning is
required. A number of experiments are presented, showing the
effectiveness of the proposed approach.

Index Terms—Robotics, Vision, Surface Reconstruction,
Grasping, Multi-Fingered Hands.

I. I NTRODUCTION

T HE execution of robot grasping tasks, in general, requires
a priori knowledge about the characteristics of the objects

to grasp. The adoption of vision can be useful to reduce the
need of a priori information [1], [2].

Two main operations have to be performed for grasping
unknown objects [3]: recognition/reconstruction of the object
geometry and grasp planning.

Different methods have been proposed in the literature to
cope with 3D geometric model reconstruction based on visual
data. A certain number of algorithms can be classified under
the so calledvolumetric scene reconstructionapproach [4],
while other methods are referred to assurface scene recon-
struction algorithms: these latter are the most suitable for
grasp planning. In [5], the model of the object is obtained
starting from a surface that moves towards the object under
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Sistemistica, Università degli Studi di Napoli Federico II, via Claudio
21, 80125, Naples, Italy,{vincenzo.lippiello, fabio.ruggiero,
bruno.siciliano, luigi.villani}@unina.it.

The research leading to these results has been supported by the DEXMART
Large-scale integrating project, which has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013)under grant
agreement ICT-216239. The authors are solely responsible for its content.
It does not represent the opinion of the European Community and the
Community is not responsible for any use that might be made ofthe
information contained therein.

Manuscript received on September 26, 2011; revised on January 24, 2012.

the influence of internal forces, given by the surface itself,
and external forces, given by the image data. Typically, the
starting surface is a sphere: this approach may be considered
as a generalization of snakes used in 2D. A finite-element
method is adopted in [6] to reconstruct both 2D and 3D
boundaries of the object. Using an active contour model, data
extracted from images are employed to generate a pressure
force on the active contour which inflates or deflates the
curve, making its behavior like a balloon. A technique for
computing a polyhedral representation of the so called visual
hull [7] is studied in [8]: in such approach, only the contours
of the silhouettes in the images have to be visited, and the
computed visual hull is quickly represented. Furthermore,
other methods rely on the use of apparent contours such as
in [9]: in these cases, the reconstruction is based on a spatio-
temporal analysis of deformable silhouettes. Other methods
for object reconstruction rely on the use of several kinds
of sensors, like in the case of vision-based structured light
systems [10], [11]. Finally, a method to grasp an unknown
object using information provided by a deformable contour
model algorithm is proposed in [12].

As for grasp planning techniques, they rely upon the choice
of grasp quality measures used to select suitable grasp points
on the object surface. Several quality measures proposed in
the literature depend on the position of the contact points
(algebraic properties of the grasp matrix, geometry of the grasp
area of the polygon created by the contact points and so on),
while others depend on the finger forces. Two optimal criteria
are introduced in [13], where the total finger force and the
maximum finger force are considered, while measures based
on algebraic properties of the grasp matrix and a measure
based on the task to accomplish are presented in [14]. A
number of quality measures is based on the evaluation of the
capability of the hand to realize the optimal grasp [15]. A
rich survey of grasp quality measures can be found in [16].
Only a few papers address the problem of grasp planning by
taking into account quality measures depending on both object
geometry and hand kinematics [17]–[19].

Also the preshaping of a robotic hand –the preparation of
the hand to grasp the object– is a non-trivial prior step to
grasping [20]. In the literature, several methods deal with
this problem. Most of them rely on a previous knowledge
learned from humans [21]; other methods rely on the use of
vision [22], fuzzy logic [23], neural networks [24], and are
based on rough approximations of the geometry of the object
to grasp [25], and generally are task-dependent [26].

In this paper, a method for fast visual grasping of unknown
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Fig. 1. Classical serial algorithm vs. proposed parallel visual grasp algorithm.

objects using a camera mounted on a robot in an eye-in-
hand configuration is presented. The method is composed
of an object surface reconstruction algorithmand a grasp
planner, which evolve in a synchronized parallel way. The
reconstruction algorithm makes use of a virtual elastic surface
of ellipsoidal initial shape, with axes and dimensions computed
by a suitable object preshaping process, placed around the
object. The surface shrinks toward the object until some
points intercept the object visual hull. Then, elastic forces are
compensated by repulsive forces at the border of the visual
hull. At the equilibrium, the surface assumes the shape of the
object. Running in parallel to the reconstruction algorithm, the
grasp planner moves the fingertips, starting from a suitable
preshape configuration, towards points of the current available
reconstruction surface, which are optimal (in a local sense)
with respect to a number of indices weighting both the grasp
quality and the kinematics configuration of the hand.

The proposed approach, based on preliminary results pre-
sented in [27], is referred to here as a “parallel visual grasp”. It
may represent a valid candidate for applications where online
grasp planning is required, as confirmed by a number of case
studies presented in the paper.

II. PARALLEL V ISUAL GRASPALGORITHM

The typical approach to grasping unknown objects, here
called serial visual grasp algorithm, consists of two stages,
as shown in Fig. 1: in the first stage, the geometry of external
surface of the object is completely reconstructed from the
acquired images; in the second stage, the grasping points
on the object, optimal under a selected global criterion, are
computed first, and then the corresponding trajectory for the
robotic hand is planned and executed. This approach gives the
best results in terms of grasp quality, since the evaluationof
the optimal grasp is made in a global way. However, the total
execution time, given by the sum of the time required for the
reconstruction of the object geometric model and that required
for the synthesis, planning and execution of the grasp, may be
considerable, if powerful hardware is unavailable. Obviously,
this is irrelevant for off-line applications, but it could be a
serious drawback for online grasp planning.

The method proposed here, referred to as the parallel visual
grasp algorithm, may represent a valid candidate for real-time
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Fig. 2. Block diagram of the parallel visual grasp algorithm.

applications, because the total computational time is given
by the slower between the reconstruction and the planning
stage, while the grasp execution can start in parallel with the
previous processes (see Fig. 1). As a matter of fact, object
model reconstruction and grasp planning are independent
processes and can also be allocated to different computational
resources.The drawback is that the achieved final grasp is
optimal only in the local sense.

Notice that, in the classical serial approach, any algorithm
can be used for the reconstruction of the geometry of the
external surface of the object starting from images. The idea
here is that of using a method based on the continuous
deformation of a virtual elastic surface, sampled by pointsand
enclosing the object, which moves toward the object under
the influence of the elastic forces and of repulsive forces.
The last ones arise when parts of the surface penetrate in
the object visual hull. The intermediate configurations of the
surface are used by the grasp planning algorithm to compute
the intermediate configurations of the hand toward the final
grasp. Having a surface which shrinks under the influences of
the elastic forces can be seen as a particular case of the level-
set method proposed in [28], [29] for object reconstruction: in
such works, one or more surfaces evolve in the direction of
the steepest descent provided by the variation calculationof
a given functional to be minimized. In this paper, instead, the
functional is given by the potential elastic force which acts
as an external force at each sampled point of the considered
surface. Moreover, different from point-based reconstruction
algorithms [30], the presence of the virtual elastic fibers
connecting the points of the surface allows achieving a more
uniform distribution of the points on the object visual hull,
which is important for the computation of the optimal grasp.

The block diagram in Fig. 2 shows more details of the
proposed visual grasp algorithm.

The procedure begins with somepreparatory steps, consist-
ing in the acquisition of a number of images using a camera
mounted on the robot arm, from which a rough shape of
the object, in the form of an ellipsoid, is computed (object
preshaping); moreover, the initial grasp configuration of the
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Fig. 3. Camera stations (bullets) and trajectories of the camera during the
acquisition of the images.

hand is selected (hand preshaping).
At this point, both theobject model reconstructionalgorithm

(green blocks) and thegrasp planningalgorithm (orange
blocks) start in parallel and incrementally concur to the final
goal. In particular, the reconstruction algorithm updatesthe
estimation of the current reconstructed surface of the object,
while the grasp planner, on the basis of the current estimation,
computes the trajectories of the fingertips toward a (local)
optimal grasp configuration; these incremental trajectories are
executed by the motion control of the hand.

The single stages of the algorithm: preparatory steps, object
model reconstruction, grasp planning, trajectory planning and
motion control, are described in the following sections.

The assumptions made throughout this work are:

• An eye-in-hand configuration with a calibrated camera is
available for image acquisition.

• The observed rigid object is fixed in the space and
distinguishable w.r.t. the background and other objects.

• From a topological point of view, the object is a con-
nected orientable surface with genus0, i.e., without holes
or handles.

• Any multi-fingered robotic hand mounted on a robot
manipulator can be considered.

III. PREPARATORYSTEPS

A detection algorithm, based on a classic blob analysis,
allows recognizing the presence of the object on a plane in the
field of view of the camera, mounted on the robot arm. Then,
by keeping the optical axis perpendicular to the plane, the
camera is moved until the optical axis intercepts the estimated
centroidP of the object. Hence, the process of acquisition of
the images of the object can be started.

A. Image acquisition and elaboration

The images are taken from the stations (bullets) illustrated in
Fig. 3, where frameOc-xcyczc is the cartesian frame attached
to the camera (camera frame) in the initial configuration, with
the zc axis aligned to the optical axis and the originOc at an
estimated distancer from P .

The acquisition process is carried out by moving the camera
on a sphere of radiusr centered atP , in order to have a
constant image resolution, and by stopping the robot at each

Fig. 4. Silhouette and bounding box extracted from an image of the object.

station. Namely, a first image is acquired from the initial
configuration and a set ofn1 images is taken from camera
stations equally distributed over a circular path on the sphere,
at an elevation angleϑ1, with the optical axis of the camera
pointing to P . In general, further acquisition steps can be
considered, at different elevation angles (see Fig. 3), depending
on the complexity of the object shape. It is obvious that both
the distribution of the acquisition stations and the numbernimg

of acquired images affect the accuracy of the reconstruction
process. The value ofr, instead, is set so as to keep the object
in the camera field of view from all the stations.

Thenimg images are elaborated to extract the object silhou-
ettes: to this aim, a simple binarization process, with a self-
tuned threshold, is employed. A process of a binary dilation
and erosion may be required to reduce the effects of noise.
Additional filtering of the images, both in the spatial and
frequency domains, can be performed to reduce noise and
disturbances such as the presence of shadows in the views.

Once the silhouette for a given image is obtained, it is
straightforward to determine the corresponding bounding box
just considering the smallest rectangle which contains the
whole silhouette. Obviously, this process must be performed
for all thenimg acquired images.

Fig. 4 shows an image with the resulting silhouette and
bounding box.

B. Object preshaping

The proposed method for object preshaping starts from a
concept presented in [31], where a rough estimation of the
object shape is computed by using a linear programming
technique.

For each image, the four planes of the Cartesian space
containing the origin of the camera frame and two adjacent
vertices of the corresponding bounding box in the image
plane are considered, resulting in4nimg Cartesian planes.
Each plane splits the Cartesian space into two regions, one
of which contains the object visual hullV . The intersections
of all these regions create a polyhedronP containingV , which
is a polyhedric overestimation of the visual hull.

The verticesx of this polyhedron can be quickly computed
as follows. Since each side of each bounding box is associated
to a plane, if the normal unit vector to the plane is chosen
pointing outwards with respect to the interior side of the
bounding box, the inner space created by the considered planes
for a given image is represented by the following set of
inequalities:

Aix ≤ di,
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Fig. 5. Examples of ellipsoids used for object preshaping.

where subscripti denotes thei-th image, withi = 1, . . . , nimg,
Ai is a (4 × 3) matrix whose rows are the transpose of
the normal unit vectors, anddi is a (4 × 1) vector whose
elements define uniquely the positions of the planes in the
space. Stacking all theAi anddi in the matricesA andd,
the inner space of the polyhedronP is represented by the
following inequality:

Ax ≤ d.

The vertices of the polyhedron are the so calledbasic feasible
solutions, whose computation is well known in the literature.
The required computational time is very low and depends only
on the numbernimg of images.

Once all thenv verticesxv =
[

xvx xvy xvz

]T
of the

polyhedronP have been computed, the central moments can
be evaluated as:

µi,j,k =
∑

xv∈P

(xvx − x̄vx)
i(xvy − x̄vy )

j(xvz − x̄vz )
k,

where

x̄v =
[

x̄vx x̄vy x̄vz

]T
=

1

nv

nv
∑

i=1

xvi

is the centroid of the polyhedron.
Finally, a pseudo-inertia tensor of the polyhedron can be

defined as:

I =





µ2,0,0 µ1,1,0 µ1,0,1

µ1,1,0 µ0,2,0 µ0,1,1

µ1,0,1 µ0,1,1 µ0,0,2



 ,

where its eigenvalues and eigenvectors define the principal
axes of inertia of an ellipsoid, suitably enlarged to ensure
object wrapping (see Fig. 5), which is employed as the initial
shape of the reconstruction surface.

C. Hand preshaping

Depending on the object shape, the ellipsoid may have
one axis bigger/smaller than others, or all axes of similar
dimension. For all these cases, a good choice of the grasp
points on the object and of the initial grasp configuration ofthe
hand depends also on the task to accomplish (e.g. pick-and-
place, manipulation, assembling, etc.), on the type of grasp
to perform (firm or fine), on the environmental constraints
(e.g. the ground plane), on the hand kinematics and number

k

b

Fig. 6. Piece of the sampled reconstruction surface with thevirtual mass,
stiffness and damping of thei-th sample points.

of fingers. When firm grasp is considered, the axis of approach
of the hand is typically chosen parallel to the major axis of the
ellipsoid. On the other hand, for the fine manipulation case,
the choice of the axis of approach depends on several factors.

In this paper, without loss of generality, the initial grasp
points on the ellipsoid are chosen to form an equilateral
grasp [32] in a plane parallel to the two minor axes of the
ellipsoid, assuming that the corresponding grasp configuration
for the hand is reachable for the given hand kinematics and
environmental constraints.

IV. OBJECT MODEL RECONSTRUCTION

The 3D ellipsoid is virtually placed around the object,
centered at̄xv and sampled withns points. These points are
set at the intersections of ideal meridian and parallel lines
drawn on the external surface of the ellipsoid. Without lossof
generality, the number of parallelsnp is chosen equal to the
number of meridiansnm.

Four virtual elastic links of stiffnessk connect each sample
point with the four closest points. The two poles of the
ellipsoid are connected with all the points of the nearest
parallel of the grid. Hence, the sampled reconstruction surface
behaves like a virtual membrane composed by a network
of ideal elastic fibers connecting the points (see Fig. 6). A
virtual viscous dampingb, with respect to the ground, is also
considered for each point. A damping effect between point
cloud could also be defined, but it is not considered here for
simplicity.

In order to derive the dynamics of each sample point of the
ellipsoid, the balance of forces at a given point can be written
as follows:

bẋi,j + k(xi,j − xi−1,j) + k(xi,j − xi+1,j)

+ k(xi,j − xi,j+1) + k(xi,j − xi,j−1) = f i,j(xi,j)

for i = 1, . . . , nm and j = 1, . . . , np, wherexi,j is the posi-
tion in the workspace of the sampling point at the intersection
of thei-th meridian with thej-th parallel. Vectorf i,j is instead
the external force acting on pointxi,j , which is repulsive with
respect to the border of the visual hullV and is different from
zero only whenxi,j comes intoV :

f i,j(xi,j) =

{

αi,jFani,j , xi,j ∈ V
0, xi,j /∈ V

whereni,j is the unit vector normal to the surface atxi,j ,
pointing out from the object, andαi,jFa is the amplitude of
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the force. In detail,Fa is the maximum force module and
αi,j ∈ (0, 1] is a strictly decreasing sequence of scale factors
defined as:

αi,j(k + 1) = ǫαi,j(k), αi,j(0) = 1

whereǫ ∈ (0, 1) and a new value of the sequence is computed
every time pointxi,j comes out fromV .

Collecting some terms in the previous dynamic equation of
the system, a more compact expression is

bẋi,j + k (4xi,j − c(xi,j)) = f i,j(xi,j),

wherec(i, j) = xi−1,j + xi,j+1 + xi+1,j + xi,j−1. In these
last expressions, the points with subscripti − 1 = j − 1 = 0
(i+1 = nm+1 andj+1 = np+1) coincides with those with
subscriptsi − 1 = nm and j − 1 = np (i + 1 = j + 1 = 1),
respectively. The two poles have to be treated separately, due
to their topological peculiarity, namely:

bẋnp + k
(

nmxnp −

nm
∑

j=1

x1,j

)

= fnp(xnp)

for the north pole, and

bẋsp + k
(

nmxsp −

nm
∑

j=1

xnp,j

)

= fsp(xsp)

for the south pole, where the subscriptsnp and sp indicate
quantities referred to the north and south pole, respectively.

The dynamics of the system, for any non-trivial initial con-
dition of the ellipsoid, leads the elastic surface to shrinktoward
its center until the visual hull is intersected. The equilibrium
is reached when the elastic forces are compensated by the
repulsive forces at the border of the visual hull. When this
happens, the elastic reconstruction surface wraps the object
assuming the shape of the visual hull.

The accuracy of the reconstruction process depends on the
distribution of the observation stations and increases with the
number of viewsnimg and the density of the pointsns of the
reconstruction ellipsoid. On the other hand, the computational
time of the algorithm increases ifnimg and/orns are increased.
Hence, a compromise between performances and accuracy
should be thus decided in order to choose such parameters.
By considering that the final goal of the process is that of
grasping the object and not the model reconstruction, which
can be considered as a secondary outcome of the proposed
method, the accuracy of the reconstruction process needs only
to be adequate for the requirements of the grasp planning
algorithm, as observed also in [33].

V. GRASPPLANNING

At each time step, the evolution of the virtual elastic surface
is frozen and the coordinates of its points are stored in a
memory buffer. Then, the grasp planner computes a new set of
points on the surface, through a local search algorithm which
locally maximizes a suitable grasp quality measure, keeping a
fixed safety distanceδf between the fingertips and the surface.
The new set of points is taken as the initial grasp configuration
for the next time step, when an update of the current estimation

df

Fig. 7. Possible displacements from the current grasp point.

of the object’s surface is available. The process ends when the
object reconstruction algorithm reaches the equilibrium and
the planner computes the final grasp configuration. The safety
distanceδf is employed to avoid undesired collisions between
the fingers and the object before the final grasp is reached.

A. Local search algorithm

The local search algorithm is based on a discretized version
of the gradient projection method. In detail, for each grasp
point pi, a (virtual) force vectorf i, aimed at selecting the
direction along which the finger should be moved toward the
(sub)optimal grasp configuration, is then computed. The force
f ′

i can be defined as the projection of the forcef i onto the
tangential plane to the surface at pointpi:

f ′

i = f i − (fT
i vi)vi,

wherevi is the normal unit vector to the surface at pointpi.
If ||f ′

i|| is higher than a given thresholdǫf , a new grasp point
is set as the neighbor point closest to the direction off ′

i (see
Fig. 7).

Obviously, the choice ofǫf affects both the accuracy of
the grasp solution and the computational time, determining
the number of iterations required to converge to the (local)
optimum. Therefore,ǫf must be carefully tuned on the basis
of this trade-off.

B. Grasp quality measure

It is worth noticing that any quality index for the grasp
can be used in principle. In this paper, the quality measure
is assumed as the sum of a number of quality indices, well
recognized in the literature, which allow to improve grasp
reliability, namely:

• Coplanarity: The contact points on the object belong to
the same plane; this condition simplifies the computation
of good grasps but, obviously, may exclude a number
of grasp configurations that can be more effective than
planar ones.

• Uniform distribution: In 2D cases, grasp stability– the
property of a grasp to resist to external wrenches applied
on the object– is improved if the contact points are
distributed in an uniform way on the surface [16], [34].

• Maximum area:The larger the area of the polygon formed
by the contact points, the larger the external torque that
the same finger contact forces can resist [34].
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• Center of mass on the grasp plane:Gravity and inertial
effects on contact forces are minimized when the object
center of mass belongs to the grasp plane [35], [36].

The above quality indices depend only on the position of
the contact points; however, the quality of the grasp is also
related to the configuration of the particular robotic hand.
This can be accounted for by considering quality indices
depending on hand kinematics, namely: distance from fin-
ger joint limits, distance from finger kinematic singularities,
distance of the fingers from each other and from the palm.
Moreover, other quality indices taking into account the real
force directions [37] can be considered.

During grasp execution, the contact points do not nec-
essarily belong to the same plane. Therefore, the planeΠ
which minimizes the distance from all the contact points is
considered and it is useful to compute the projectionpΠ

i

of contact pointpi on Π (see Fig. 8), withi = 1, . . . , nf ,
beingnf the number of fingers of the hand. Moreover, letcm
denote the estimated center of mass of the current shape of
the object (assuming uniform mass distribution) and letcΠm be
the projection ofcm on Π.

To account for the different quality indices, the (virtual)
force vectorf i at contact pointpi is computed as the sum of
a number of (virtual) force contributions:

f i = fΠi + fei + fai + f cm
+ f bi,

where:

• fΠi = kΠ
(

pΠ
i − pi

)

is the (virtual) force which moves
pi to pΠ

i , so that all the contact points belong to the same
grasp plane.

• fei = ke(θi − 2π/nf)ti is the (virtual) tangential force
in charge of producing an equilateral grasp configuration,
whereθi is the angle between vectorspΠ

i −cΠm andpΠ
j −

cΠm, with j = i+ 1 for i = 1, . . . , nf − 1, andj = 1 for
i = nf , and ti is the tangential unit vector normal to
cΠm − pΠ

i and pointing towardpΠ
j .

• fai = ka
(

pΠ
i − cΠm

)

/||pΠ
i − cΠm|| is the (virtual) force

which tends to enlarge the area of the grasp polygon.
• fcm

= kcm
(

cm − cΠm
)

is the (virtual) force, equal for
all the contact points, which attracts the grasp planeΠ to
the center of masscm.

• f bi is a (virtual) barrier force, aimed at avoiding the
motion of the fingers along directions that cause the
reaching of joint limits, joint or hand singularities, and
the collision between fingers or with the palm.

ParameterskΠ, kcm , ke, ka are all positive constant coeffi-
cients, suitably chosen so as to weigh the single force contri-
butions. Notice that the barrier forces can be also employedto
cope with environmental constraints, e.g. object ground plane
or other surrounding objects, avoiding in such a way that some
parts of the surface points, e.g. the lowest ones, can be reached.

VI. T RAJECTORY PLANNING AND CONTROL

The grasp planner produces a sequence of intermediate
target grasp configurations at each iteration of the object’s
reconstruction algorithm which ends with the optimal grasp

i

i+1

i  1–

cm

cm

P

P

pi
pi+1

pi–1

pi

P

pi+1

P

pi–1

P

f
Pi

fai

fei

qi

vi

fcm

Fig. 8. Forces at contact pointpi.

configuration (in a local sense). The intermediate configura-
tions are used to generate the fingertips trajectories.

Namely, the sequence of intermediate configurations is
suitably filtered by a spatial low-pass filter and interpolated
in order to achieve a smooth path for the fingers. In fact, only
the final configuration needs to be reached exactly, while the
intermediate configurations can be considered as via points
for the generation of the trajectories of the fingers, and canbe
computed online with a one step delay.

Moreover, the actual paths of the fingers generated by the
trajectory planner is offset by a safety distanceδf along the
normal to the surface (see Fig. 7). When the final configu-
ration is reached, the offset is progressively reduced to zero,
producing the desired grasp action.

Any Cartesian motion control can be used, in principle,
for tracking the tip trajectories computed by the planner until
the final grasp configuration is reached. However, to control
the contact forces required to grasp the object, an interaction
control strategy (e.g., impedance control [38]) combined with
a real-time force-optimization method [39] can be adopted.
Also, the availability of tactile sensing for control is important
to allow rapid adjustments of the grip [40].

VII. E XPERIMENTS

A. Technical details

The experimental set-up implementing the proposed method
is composed of a4-fingered robotic hand made up of 16
Bioloid Dynamixel AX-12 servomotors (see Fig. 9). An
industrial USB iDS UEYE UI-1220SE-C camera has been
employed in an eye-in-hand configuration, and it has been
mounted directly in the center of the palm of the hand.
Several calibration algorithms can be adopted, e.g. theMatlab
Calibration Toolbox1. A Windows OS process commands
the actuators by providing position signals, while a high-
priority multi-thread programming has been required in order
to implement the proposed parallel method.

For the image acquisition process, a Comau Smart-Six robot
manipulator has been employed to carry around the camera
in all the acquisition stations. A numbernimg = 13 images

1http://www.vision.caltech.edu/bouguetj/calibdoc/
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Fig. 9. Hand used for the experiments.

Fig. 10. Steps of the object model reconstruction algorithm: teddy bear (left),
bottle (right). The height of both the objects is about11 cm.

with a resolution of1280× 960 pixels has been acquired for
each object considered in the experiments. With this number
of images, it is possible to achieve a good accuracy in the
surface reconstruction of objects with complex shapes. For
simpler objects, a lower number of images can be considered.

The reconstruction surface is sampled withns = 1500
points, while the surface parameters have been chosen as:
k = 1 N/m, b = 1 Ns/m, Fa = 0.1 N and ǫ = 0.9. The
parameterskΠ, kcm , ke, ka of the grasp planner have been
chosen all equal to1, in order to have the same weight for
all the contributions to the grasp quality measure, while the
thresholdǫf has been tuned to a value of0.002 N. The floating
security distanceδf has been set to2 cm, which is intentionally
large to achieve a better visualization of the trajectories. The
computational time for the whole process is about1.5 s on
a Pentium1.7 GHz. In particular, the stage for the object
model reconstruction employs only80 ms to reach the final
equilibrium, while the grasp planning stage is the slower one.
Of course, the execution time for grasp planning depends on
the choice of the quality indices.

B. Results

In the remainder, the results of the experiments performed
with the objects shown in Fig. 5, namely a teddy-bear and a
little bottle, are presented.

Fig. 11. Trajectories of the fingers (green: approach with safety distance
δf , red: grasp) and corresponding sequence of points computedby the grasp
planner (yellow) for the two objects, evaluated withkcm = 1 (left) and
kcm = 0 (right).

In Fig. 10 some intermediate steps of the reconstruction
algorithm are shown, while the finger trajectories and the final
grasp configurations, respectively for the teddy-bear (using
three fingers) and for the little bottle (using four fingers),
are presented in Fig. 11. Both the caseskcm = 1 (left) and
kcm = 0 (right) are considered (the bold points represent
the positions of the objects’ center of mass). In particular,
in the casekcm = 1, it is evident that, for both objects, the
grasp plane contains the center of mass; on the other hand, for
kcm = 0, the grasp plane is far from the center of mass while
the grasp polygon’s area, for both objects, is maximum.

Notice that the teddy-bear is grasped with the three fingers
in a planar equilateral grasp (120o apart) for both cases
kcm = 1 and kcm = 0. The yellow lines represent the
sequence of points computed by the grasp planner. The green
lines represent the trajectories that the planner generates for
the fingertips after spatial filtering and considering the safety
distance. Finally, the red lines show the last part of the grasp
trajectory, when the safety distance is progressively reduced.

For the case of the little bottle, the final grasp configuration
is planar and equilateral as well, with the four contact points
90o apart. Moreover, the finger trajectories are very regular due
to the good choice of the initial grasp configuration evaluated
by the hand preshaping module. This result is common when
the object is symmetric w.r.t. one or more axes, and so it is
well represented by an ellipsoidal surface. Of course, for the
particular bottle’s shape, the results do not change significantly
whenkcm = 0.

C. Comparison

To further validate the proposed method, a comparison be-
tween the results obtained with the proposed parallel approach
with local optimization and those obtained using the classical
serial approach with global optimization has been performed.
In detail, after the whole reconstruction of the unknown
object model, a global search of the optimal grasp has been
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TABLE I
COMPARISON BETWEEN THE PARALLEL(LOCAL) APPROACH AND THE

SERIAL (GLOBAL) APPROACH WITH DIFFERENT GRASP QUALITY
MEASURES.

Q1 Q2 Q3

kcm = 1 Local Global Local Global Local Global

Bottle 0.016 0.016 0.091 0.101 0.438 0.438
dM = 0.0 mm dM = 4.1 mm dM = 4.7 mm

Teddy Bear
0.292 0.320 0.536 0.690 0.426 0.482
dM = 4.7 mm dM = 4.5 mm dM = 5.3 mm

kcm = 0 Local Global Local Global Local Global

Bottle 0.019 0.020 0.099 0.112 0.574 0.590
dM = 5.9 mm dM = 4.0 mm dM = 7.8 mm

Teddy Bear 0.267 0.297 0.369 0.413 0.707 0.780
dM = 4.5 mm dM = 4.5 mm dM = 3.5 mm

done according to three well-known quality measures, namely:
(Q1) the max-min singular value of the grasp matrix [14],
(Q2) the maximum volume of the ellipsoid in the wrench
space [14], and (Q3) the largest perturbation wrench that the
grasp can resist [13]. Where requested, frictionless contact
has been assumed. Two further constraints have been included
in the global search: the grasp configurations violating hand
physical constraints and those with the center of grip far from
the object’s center of mass have been discarded. This latter
constraint has been considered only in the casekcm = 1.

For each indexQi, the value computed in the globally
optimal grasp configuration has been compared with that
computed in the locally optimal grasp configuration obtained
using the proposed parallel approach.

The results of this comparison are shown in Table I, where
it is evident that the values of the indices are very similar in
the case of the bottle, while there are small differences in the
case of the teddy-bear. Moreover, the final contact points inall
cases are very close to each other, as one can observe from the
valuedM in the same table. This parameter has been defined
by computing the distance between each contact point of the
final grasp configuration reached in the parallel approach and
the closest point of the final configuration reached in the serial
approach:dM is the maximum among these values. Hence,
dM can be considered as a measure of the distance between
grasping configurations. It can be observed that this quantity
remains quite small in all the situations, considering thatthe
maximum dimension of both the objects is about11 cm.

Finally, it is worth noticing that the time employed to run
the serial method is, on average, ten times slower than the
time employed by the parallel method.

VIII. C ONCLUSION

A new method for online grasp planning of unknown objects
for a multi-fingered robotic hand was presented in this paper.
The proposed approach is composed of an iterative object’s
surface reconstruction algorithm and of a local optimal grasp
planner, evolving in a synchronized parallel way. The recon-
struction algorithm is based on vision and employs a virtual
elastic reconstruction surface shrinking towards the object
to grasp and, at the equilibrium, assuming the geometrical
shape of the object. The grasp planner moves the fingertips
of the robotic hand on the current available reconstruction
surface towards points which are optimal (in a local sense)

w.r.t. a certain number of indices weighting both the quality
of the grasp and the kinematic configuration of the robotic
hand. The total computational time is given by the slower
between the reconstruction and the planning stage, while the
grasp execution can start in parallel with these processes.This
feature makes the proposed approach suitable for applications
where fast or online grasp planning is required. For the
planning stage, a simple quality measure has been tested in
a number of experiments with satisfactory results. It is worth
observing that, however, different grasp quality measurescan
be used in the same framework.
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