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Abstract—This paper deals with the problem of position-based
visual servoing in a multiarm robotic cell equipped with a hybrid
eye-in-hand/eye-to-hand multicamera system. The proposed ap-
proach is based on the real-time estimation of the pose of a target
object by using the extended Kalman filter. The data provided by
all the cameras are selected by a suitable algorithm on the basis
of the prediction of the object self-occlusions, as well as of the mu-
tual occlusions caused by the robot links and tools. Only an optimal
subset of image features is considered for feature extraction, thus
ensuring high estimation accuracy with a computational cost inde-
pendent of the number of cameras. A salient feature of the paper
is the implementation of the proposed approach to the case of a
robotic cell composed of two industrial robot manipulators. Two
different case studies are presented to test the effectiveness of the
hybrid camera configuration and the robustness of the visual ser-
voing algorithm with respect to the occurrence of occlusions.

Index Terms—Extended Kalman filter (EKF), occlusion predic-
tion, visual motion estimation, visual servoing.

I. INTRODUCTION

ONE OF THE MOST important features of the new gen-
eration of industrial robots is the enhanced sensing capa-

bility, which is based on the use of exteroceptive sensors like
force and vision.

In a multiarm robotic cell, visual systems are usually com-
posed of two or more cameras that can be rigidly attached to
the robot end-effectors (in the so-called eye-in-hand configura-
tion), or fixed in the workspace (in the so-called eye-to-hand
configuration) [1]. The first configuration guarantees good ac-
curacy and the ability to explore the workspace, although with
a limited sight; the second one ensures a panoramic sight of the
workspace, but a lower accuracy. Hence, the use of both con-
figurations at the same time (i.e., the so-called hybrid configu-
ration) makes the execution of complex tasks easier and offers
higher flexibility in the presence of a dynamic scenario.
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Recently, some effort has been made to design visual servoing
systems based on hybrid eye-in-hand/eye-to-hand camera con-
figurations. In [2], an eye-to-hand camera is in charge of the
robot tool positioning, while an eye-in-hand camera is in charge
of the robot tool orientation. A similar approach is used in [3],
where an eye-to-hand camera is employed to estimate the robot
tool pose with respect to the workspace, and an eye-in-hand
camera is employed as data source for object pose estimation.
Further, in [4] and [5], a camera mounted on the end-effector of
a robot is adopted as an eye-to-hand camera for another robot to
benefit from the advantages of a mobile camera.

All the above approaches do not fully exploit the potential-
ities of hybrid camera configurations. In fact, the information
provided by the different types of cameras is employed for dif-
ferent goals, and a complete integration is not really achieved.

Another important issue in multirobot cells is related to the
occurrence of occlusions of the object features used as visual
data. Occlusions may happen when some parts of a workpiece
are hidden with respect to the cameras by other parts of the ob-
ject itself (self-occlusion), or when a workpiece is hidden by a
robot link or tool, or by another object (mutual occlusion). They
may cause failures to any kind of algorithm based on the extrac-
tion of image features. Hence, it is important to adopt suitable
strategies able to cope with this problem.

The issue of computing occlusion-free viewpoints in a known
polyhedral world is considered in [6] and [7]. However, the
proposed techniques do not consider real-time constraints and
moving objects. A simple occlusion-resistant object-tracking al-
gorithm is proposed in [8] and [9], where a Kalman filter is
adopted to have a prediction of the target-object trajectory while
occlusions occur. In [10], an algorithm for automatic grasping
is proposed, based on the selection of viewpoints that avoid oc-
clusion for the evaluation of the grasping trajectory. However,
this algorithm does not solve the problem of occlusions in the
presence of moving workpieces.

The control scheme considered in this paper can be classified
as position-based visual servoing (PBVS), because it requires
the computation of position and orientation errors defined in the
Cartesian space [11]. The main challenge of position-based al-
gorithms is the real-time estimation of the pose of target objects
from visual measurements.

This problem has been largely investigated in the literature.
Geometrical solutions have been proposed [12], as well as nu-
merical and iterative approaches, e.g., linear approaches based
on least-square methods [13], [14] and full-scale nonlinear op-
timization techniques [15]–[17].
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An alternative approach that is often used for pose estima-
tion is the extended Kalman filter (EKF), thanks to its capa-
bility to combine redundant noisy measurements from images
in a statistically well-grounded way (see, e.g., [18] and refer-
ences therein).

The Kalman filter offers many advantages over other esti-
mation methods, e.g., temporal filtering, recursive implemen-
tation, ability to change the measurement set during the oper-
ation. Also, the pose prediction computed by the filter allows
setting up a dynamic windowing technique which may sensibly
reduce the time required for image processing. These features
are suitably exploited in the algorithm presented here. In fact,
differently from previous approaches based on hybrid configu-
rations (see, e.g., [2] and [4]), the pose estimation is achieved
by using all the data provided by all the cameras, without any
kind of a priori discrimination.

An important contribution of this paper is the adoption of
a suitable selection algorithm that, at each sampling time, al-
lows the selection of an optimal set of visual data to be used
for pose estimation. This set is dynamically changed during the
system operation on the basis of the specific task and of the cur-
rent configuration of the workspace. Only the selected features
are grabbed to achieve the measurements, and thus, the compu-
tational time spent for image processing is independent of the
number of cameras [21].

The computational efficiency of the selection algorithm is im-
proved, thanks to the adoption of a fast occlusion-prediction al-
gorithm purposely designed for multiarm robotics cells. In this
way, the occluded features can be eliminated from the set of fea-
tures candidates to be extracted by the images. The algorithm is
based on binary space partitioning (BSP) tree structures to rep-
resent the 3-D geometry of the cell. The BSP tree representation
is updated in real time on the basis of the measurements of the
robot joint positions, and of the estimated poses of the work-
pieces. Notice that in industrial applications, it is reasonable to
assume that the geometry of the cell and of the target objects is
known a priori. This information is suitably exploited here to
speed up the whole estimation process.

Noticeably, the proposed formulation of the Kalman filter al-
lows separating the dependency on the choice of the image fea-
tures from the choice of the coordinates adopted to represent the
pose of the target objects. Hence, it can be applied with straight-
forward modifications to different kinds of image features, using
both eye-in-hand and eye-to-hand cameras and any kind of pa-
rameterization of the object orientation.

In this paper, a complete scheme for PBVS on an industrial
multiarm robotic cell is described. The proposed formulation
generalizes the results presented in previous papers [22] (con-
cerning hybrid camera configurations) and [23] (concerning oc-
clusion detection in multiarm robotic cells).

A salient feature of the paper is the implementation of the
proposed approach to the case of a robotic cell composed of
two industrial robot manipulators. Two different case studies are
presented to test the effectiveness of the hybrid camera config-
uration and the robustness of the visual servoing algorithm with
respect to the occurrence of occlusions.

The paper is organized as follows. In Section II, the whole
PBVS scheme is presented. The model of the hybrid camera

Fig. 1. Block scheme of the PBVS algorithm.

system and the relevant kinematic equation for the robotic cell
are provided in Section III. Section IV introduces the image
Jacobian used for the formulation of the EKF presented in
Section V. The image-features selection and the occlusion-de-
tection algorithms are described in Section VI. Finally, the
experimental results are illustrated in Section VII.

II. PBVS

A typical PBVS scheme for industrial robots is represented in
Fig. 1, corresponding to the dynamic position-based look-and-
move structure presented in [1]. This algorithm requires the es-
timation of the pose of a target object with respect to a refer-
ence frame (the base frame or the end-effector frame) by using
the vision system; the estimated pose is then fed back to a pose
controller. Hence, the two main operations to be performed are
pose control and pose estimation.

Notice that pose estimation is a computationally demanding
task, because it requires processing of the measurements of
some geometric features extracted from the images of one or
more cameras. Hence, the frequency of the pose-estimation al-
gorithm is usually lower than the frequency of the pose-control
loop (greater or equal to 500 Hz in industrial robots, to guar-
antee tracking accuracy and disturbance rejection). However,
in the application considered in this paper, the bottleneck is
represented by the camera frame rate (between 25 and 60 Hz
for low-cost cameras used in industrial applications).

Pose control is performed through an inner–outer control
loop. The inner loop implements motion control (independent
joint control or any kind of joint space or task space control). In
the outer loop, the block named “Dynamic Trajectory Planner”
computes the trajectory for the end-effector on the basis of the
current object pose and of the desired task.

The pose-estimation algorithm provides the measurement of
the target object pose. The use of a multicamera system requires
the adoption of intelligent and computationally efficient strate-
gies for the management of highly redundant information (a
large number of object image features from multiple points of
view). This task has to be realized with real-time constraints,
and thus, the extraction and interpretation of all the available
visual information is not possible.

To solve this problem, an efficient technique (described by
the scheme represented in Fig. 2) has been developed, which is
able to improve the accuracy and robustness of the estimation
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Fig. 2. Block scheme of the pose-estimation algorithm.

by exploiting a minimal set of significant visual data, suitably
selected from the initial redundant set.

In detail, the EKF is used to compute an estimate of the object
pose on the basis of the image features extracted from visual
information. The filter provides also a prediction of the pose of
the workpieces at the next sampling time, that is input to the
occlusion-prediction algorithm, in charge of filtering out all the
image features that are not visible at the next sampling time.

Notice that not all the visible image features provided by the
occlusion-prediction algorithm are used for feature extraction.
In fact, in a multicamera system, the available image features
may be highly redundant, and may increase the computational
cost without a significant enhancement of the estimation accu-
racy [20]. Therefore, a selection algorithm is adopted to dynam-
ically select an optimal set of visible image features. This algo-
rithm is based on the maximization of an objective function de-
pending on a combination of suitable quality indexes, ensuring
a balanced spatial distribution of the projections of the image
features on the image plane of each camera, as well as a bal-
anced distribution of the features among the different cameras,
considering their different resolutions and focuses [21]. More-
over, a windowing technique is used to compute the size and
location of the windows of the image plane to be grabbed for
image processing. This considerably reduces the computational
charge of the frame-grabbing operations.

In the following, the main issues concerning pose estimation
and image-feature selection are considered.

III. MODELING

Consider a system of video cameras fixed in the
workspace (eye-to-hand cameras) and video cameras
mounted on the end-effector of one or more robots (eye-in-hand
cameras), with . In the following, the index
will be used to denote the quantities referred to a frame

attached to camera (eye-to-hand or eye-in-hand),
with . According to the classical pinhole camera
model, the camera frame is chosen with the -axis aligned
with the optical axis and the origin in the optical center of the
lens. The sensor plane is parallel to the -plane at a distance

along the -axis, where is the effective focal length
of the lens. The image plane is parallel to the -plane at a
distance along the -axis. The intersection of the optical
axis with the image plane defines the principal optical point ,
which is the origin of the image frame , whose axes

and are taken parallel to the axes and , respectively.

Assuming that the projective geometry of the camera is mod-
eled by perspective projection, a point of the object with co-
ordinates with respect to the camera frame is
projected onto the point of the image plane with coordinates

(1)

Without loss of generality, the case of a single moving ob-
ject is considered. The position and orientation of a frame at-
tached to the object with respect to a base coordi-
nate frame can be expressed in terms of the coordinate
vector of the origin and of the rotation ma-
trix , where is a vector corresponding to a
suitable parameterization of the orientation. In the case where a
minimal representation of the orientation is adopted, e.g., Euler
angles, it is , while it is if unit quaternions are used.
Hence, the vector defines a represen-
tation of the object pose with respect to the base frame, in terms
of parameters.

The homogeneous coordinate vector of point
with respect to the base frame can be computed as

where is the homogeneous coordinate vector of , with re-
spect to the object frame, and is the homogeneous transfor-
mation matrix representing the pose of the object frame referred
to the base frame

where is the null vector. Notice that if the object is
rigid, the vector is constant, and can be computed from a
CAD model of the object.

Let denote the homogeneous transformation matrix rep-
resenting the pose of the camera frame referred to the base
frame. For the eye-to-hand cameras, the matrix is constant,
and can be computed through a suitable calibration procedure
[24], while for the eye-in-hand cameras (see Fig. 3), this matrix
depends on the camera current pose , i.e., , and
can be computed as

where is the homogeneous transformation matrix of the
base frame of the robot carrying camera with respect to the
common base frame, is the homogeneous transformation
matrix of the end effector with respect to the base frame of the
robot , and is the homogeneous transformation matrix of
camera with respect to frame of the end-effector where the
camera is mounted. Notice that and are constant and
can be estimated through suitable calibration procedures [25],
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Fig. 3. Eye-in-hand/eye-to-hand cameras.

while depends on the current end-effector pose , and
may be computed using the robot kinematic model.

Therefore, the homogeneous coordinate vector of with re-
spect to the camera frame can be expressed as

(2)

where . Notice that is con-
stant for eye-to-hand cameras; moreover, the matrix does
not depend on and separately, but on the relative pose of
the object frame with respect to the camera frame.

The vector corresponding to in (2) is the coordinate
vector of point with respect to the camera frame . Hence, its
time derivative has the meaning of relative velocity of point

, with respect to the camera frame , expressed in frame .
If the camera is fixed, this velocity represents also the absolute
velocity of point with respect to the base frame, expressed in
the camera frame, denoted by . When the camera frame is
moving, the contribution to due to the motion of the camera
must be taken into account.

The velocity of the camera frame with respect to the base
frame can be characterized in terms of the translational velocity
of the origin and of angular velocity . These vectors,
expressed in the camera frame , define the velocity screw

. Then, the absolute velocity of point can be
computed as

(3)

with , where is the identity matrix,
and denotes the skew-symmetric matrix operator.

Equation (3) holds for any point of the object, hence, it can
be applied to the origin of the object frame. This yields

(4)

where is the vector of the coordinates of with respect to
the camera frame , is the relative velocity of with re-
spect to the camera frame , while is its absolute velocity;
all the quantities are expressed in the camera frame . On the
other hand, the absolute angular velocity of the object frame
expressed in the camera frame can be computed as

(5)

where represents the relative angular velocity of the object
frame with respect to the camera frame. Equations (4) and (5)
can be rewritten in the compact form

(6)

where is the velocity screw cor-
responding to the absolute motion of the object frame,

is the velocity screw corresponding
to the relative motion of the object frame with respect to the
camera frame , and the matrix is defined as

where denotes the null matrix. The velocity screw
can be expressed in terms of the time derivative of the vector
through the equation

(7)

where is a Jacobian matrix depending on the particular
choice of coordinates for the orientation, hereafter referred to
as pose representation Jacobian [26].

IV. IMAGE FEATURES

An image feature is any structural feature that can be ex-
tracted from an image, corresponding to the projection of a
physical feature of the object onto the camera image plane. An
image feature can be characterized by a set of parameters that
can be calculated from the image. Examples are, e.g., the image-
plane coordinates of points, the distance between two points in
the image plane and the orientation of the line connecting those
two points, the area of the projected surface, and the parameters
of lines in the image plane. The image-feature parameters for
camera can be grouped in a vector ,
where is a real value and is the dimension of the image-
feature parameter space. The mapping from the position and ori-
entation of the object to the corresponding image-feature pa-
rameters can be computed using the projective geometry of the
camera and can be written in the form

(8)
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where only the dependence from the relative pose of the object
frame with respect to the camera frame has been explicitly ev-
idenced. Usually, for visual tracking and visual servoing appli-
cations, the computation of the differential mapping is required

(9)

where the matrix is the Jacobian mapping of the relative
velocity screw of the object frame, with respect to the camera
frame, into the variation of the image-feature parameters.

Taking into account the velocity composition (6), equation
(9) can be rewritten in the form

(10)

where is also the Jacobian corresponding to the contribu-
tion of the absolute velocity screw of the object frame, hereafter
referred to as image Jacobian, while

(11)

is the Jacobian corresponding to the contribution of the absolute
velocity screw of the camera frame. The Jacobian (11) is known
in the literature as the interaction matrix [27].

The computation of the image Jacobian depends on the
type of image-feature parameters, and can be performed using
a procedure similar to that adopted in [27] to compute the inter-
action matrix .

V. POSE ESTIMATION

In this section, the problem of the estimation of the pose
vector of the object, with respect to the base frame, from
the measurements of the image parameters obtained using
a system of eye-in-hand/eye-to-hand cameras is considered.
The proposed solution is based on the EKF. To this purpose, a
discrete-time state-space dynamic model has to be considered,
describing the object motion. The state vector of the dynamic
model is chosen as . For simplicity, the object
velocity is assumed to be constant over one sampling period .
This approximation is reasonable, in the hypothesis that is
sufficiently small and is usual in visual servoing applications
(see, e.g., [11]). Models with constant acceleration could also
be adopted (see, e.g., [28]) in the cases where this approxima-
tion is not realistic.

The dynamic modeling error can be considered as an input
disturbance described by zero-mean Gaussian noise with co-
variance . Hence, the discrete-time dynamic model can be
written as

(12)

where is the ( ) block matrix

The output of the Kalman filter is the vector of the image-fea-
ture parameters measured on the image planes of the cameras
at time

where , , being the measure-
ment noise of camera . The measurement noise is assumed to
be zero-mean Gaussian noise with covariance . The covari-
ance matrix can be evaluated during the calibration procedure
of the cameras or by means of specific experiments.

Taking into account the (8), the output model of the Kalman
filter can be written in the form

where and

... (13)

with . Notice that is the
pose of the camera frame at time ; this quantity is known
and constant for eye-to-hand cameras, while it can be computed
from the robot direct kinematics for eye-in-hand cameras. For
this reason, the explicit dependence of from has been
omitted in (13).

Since the output model is nonlinear in the system state, the
EKF must be adopted. The first step of the EKF algorithm pro-
vides an optimal estimate of the state at the next sampling time,
according to the recursive equations

where is the covariance matrix of the estimate state
error. The second step improves the previous estimate by using
the input measurements according to the equations

where is the ( ) Kalman matrix gain

being the Jacobian matrix of the output function

where is a null matrix of proper dimensions corresponding to
the partial derivative of with respect to the velocity variables;
this quantity is null because function does not depend on the
velocity.
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In view of (8) and (13), the computation of requires the
computation of the Jacobian matrix of with respect to . In
the case of eye-in-hand cameras, it is

(14)

On the other hand, the time derivative of can be computed
also according to (10) as a function of and . The velocity
screw can be computed according to (7), and can be
expressed in the form

Hence, comparing (10) with (14), the following noticeable
equality can be found:

Obviously, the same result holds for eye-to-hand cameras (in
this case, and ).

The above equality allows separating the computation of the
Jacobian dependent on the choice of the image features (i.e.,
the image Jacobian ) from the computation of the Jaco-
bian dependent on the object-pose representation (i.e., the pose
representation Jacobian ). By virtue of this property, the
Kalman filter formulation becomes quite flexible, and can be
applied with straightforward modifications to different kinds of
image features, using both eye-in-hand and eye-to-hand cam-
eras and any kind of parameterization of the object orientation.

As a final remark, it is worth noticing that the change of image
features during system operation does not affect the state of the
EKF, which remains continuous, but only the output function
(13) and the Jacobian matrix .

VI. IMAGE FEATURES SELECTION

The selection of the features to be extracted from the images
is a fundamental issue for the pose-estimation problem. Two
main aspects are to be considered. The first one is that some
of the features are not always visible, because they are not in
the camera field of view or are (partially) occluded by the ob-
ject itself, by other objects, or by the arms of the robots of the
cell. The second aspect is that the accuracy of the EKF depends
on the “quality” of the set of measurements, that can be dynam-
ically changed during the task execution.

In this paper, an algorithm for a multiarm robotic system is
used to recognize in real time the presence of occlusions with re-
spect to each camera. The algorithm is based on BSP tree struc-
tures to represent the 3-D geometry of the cell [21], [29]. More-
over, a feature-selection algorithm is adopted to find an optimal
subset of image features among those available after occlusion
detection, to be used for pose estimation.

A. BSP Tree

A BSP tree data structure may be employed to represent the
geometry of known 3-D environments, like a robotic cell with

Fig. 4. Example of decomposition of a 3-D object into elementary surfaces.

one or more robot manipulators and workpieces. To achieve a
computationally fast representation, attention is limited to poly-
hedrical objects, characterized by planar polygonal surfaces.
This choice is not too restrictive, since a large class of man-made
objects of different shapes can be approximated as polyhedrical
solids.

The elementary data of a BSP tree representation are the ob-
ject surfaces. Each surface can be seen as an anticlockwise-or-
dered sequence of feature points (the corners of the polygon)
laying on its contour. For example, for the object shown in
Fig. 4, the representation of the surface is the sequence

.
To represent the set of all surfaces of an object, the following

BSP tree-building paradigm is adopted: each node of the tree
is characterized by a partition plane that divides the 3-D space
into two subspaces containing all the surfaces (or pieces of sur-
faces) which are in the front and in the back, respectively, of the
partition plane; all the surfaces lying on the partition plane are
stored in the node. Recursively applying this paradigm to the
two subspaces, a binary tree data structure is obtained, whose
nodes contain all the surfaces of the object.

Notice that this approach does not impose connectivity
constraints on the internal subspace of the represented object.
Therefore, a unique BSP tree may be used to simultaneously
represent many objects with respect to the same reference
frame.

The conformation of the tree depends on the choice of the par-
tition planes. For the purpose of this paper, the partition planes
are selected from the set of planes containing the surfaces of the
objects. To reduce the complexity of the tree, it is convenient
to select the partition planes in a sequence that minimizes the
number of intersections with the other object surfaces. As an
example, in Fig. 5, a BSP tree representing the object of Fig. 4
is reported, where the choice of the partition planes does not
generate intersections.

B. Occlusion Prediction

For the purpose of the occlusion-prediction algorithm pre-
sented in this paper, the robotic cell (see Fig. 6) is seen as a
collection of objects which includes the workpieces (target ob-
jects), the robot links and tools, and all of the possible obstacles
that may occlude the workpieces with respect to the cameras.

At each sampling time, the algorithm provides the prediction
of the positions on the camera image planes of all the visible
feature points of the workpieces. The inputs of the algorithm
are the robot joint measurements and the prediction of the pose
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Fig. 5. Possible BSP tree representation of the object of Fig. 4 ; labels F and B
denote the front and back subspaces.

Fig. 6. Sketch of the multiarm robotic cell.

of the workpieces provided by the visual-tracking algorithm de-
scribed in Section VII.

The occlusion–prediction algorithm can be decomposed into
two parts: geometric modeling and occlusion detection.

The geometric modeling part, described in Fig. 7, is aimed at
generating online a BSP tree, representing the 3-D geometrical
model of the cell [30]. To this purpose, the CAD models of all
the objects of the cell are assumed to be known. Moreover, each
object has to be represented as a set of surfaces with respect to a
reference frame fixed to the object itself. This type of represen-
tation can be generated once offline to facilitate the online BSP
tree construction.

The first step of the modeling procedure is the computation
of the poses of all the robot’s links and tools using the joint po-
sition measurements and the direct kinematics. The second step
is the computation of the pose of all the objects of the cell, es-
timated using the EKFs (one EKF for each object) with respect
to the frame of camera . At this point, by using the camera per-
spective transformation, which depends on the intrinsic camera
parameters, it is possible to compute the projections of all the
objects of the cell (each seen as a set of surfaces) on the image
plane of all the cameras. On the basis of these data, the BSP tree
structure representing the current geometric configuration of the
cell, as it is seen by all the cameras, can be built.

Fig. 7. Dynamic BSP tree-building process.

The detection of the occluded parts of the workpieces with
respect to a given camera can be achieved by implementing
a suitable recursive visit of the corresponding BSP tree rep-
resentation. This algorithm allows recognizing all the feature
points lying on parts of the workpieces that are not occluded
with respect to the camera. It can be described by the following
Pascal-like procedure.

procedure not_occluded (node:BSP_tree;
view:point;visible_points:point_list);

begin
if node NOT EMPTY then

case classify_point(view, node->partition_plane)
ON_THE_PLANE:
not_occluded(node->front_tree,

view, visible_points);
not_occluded(node->back_tree,

view, visible_points;
IN_FRONT_OF:
not_occluded(node->back_tree,

view, visible_points);
process_surfaces(node->surfaces,

view, visible_points);
not_occluded(node->front_tree,

view, visible_points);
IN_BACK_OF:
not_occluded(node->front_tree,

view, visible_points);
process_surfaces(node->surfaces,

view, visible_points);
not_occluded(node->back_tree,

view, visible_points);
end {case}

end {if}
end {begin}
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In the above procedure, the input variable view is the point
of view (POV) (corresponding to the optical center of the image
plane of the considered camera) from which the current set of
visible feature points of the object is evaluated. These points are
listed in the variable , which contains also the
projections of these points on the image plane of the camera.

The function evaluates the position of the
POV with respect to the partition plane.

The core of the occlusion-prediction algorithm is the proce-
dure , which updates the current set of
visible points by adding all the feature points of the surfaces of
the current node, and by eliminating all the feature points that
are hidden by the surfaces of the current node.

The procedure is recursive, and ends when all the nodes of
the tree have been visited; at the end, the current set of visible
points will contain all and only the feature points visible from
the POV. Notice that the construction of the set proceeds so that
the surfaces are considered in a sequence corresponding to their
position, with respect to the POV, from the background to the
foreground.

The above algorithm must be applied to all the cameras of the
system.

It is important to observe that the code implementing the
whole occlusion-detection algorithm (visit of the tree and sur-
faces processing) exhibits a complexity , where is the
number of surfaces of the object [30]. Moreover, some modifica-
tions can be introduced, both in the modeling and the occlusion
detection parts, which allow a considerable reduction of com-
putational time [29].

Notice that the occlusion-detection algorithm was developed
for the case of point features. This choice is quite general, be-
cause any object contour can be sampled and represented as a
set of points.

C. Optimal Selection and Windowing

The occlusion-prediction algorithm recognizes all the feature
points that are visible from a camera POV. However, this does
not ensure that all the visible points are well-localizable, i.e.,
their positions can be effectively measured with a given accu-
racy. For instance, some points could be out of the image plane
of the camera, or they could be too close each other to guarantee
absence of ambiguity in the localization. Moreover, the number
of the well-localizable feature points may be larger than the op-
timal number of points ensuring the best pose-estimation accu-
racy.

In the following, a windowing test is adopted to find the pro-
jections of the feature points that can be well-localized. Then, a
selection algorithm is used to choose an optimal subset of points
to be considered for feature extraction.

The measurements of the coordinates of the projections of
the feature points are obtained by considering suitable rectan-
gular windows of the image plane to be grabbed and processed.
Each window must contain one feature point. The windows are
centered on the positions of the feature points on the image
plane, as predicted by the Kalman filter. Their semidimensions
are dynamically chosen in the interval for

Fig. 8. Examples of significant situations during windowing test.

the base (the side parallel to the row’s direction) and in the
interval for the height (the side parallel to
the column’s direction). The minimum values are set so as to
achieve a prescribed accuracy and robustness in the feature
extraction, while the maximum values are set on the basis of
the available memory and processing time.

A windowing test can be set up to select all the projections of
the feature points that can be well-localized.

First, all the points that are out of the field of view of the
camera, or too close to the boundaries of the image plane, are
discarded. This is achieved by eliminating all the points whose
projections, as predicted by the Kalman filter, are out of a central
window of the image plane. The central window is obtained
by reducing the height (base) of the whole image plane of the
quantity from each side, as shown in Fig. 8.

Then, all the feature points that are too close to each other
are discarded. This happens when the estimated distance be-
tween the projections of two or more points is lower than

along the row’s (column’s) direction;
is a suitable security factor.

All the remaining points are well-localizable; the effective
dimensions of the corresponding windows are dynamically
adapted to the maximum allowable semidimension, so as to
guarantee an assigned security distance from the other points
and from the boundaries of the image plane (see Fig. 8).

The number of feature points after occlusion prediction and
windowing test may be larger than the number of points (five
non-coplanar points) sufficient to ensure good pose estimation,
according to the experimental tests in [20]. The optimality of a
given set of feature points can be valued through the composi-
tion of suitably selected quality indices into an optimal objective
function. The quality indices must be able to provide accuracy
and robustness, and minimize the oscillations in the pose-esti-
mation variables. To achieve this goal, it is necessary to ensure
an optimal spatial distribution of the projections of the feature
points on the image plane, and to avoid chattering events be-
tween different optimal subsets of feature points chosen during
the object motion.
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A first quality index is the measure of spatial distribution of
the predicted projections on the image planes of a subset of
selected points

where is the vector of the feature-point coordinates in the
image plane of camera , and , being the number
of points selected from camera .

A second quality index is the measure of angular distribution
of the predicted projections on the image plane of a subset of
selected points

where is the angle between the vector and
the vector , being the central gravity point of
the whole subset of feature points of camera , and the points
of the subset are considered in a counterclockwise-ordered se-
quence with respect to , with . Together with
the previous one, this index is aimed at maximizing the distance
among the points and avoiding collinearity.

A third quality index is the measure of visibility of a given
feature (considered as a collection of points of the contour),
which takes into account the partially occluded features. This
index is defined as

where is the number of visible points of the feature from
camera , and is the total number of the points used to
represent the feature.

The above indices are applied to each set of feature points
projected on the image planes of all the cameras. In order to
distribute the points among the cameras, the following index is
considered:

where is the number of points assigned to camera , and
is the distance of the camera from the object. This index

takes into account the distance of the cameras from the object,
and thus allows managing different resolution zones of different
cameras.

Notice that correspondences between points seen by different
cameras are not explicitly considered in the proposed technique.
In fact, the only correspondences that are used are those be-
tween the points measured on the image planes of each camera
and the object model. The presence of feature points distributed
among different cameras allows achieving an implicit triangu-
lation which improves depth-estimation accuracy.

Fig. 9. Industrial robotic cell.

Since accuracy and robustness of estimation is higher when
the points are not all coplanar [31], a non-coplanarity index can
be considered

where is the maximum number of coplanar points
in the set of points.

To avoid chattering phenomena, a quality index introducing
hysteresis effects on the change of the optimal combination of
points is considered

if actual previous combination
otherwise

where is a positive constant.
The proposed indices are only some of the possible choices,

but guarantee satisfactory performance when used with the oc-
clusion-prediction algorithm and the windowing test presented
in this paper. Other examples of quality indices are proposed,
e.g., in [31].

The objective function to be maximized is the product of the
quality indices, and must be evaluated for all the possible combi-
nations of the visible points on positions. In order to perform
a computationally efficient determination of the optimal set at
each sampling time, the initial optimal combination of points is
first evaluated offline; then, only the combinations that modify
at most one point with respect to the current optimal combina-
tion are tested online. This allows a considerable reduction of
processing time, although it is not guaranteed that the current
solution remains optimal; however, it is reasonable that this so-
lution is close to the optimal one.

VII. EXPERIMENTS

The effectiveness of the proposed approach has been tested
in some experiments on the industrial robotic cell composed of
two industrial robots, Comau SMART-3 S (see Fig. 9). One arm
(R7AX) is mounted on a sliding track, which provides an addi-
tional degree of freedom with respect to the standard six degrees
of freedom of the other arm (R6AX). Each robot is equipped
with a pneumatic gripper with two parallel jaws. Both robots are
controlled by a single PC with RTAI-Linux operating system.
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The experimental setup is completed with a stereo visual system
composed of a PC equipped with two Matrox GENESIS boards
and two Sony 8500CE B/W cameras. The Matrox boards are
used as frame grabbers and for partial image processing (e.g.,
image windows extraction), while the PC host is in charge of ex-
ecuting vision-based algorithms (e.g., occlusion prediction and
object motion estimation) and guarantees communication with
the PC performing robot control via a standard serial connec-
tion.

The PBVS scheme represented in Fig. 1 has been adopted.
The stereo visual system estimates the pose of the workpiece at
26 Hz frequency, corresponding to the camera frame rate, while
the pose control is performed through an inner–outer control
loop. The inner loop, running at 500 Hz frequency, implements
motion control. In the outer loop, the block named “Dynamic
Trajectory Planner” computes the trajectory for the robot tool on
the basis of the current pose of the workpiece and on the desired
task. The input of this block is updated at 26 Hz frequency, while
the output is available at 500 Hz frequency, thanks to a second-
order interpolating filter.

In the experiments presented here, the object corners are used
as image features. Moreover, roll, pitch, and yaw (RPY) angles
are used for orientation representation.

To test the effectiveness of the proposed algorithm, two dif-
ferent case studies are considered. The first case study is aimed
at testing the accuracy of the hybrid camera configuration with
respect to the fixed camera configuration. In the second case
study, the effectiveness of the occlusion detection algorithm on
a multirobot industrial cell is proven.

A. First Case Study

A visual-synchronization task for the dual-arm robotic cell
has been realized. The R6AX robot (leader robot) is used to
move an object in the visual space of the fixed camera; thus, the
object position and orientation with respect to the base frame
can be computed both from the joint position measurements, via
the direct kinematic equation, and from visual measurements.
The R7AX robot (follower robot) is visually guided to preserve
a fixed mutual pose with respect to the object. Notice that the
measurements of the object pose computed from joint-position
measurements are used here only to evaluate the pose-estima-
tion error of the visual system.

A hybrid visual system is adopted. The first camera (with
focal length 16 mm) is fixed, and observes the entire
workspace from a distance of about 1 m, while the second
camera (with focal length 8 mm) is mounted on the
end-effector of the R7AX robot.

An important issue is the calibration of the camera setup. In
detail, the eye-to-hand camera was calibrated with respect to
the base frame using the calibration algorithm proposed in [24],
while the eye-in-hand camera was calibrated with respect to the
end-effector frame of the follower robot using the calibration
algorithm proposed in [25].

The value of the matrix has been set to zero; moreover,
the initial value of the state vector has been set to null
for the velocity components, while the pose components have
been roughly estimated through direct measurements. Finally,
the covariance matrixes and have been chosen as

Fig. 10. Object trajectory. Top: position trajectory. Bottom: orientation trajec-
tory.

, where is a ( ) matrix, being the
number of selected features. The values of the observation
noise covariances have been evaluated during the camera
calibration procedure, while the values of the state-noise co-
variances have been set on the basis of the velocity range of the
object trajectories.

Two different experiments are considered. In the first experi-
ment, both cameras are employed to estimate the pose of the ob-
jects, while in the second experiment, only the fixed camera is
used. This allows comparing the pose-tracking performance of
the hybrid configuration with respect to that of the eye-to-hand
configuration.

The trajectory of the object is represented in Fig. 10. The
pose is referred to as the initial object pose. The orientation is
represented using RPY angles.

The time history of the pose-estimation error for the first ex-
periment is shown in Fig. 11. The orientation error is evaluated
as the angle of an axis/angle representation corresponding to
the rotation matrix of the follower end-effector frame with re-
spect to the estimated object frame. Notice that the position error
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Fig. 11. Time history of the pose-estimation error for the first case study. Top:
position error. Bottom: orientation error.

for the three components has the same magnitude and is lower
than 1 cm; moreover, the orientation error is lower than 3 . No-
tice also that the errors are not significantly influenced by the
velocity of the object; this is due to the adoption of a camera
moving with the follower robot according to the object motion,
in addition to the fixed camera.

In Fig. 12, the time history of the pose error of the end-ef-
fector frame of the follower robot with respect to the estimated
object frame is reported. The errors are higher with respect to
the estimation errors of Fig. 11, because of the time delay caused
by the low frame rate of the visual system.

The time history of the pose-estimation error for the second
experiment of the first case study is shown in Fig. 13. Due to
the adoption of only one fixed camera, the estimation error is
sensibly higher than in the first experiment (Fig. 11). Moreover,
the pose-estimation error is quite sensitive to the velocity of the
object, especially for the orientation. The pose error of the end-
effector frame of the follower robot with respect to the estimated
object frame is not affected by the camera configuration, and is
not reported here for brevity.

A comparison with the eye-in-hand configuration would be
also significant, but it is not reported here for brevity. The ex-

Fig. 12. Time history of the pose-estimation error for the first experiment of
the first case study. Top: position error. Bottom: orientation error.

pected result is a lower accuracy in depth estimation with re-
spect to the hybrid configuration (due to the monocular vision),
but better than in the fixed-camera case, because the eye-in-hand
camera remains closer to the object during tracking.

B. Second Case Study

In the second case study, three experiments of a vision-guided
grasping task have been performed to test the effectiveness of
the occlusion-detection algorithm. In detail, one robot is used
to grasp a moving object; the other robot occludes the object
during task execution.

The grasping task involves the R7AX robot and a workpiece
with 16 feature points. The number of feature points used by the
pose-estimation algorithm has been limited to 11, selected from
the set of visible points provided by the occlusion-prediction
algorithm. Notice that the maximum number of visible image
features, for both cameras, is 32.

The task assigned to the R7AX robot can be decomposed in
the following phases.

1) Approach—When the target object is localized, starting
from the HOME pose, approach the grasp pose in two
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Fig. 13. Time history of the pose-estimation error for the second experiment
of the first case study. Top: position error. Bottom: orientation error.

steps: first go over the target object (at 5 cm height), and
then descend on it.

2) Grasp—Grasp the object and check the state of the gripper.
3) Manipulate—Return to the HOME pose carrying the ob-

ject.
4) Release—Go to the FINAL pose and release the object.
In the first experiment, the target object and the R6AX robot

are motionless. Moreover, the R6AX robot is out of the field of
view of the cameras. The time history of the position trajectory
of the R7AX robot and that of the estimated workpiece position
are shown in Fig. 14. The time history of the orientation com-
ponents is not reported here for brevity. The Approach phase
begins after about 4 s and ends in about 12 s. During this phase,
the robot recognizes the workpiece and moves over it, initially
keeping a distance of about 5 cm along the vertical direction (
component); then the robot begins the descent to the grasping
pose. When the grasping pose has been reached, the Grasp phase
begins, and ends after about 8 s. During this time, the pneumatic
gripper is closed, and a check of the state of the jaws is per-
formed using the magnetic sensors installed on the gripper. At
about 25 s, the Manipulate phase begins, and the robot returns
to the HOME pose carrying the workpiece. At about 50 s, the

Fig. 14. Gripper (solid) and estimated object (dashed) trajectories during the
first experiment of the second case study.

robot reaches the FINAL pose and releases the object; then, it
returns to the HOME pose (Release phase).

In Fig. 15, the state of the visible and selected feature points
is represented. In particular, the feature point number is reported
on the vertical axis, and time is reported on the horizontal axis.
For each feature point, a couple of horizontal tracks are consid-
ered: the bottom (top) track is marked in all the time samples
where the feature point is visible (selected for feature extrac-
tion); hence, the top track can be marked only if the bottom track
is marked too, but the opposite is not true. Notice that the feature
points that are not visible at the beginning of the task are oc-
cluded by the workpiece itself (self-occlusion), while from the
last part of the Approach phase until the first part of the Release
phase, some feature points are occluded by the gripper (mutual
occlusion).

In the second experiment, the workpiece is in motion in the
horizontal plane during the Approach and Grasp phases. The
time history of the position trajectory of the R7AX robot and
that of the estimated workpiece position are shown in Fig. 16.
Differently from the previous experiment, the robot has to track
the object. In fact, it can be observed that the gripper motion in
the horizontal plane ( and components) matches the object
motion during the Approach phase. Moreover, the Grasp phase
is successfully executed.

In the third experiment, the workpiece is in motion as in the
second experiment; moreover, the robot R6AX performs a dif-
ferent task, and during the motion occludes the workpiece with
respect to the cameras.

The state of the visible and selected feature points is reported
in Fig. 17. The time histories of the position of the robot gripper
and that of the estimated workpiece position are not reported,
because they are practically the same as that in Fig. 16. In
Fig. 17, the A-area corresponds to the occlusion caused by
the gripper during the grasping, while the B-area corresponds
to the occlusion caused by the robot R6AX. Notice that the
motion of the robot R6AX generates a partial occlusion (only
one point remains visible) on camera 2 between the Approach
and Grasp phases. This event does not affect the accuracy of
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Fig. 15. Visible and selected object feature points for camera 1 (top) and
camera 2 (bottom) during the first experiment of the second case study.

Fig. 16. Gripper (solid) and estimated object (dashed) trajectories during the
second experiment of the second case study.

the pose estimation, and allows the successful execution of the
Grasp phase. Moreover, during the Manipulate phase, the robot

Fig. 17. Visible and selected object feature points for camera 1 (top) and
camera 2 (bottom) during the third experiment of the second case study.

R6AX completely occludes the object with respect to camera 1.
Again, from Fig. 16, it can be observed that the visual-tracking
algorithm maintains high accuracy, even though the estimated
pose is not used after grasping (only the joint measurements
are used by the Dynamic Trajectory Planner in the Manipulate
and Release phases).

VIII. CONCLUSION

A PBVS algorithm using a hybrid eye-in-hand/eye-to-hand
multicamera configuration is presented in this paper. The data
provided by all the cameras are fully exploited, so that the ben-
efits of both eye-in-hand and of the eye-to-hand configurations
are preserved. Moreover, the adoption of an occlusion-detection
algorithm and of a selection algorithm in charge of choosing
an optimal subset of image features ensures a low computa-
tional cost for image processing, independent of the number
of cameras. The experimental results have shown the superior
performance of the hybrid configurations with respect to the
eye-to-hand configuration in terms of pose-tracking accuracy,
and have confirmed the robustness of the proposed approach
with respect to the occurrence of occlusions.
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