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Abstract—The computation of the grasping forces for a multi-
arm robotic manipulation system (e.g. an anthropomorphic
bimanual system) is considered in this paper. This problem is for-
mulated as a convex optimization problem, considering also joint
torque constraints. An algorithmic solution suitable for on-line
implementation is presented, which allows a substantial reduction
of the computational load by adopting a compact formulation and
dynamically decreasing the number of active torque constrains.
Moreover, for the case of a bimanual manipulation system, a
sub-optimal single-hand optimization algorithm is proposed and
compared with that providing the optimal solution. Finally, a
new algorithm for a valid initial-point evaluation is proposed.
The effectiveness of the described methods has been tested in a
simulation case study where the grasping forces of a humanoid
torso equipped with two five-finger robotic hands are modified
on-line to handle a load with a time-varying mass.

Index Terms—Grasping Force Optimization, Grasping, Manip-
ulation, Multi-fingered Hands.

I. INTRODUCTION

THE control of a multi-arm robotic manipulation system

involves several aspects ranging from the synthesis of

the optimal grasping contact points to load sharing and grasp

control. With respect to this last issue, the evaluation of the

grasping forces able to guarantee stability of the grasp and

its feasibility, also in the presence of external disturbances,

is a challenging task. The complexity of the problem relies

on the need for on-line resolution of an optimization problem

where both constraints and objective functions are non-linear,

the number of variables and constraints is relatively large, and

the grasp configuration and load wrench may change with

time (e.g. when pouring water from a bottle into a glass as

considered in the case study presented in this paper).

The force closure problem [1] and, more generally, the

problem of computing the optimal grasp configurations, are not

considered here, because it is assumed that the contact points,

which guarantee the force closure property, are assigned by the

grasp planner. On the other hand, the grasping force optimiza-

tion (GFO) problem has not yet been intensively investigated

for the case of bimanual human-like robotic systems, for which

the computational complexity becomes a major issue.
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The non-linearity of the contact friction models (point

contact with friction or soft-finger contact) significantly com-

plicates the solution of the GFO problem. For this reason,

the analysis and synthesis of frictional force-closure grasps

has been initially studied by linearizing the friction cone con-

straints and then applying linear programming techniques [2]–

[4]. The corresponding problems, however, are ill-conditioned.

More recently, a new formulation was presented in [5], which

is fast when the grasp configuration does not change thanks

to the off-line computation of the feasible region (i.e. a

polytope depending on the grasp configuration). Non-linear

programming techniques have been investigated in [6], but

they are not suitable for real-time applications.

In [7] the friction cone constraints have been formulated in

terms of linear matrix inequalities (LMIs), and the grasping

optimization problem is addressed as a convex optimization

problem involving LMIs with the max–det function as ob-

jective function. This problem can be efficiently solved with

the interior point algorithm for a small number of fingers.

Moreover, joint torque limits can be considered in the same

framework as LMIs.

Starting from the observation that verifying the friction cone

constraints is equivalent to testing the positive definiteness of

certain symmetric matrices, in [8] the GFO problem has been

formulated as a semi-definite programming problem, which

is a convex optimization problem on a Riemannian manifold

with linear constraints. Several gradient flow type algorithms

have been proposed to provide solutions suitable for real-time

applications [9], [10]; to reduce the computational complexity,

the computation of the solution can be split into one on-line

and one off-line phase and sparse matrix techniques can be

adopted [11]. This technique has been employed and experi-

entially tested with an impedance control approach addressing

the regrasping problem for dextrous manipulation tasks [12].

A further improvement has been presented in [13], con-

sisting in a new compact semidefinite representation of the

friction cone constraints which allows a significant reduction

of the dimension of the optimization problem. Moreover, an

estimation technique and a recursion method for selecting the

step size in the gradient algorithm are proposed, together with

the proof of the quadratic convergence of the algorithm.

A fast interior point algorithm for solving the force opti-

mization problem is presented in [14]. The complexity of the

proposed formulation is linear in the number of contact points

while it was quadratic or cubic in the previous approaches.

However, the torque constraints are not explicitly taken into

account. A computationally efficient approach to contact force

feasibility and contact force distribution has been recently
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presented in [15]. By adopting the GJK distance algorithm,

the solution of the formulated linear system can be achieved

without calculating the Minkowski sum, which usually is

computationally expensive, resulting in a real-time feasible

algorithm.

An interesting comparison of the methods developed in [7],

[8], [13] is proposed in [16], [17], where a common framework

has been developed to test the previous competing algorithms

for grasping force optimization, and the issue of the step

size selection for each method is addressed. Moreover, a new

solution for the initial point problem, i.e. an initial solution that

satisfies the friction cone constraints and the force equilibrium

equation, has been provided.

A number of alternative approaches to GFO can be found in

the literature. For example, the use of Lagrangian networks is

investigated in [18], [19]. These neural networks are capable of

taking into account the non-linearity of the friction constraints

and of the joint torque limits, and asymptotically converge to

a set of optimal grasping forces. In [20], [21] a method based

on the minimization of a cost function is presented, which

gives an analytical solution but does not ensure by itself the

satisfaction of the friction constraints. An iterative correction

algorithm allows modifying this function until the internal

forces enter the friction cone, resulting in a fast sub-optimal

solution suitable for real-time applications. The GFO problem

in the case of whole hand grasp (also considering finger’s

inner links and the palm), is addressed in [22]. In this case,

the problem is formulated as a convex optimization problem

involving LMIs similarly to [7], but considering a decomposi-

tion of the contact force space into four orthogonal subspaces

of active and passive forces. A technique suitable for the

case of unknown external disturbances, investigated in [23],

is based on tightening pre-strain forces rather than active,

direction-related blocking forces. A recent approach, presented

in [24], allows to reduce the computational complexity of the

algorithms based on semi-definite programming by adopting a

weighted barrier function formulation and the Newton method.

A similar algorithm, originally proposed in [25], [26], is used

in [27] to characterize the role of different postural synergies

of the human hand in obtaining force-closure grasps. Finally,

an n-dimensional ray-shooting algorithm has been presented

in [28], which runs in 6D wrench space. This algorithm

provides a fast method to determine the minimum grasping

forces, suitable to perform GFO in real time.

The method proposed in [8] has the main disadvantage

that it requires the on-line pseudo-inversion of a structurally

constrained matrix whose dimension linearly increases with

the number of fingers by a factor that depends on the contact

type. By adopting the frictional cone constraint matrix rep-

resentation proposed in [13], the dimension of the problem

decreases considerably so that the solution can be computed

in real time. However, if torque limits constraints are also

considered, the complexity of the problem increases more

than quadratically with the number of joints. In addition, at

the beginning of each optimization cycle, it is required the

evaluation of an initial point that satisfies the frictional cone

constraints and the joint torque limits. The initial point can

be computed with the methods proposed in [16], but at the

expense of a significant computational effort.

The work presented here, based on the friction constraints

formulation in [13] and on the solution of a convex opti-

mization problem as in [10], includes and extends the results

presented in our previous conference papers [29]–[31]. Joint

torque constraints are taken into account in a very com-

pact formulation (the proposed linear constraint matrix has

a dimension that increases quadratically with the number of

fingers, while the rate is cubic in [10]), with a minimum

increase of computation complexity, compatible with real-time

constraints. A new iterative formulation is proposed, which

fully exploits the results of the previous optimization cycle,

thus avoiding the evaluation of a new initial point at the

beginning of each optimization cycle. The computation of the

initial point, required only for the first step, can be made by

using the new monotone increasing gradient flow algorithm

presented here, which is fully compatible with the proposed

framework. Finally, a sub-optimal single-hand optimization

algorithm is proposed within the same framework to further

simplify the problem. This algorithm is based on a new

criterion for load sharing [32]–[34], which allows to improve

the sub-optimal solution. The effectiveness of the proposed

approach has been tested in a simulation scenario where a

robotic torso equipped with two dextrous hands is used to

empty a half-filled bottle.

II. PROBLEM FORMULATION

Consider a bimanual robotic system equipped with two

multi-fingered hands grasping an object with n contacts be-

tween the object and the fingertips, the links of the fingers

and the palm. Denote the contact wrench of the grasp by

c =
[

cTr cTl
]T

=
[

cT1 . . . cTn
]T ∈ R

nm, where

ci ∈ R
m is the wrench vector of the i-th contact with

dimension m depending on the adopted contact model, and

cr and cl are the corresponding wrench vectors of all the

contact points of the right and left hand, respectively.

The grasping force optimization problem consists in finding

the set of contact wrenches balancing the generalized external

force he ∈ R
6 acting on the object (including object inertia

and weight), which are feasible with respect to the kinematic

structure of the hands and to the joint torque limits, and

minimize the overall stress applied to the object, i.e, the

internal forces. Moreover, to avoid the slippage of the fingers

on the object surface, each contact wrench has to be confined

within the friction cone.

The balance equation for the generalized forces applied to

the object can be written in the form

he = Gc, (1)

where G =
[

Gr Gl

]

∈ R
6×nm is the grasp map

composed of the grasp matrices of the right and left hand,

which is full-rank for force-closure grasps [1]. It is assumed

that the contact point configurations ensuring the force-closure

constraints are assigned at each time by the planning system.

Although several contact models can be used, the two

usually adopted models are the point contact with friction

(PCWF) model and the soft finger contact (SFC) model.
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In the PCWF case, the contact wrench has three degrees

of freedom (DOFs) (m = 3): the normal component ci,z to

the object surface and the two components ci,x, ci,y on the

tangent plane. The friction constraint is described as

1

µ2
i

(

c2i,x + c2i,y
)

≤ c2i,z and ci,z > 0, (2)

where µi denotes the friction coefficient at the i-th contact

point.

In the SFC case, the contact wrench has an additional DOF

ci,t (m = 4), corresponding to the torsional component of the

moment about the contact normal. In this case, the elliptic

approximation of the friction constraint can be expressed as

1

µi

(

c2i,x + c2i,y
)

+
1

µt,i

c2i,t ≤ c2i,z and ci,z > 0, (3)

where µi and µi,t denote the tangential and the torsion friction

coefficients at the i-th contact point, respectively.

The balance equation for the torques applied to the fingers

joints of the hands can be written in the form

JT(q)c+ τ e = τ , (4)

where J(q) =
[

JT
r JT

l

]T
is the (nm×N ) hands Jacobian

matrix, depending on the N -vector q of the joint variables —

being N the total number of joints—, τ e is the external torque,

including gravity, Coriolis, centripetal and inertia effects at the

fingers joints, and τ is the torque provided by the actuators.

To ensure that the joint actuators are able to provide

the required torques, a joint torque constraint must also be

considered

τL ≤ τ ≤ τH , (5)

where τL and τH denote the lower and upper joint torque

bound, respectively.

The simultaneous satisfaction of the force balance equa-

tion (1), with the friction constraints (2) and (3), and of the

joint torque balance equation (4) with constraint (5), implies

that the grasp is stable and feasible.

The GFO problem considered here consists in finding the

optimal grasp wrench that minimizes the internal forces acting

on the object, under the above constraints. The internal forces

are contact wrenches that belong to the null space of the

grasp matrix G. These wrenches cint do not contribute to

the balance equation (1), being Gcint = 0, but are used to

satisfy the friction cone constraints at the contact points.

III. GRASPING CONSTRAINTS

A. Inequality constraints

As shown in [13], the frictional inequalities (2) and (3) are

equivalent to the positive definiteness of the block-diagonal

matrix

F (c) = diag (F 1(c1), . . . ,F n(cn)) , (6)

where F i(ci) is the symmetric (2× 2) matrix

F i(ci) =







ci,z +
ci,x
µi

ci,y
µi

ci,y
µi

ci,z −
ci,x
µi






(7)

in the PCWF case, while it is the Hermitian (2× 2) matrix

F i(ci) =







ci,z +
ci,x√
µi

ci,y√
µi

− j
ci,t√
µi,t

ci,y√
µi

+ j
ci,t√
µi,t

ci,z −
ci,x√
µi






, (8)

in the SFC case.

Similarly, the torque limit constraint (5), in view of the

torque balance equation (4), is equivalent to the positive

definiteness of the diagonal matrix

T (c, q, τ e) = diag (τR) , (9)

where

τR =

[

τR,L

τR,H

]

=

[

JT(q)c− τL + τ e

−JT(q)c+ τH − τ e

]

(10)

are the residual joint actuator torques with respect to the upper

(τR,H ) and lower (τR,L) torque limits.

Hence, the simultaneous satisfaction of both frictional and

joint torque constraints is equivalent to the positive definiteness

of the linearly constrained block-diagonal matrix

P = diag (F ,T ) . (11)

Notice that the elements of the matrices F and T depend

linearly on c. Moreover, the force balance equation (1) and

the torque balance equation (4) correspond to linear equality

constraints imposed on matrix P .

B. Linear constraints

Let be ci(F i) the linear operator which extracts the contact

wrench vector of the i-th contact point from the corresponding

frictional constraint matrix, with i = 1, . . . , n, i.e.,

ci(F i) =
1

2









µi(fi,1,1 − fi,2,2)

2µifi,1,2

(fi,1,1 + fi,2,2)









(12)

in the PCWF case, with F i = {fi,j,k} and j, k = 1, 2, or

ci(F i) =
1

2



















√
µi(fi,1,1 − fi,2,2)

√
µi(fi,1,2 + fi,2,1)

(fi,1,1 + fi,2,2)
√
µi,t

j
(fi,2,1 − fi,1,2)



















(13)

in the SFC case. By denoting with c(F ) =
[ c1(F 1)

T · · · cn(F n)
T ]T the linear operator that

extracts the contact wrench vector from the frictional

constraint matrix, and with τR(T ) = diag(T ) the

linear operator that extracts the diagonal elements of

the joint torque constraint matrix, the linear operator

ξ(P ) =
[

c(F )T τR(T )T
]T

can be defined. Therefore,

the linear constraints on matrix P imposed by (1) and (4)

can be represented in the following affine general form

Aξ(P ) = b (14)
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with

A =

[

G O6×2N

Aτ

]

, b =





he

τL − τ e

τH − τ e



 , (15)

where Aτ is the (2N × nm+ 2N) matrix defined as

Aτ =

[

J(q)T −IN ON

J(q)T ON IN

]

, (16)

being O× the null matrix and I× the identity matrix of

the indicated dimensions. Notice that the dimension of the

constraint matrix A increses quadratically with the number of

employed fingers (assuming that all the fingers have the same

number of actuated joints), while the number of elements of

the contraint matrix used in [8] increases at cubic rate.

IV. SEMIDEFINITE PROGRAMMING

A. Cost function

Let be P(r) the set of positive definite Hermitian matrices

P(r) = {P ∈ C
r×r|P = P ′ > 0}, (17)

where P ′ denotes the transpose (Hermitian transpose) of P

in the PCWF case (SFC case). The optimization procedure

is based on the minimization of the cost function Φ(P ) :
P(r) → R, defined as

Φ(P ) = tr
(

W pP +W bP
−1
)

, (18)

where tr(·) denotes the trace operator, and W p and W b are

symmetric positive definite matrices. Function Φ is a strictly

convex twice continuously differentiable function on P(r) and

Φ(P ) → +∞ for P → ∂P(r), being ∂P(r) the boundary of

P(r).
The first addendum in (18) can be rewritten as

tr(W pP ) = tr(W p,fF ) + tr(W p,tT ). (19)

By setting W p,f = wp,fI , with wp,f > 0, the quantity

tr(W p,fF ) will depend only on the normal forces ci,z at each

contact point, i.e. the pressure forces on the object, that will be

minimized. The other components of the contact forces will

be minimized as well, because they have to conform to the

friction constraints. Different weights can be chosen for the

fingers allowing higher contact forces for stronger fingers.

By noting that the sum of two joint torque constraints for

the i-th joint is constant and equal to τr,i = τH,i − τL,i,

with the choice W p,t = wp,tI , with wp,t > 0, the quantity

tr(W p,tT ) is constant and will not contribute to the variation

of the cost function with the constraint (14). On the other

hand, if different weights are assigned to the residual torques

of joint i, then joint torques closer to the lower or to the higher

limits can be preferred.

The second addendum W bP
−1 represents a barrier func-

tion, which goes to infinity when P tends to a singu-

larity, i.e. when friction or torque limits are approached.

The barrier weight matrix is also chosen diagonal W b =
diag(W b,F ,W b,T ), with

W b,F = wb,Fdiag (µ1, . . . , µn)

W b,T = wb,Tdiag (τr,1, . . . , τr,N , τr,1, . . . , τr,N ) ,
(20)

being wb,F > 0, wb,T > 0.

Hence, the minimization of the cost function (18) with the

linear constraint (14) corresponds to the minimization of the

normal contact wrench components applied to the object while

satisfying the friction and torque constraints.

B. Gradient flow method on positive definite matrices

The minimization problem can be solved using the linearly

constrained gradient flow approach on the smooth manifold of

positive definite matrices presented in [35]. It can be shown

that Φ(P ) presents a unique minimum P∞ ∈ P(r) given by

P∞ = W
− 1

2

p

(

W
1

2

p W iW
1

2

p

)
1

2

W
− 1

2

p , (21)

that is the only critical point. The gradient flow Ṗ (t) =
−∇Φ(P (t)) on P(r), defined as

Ṗ (t) = P−1W iP
−1 −W p, (22)

ensures that, for every initial condition P 0 = P (0) ∈ P(r),
P (t) ∈ P(r) exists for all t ≥ 0 and converge exponentially

fast to P∞ at t → ∞.

The affine constraint (14) requires an orthogonal projec-

tion of the gradient onto the tangent space. In particular,

in Appendix A it is shown that the minimum of Φ(P )
can be reached through the linear constrained exponentially

convergent gradient flow ξ(Ṗ ) = −grad(Φ(P )) defined as

ξ(Ṗ ) = Qξ(P−1W bP
−1 −W p), (23)

where Q = (I−A‡A) is a linear projection operator onto the

null space of A, and A‡ is a suitable weighted pseudo-inverse

of A. Consequently, AQ = O and Aξ(Ṗ ) = 0; hence, if the

initial point satisfies (14), P (t) will satisfy the constraint for

all t ≥ 0.

A discrete-time version of (23) based on the Euler numerical

integration algorithm is

ξ(P k+1) = ξ(P k) + αkQkξ(P
−1

k W bP
−1

k −W p), (24)

where the step size αk is chosen to ensure down-hill steps.

Notice that the choice of αk strongly affects the performance

of the optimization algorithm. A wrong choice could determine

a very slow convergence or the break of the barrier. Several

strategies have been proposed for the self-tuning of αk at

each iteration (see [16] for details). The sensitivity to the step

size choice can be reduced by adopting a Dikin-type recursive

algorithm [10], [36], that leads to the discrete flow

ξ(P k+1) = ξ(P k)−αkQk

ξ(P−1

k W bP
−1

k −W p)

‖P−1

k W bP
−1

k −W p‖P k

, (25)

where ‖X‖Y = tr(Y −1XY −1X), and 0 ≤ αk ≤ 1 can be

evaluated with a bounded line search minimizing Φ(P k+1).

V. INITIAL POINT EVALUATION

The previous optimization algorithm requires the compu-

tation of a valid initial solution —a positive definite matrix

P 0 satisfying (14)— at each step time. The presence of joint

torque constraints could make the evaluation of this initial

value not so trivial as for the unconstrained case. Namely, a
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matrix P ′
0 which satisfies (14) can be easily found, but it not

necessarily positive definite.

By observing that the positive definiteness of a given matrix

is equivalent to the positive definiteness of its eigenvalues,

i.e. of its minimum eigenvalue [17], a new algorithm based

on a constrained monotone increasing flow of the minimum

eigenvalue until it becomes positive is proposed here.

Let λr(P 0) be the minimum eigenvalue of P 0. A con-

strained monotone increasing flow of λr(P 0) is given by

ξ(Ṗ 0) = Qξ(vrv
T
r ), (26)

where vr is the eigenvector corresponding to the minimal

eigenvalue λr (for the proof see Appendix B).

A discrete-time version of the previous flow (26) based on

the Euler numerical integration algorithm is

ξ(P 0,k+1) = ξ(P 0,k) + βkQkξ(vr,kv
T
r,k), (27)

where vr,k = vr(P 0,k) and βk is the integration step size.

The algorithm starts from a solution P ′
0 of (14), that can be

computed from c′0 = G
†
0he,0; then, the projected gradient

flow (27) is applied until a positive definite matrix P 0 is found.

Notice that the evaluation of the gain factor βk could impact

on the performance of the algorithm. To this purpose, a linear

search algorithm to find a value of βk maximizing λr can be

employed.

VI. IMPROVEMENTS FOR REAL-TIME APPLICATION

A. Affine constraint decomposition

The proposed algorithm requires the inversion of a (6+2N)
square matrix needed for the evaluation of A‡ at each iteration,

also when the grasping configuration is unchanged, i.e. when

G is constant, due to the variation in (16). Starting from the

discrete version of the gradient flow (24) for a given grasp

configuration, it can be shown that:

ck+1 = ck + αkQ̄kξ(P
−1(ck)W bP

−1(ck)−W p), (28)

where Q̄k = (I −G
‡
kGk)[ Inm Onm,2N ](I −A

‡
τ,kAτ,k)

is the result of the projection onto the null space of matrix Aτ

in (16), which guarantees the coherence of the elements of ma-

trix P , and of the subsequent projection onto the null space of

the grasp matrix, ensuring that the force balance constraint (1)

is fullfilled. Notice that the matrix [ Inm Onm,2N ] selects

only the first nm components of matrix (I − A‡
τAτ ). The

expressions of G
‡
k and A‡

τ are given in Appendix A.

The computational complexity for the evaluation of Q is

O((6+2N)2.376 +2(6+2N)2(nm+2N)+ (6+2N)(nm+
2N)2), using Coppersmith-Winograd algorithm for matrix

inversion, while for the evaluation of Q̄ it is O(62.376 +
(2N)2.376+nm(72+7nm)+8N2(nm+2N)+(1+2N)(nm+
2N)2), which is lower than the previous quantity already for

a small value of the ratio N/(nm). Moreover, if the grasp

configuration remains unchanged, i.e. G does not change, the

projector (I −G‡G) can be evaluated off-line with a further

computational complexity reduction.

Figure 1 shows the number of joint torque constraints N for

which the adoption of the affine constraint decomposition (28)

results in a reduction of computational complexity, versus the
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Fig. 1. Evaluation of the reduction of the computational cost with the affine
constraint decomposition (28). A reduction is achieved for all the couples
(n,N ) that are outside the red (blue) area. The red area correspond to the
PCWF case (m = 3) while the blue area correspond to the SFC case (m = 4).
The darker (red and blue) areas correspond to the case of time varying grasp
configuration.

number of contact points n. The computational complexity

was measured in terms of number of flops (floating point

operations) using Matlab. A reduction is achieved for all the

couples (n,N ) that are outside the colored areas.

Notice that the same decomposition can be adopted also for

the gradient flows (25) and (27).

B. Dynamic joint-torque constraints selection

Under the reasonable assumption that the solutions of the

optimization algorithm evaluated at successive sampling times

are quite close, the number of active joint constraints can

be reduced. For example, if for the current optimal solution

the actuator of joint i provides a torque close to the upper

bound τH,i, then the constraint on the lower bound τL,i

can be deactivated at the next sampling time, being the

corresponding barrier term in the cost function negligible.

More in general, for a given grasp configuration, if a measured

contact force has small variations, it is realistic to assume that

the corresponding joint torques will not change significantly at

the next sampling time. Therefore, the number of joint torque

constraints can be dynamically reduced, by using the values of

the residual torques, computed at the previous sampling time,

as the criterion for selecting the constraints to be activated.

Only those constraints related to residuals that are higher

than a given threshold (set as a fraction στ ∈ [0, 1] of the

corresponding torque limit) will be activated. Notice that the

case στ = 0 corresponds to the selection of the closest torque

limits (the upper or the lower one), and thus only half of the

total number of torque constraints are activated. The higher

is στ , the lower is the number of active constraints. The case

στ = 1 corresponds to the unconstrained case.

Chattering phenomena on constraints activa-

tion/disactivation can be avoided by adopting a double

threshold with hysteresis.

C. Initial point iterative self-evaluation

The evaluation of the initial point must be performed at the

initial time tj = 0, but also at each sampling time tj > 0,

i.e., at the beginning of each optimization cycle. In fact, both
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the hand configuration q, the external wrench he, and the

grasp configuration G may change with time, and thus the

optimal solution at time tj−1 could be not compatible with

the constraints at time tj . However, a significant reduction

of computational time can be achieved by adopting, at time

tj > 0, the iterative algorithm proposed here.

Namely, let define the following “virtual” quantities, for k ≥
0:

c′k = (I−G
†
tj
Gtj )ck+γkG

†
tj
he,tj+γ̄kG

†
tj−1

he,tj−1
(29)

q′
k = γkqtj

+ γ̄kqtj−1
(30)

τ ′
k = JT(q′

k)c
′
k + γkτ e,tj + γ̄kτ e,tj−1

(31)

where γk ∈ (0, 1], γ̄k = 1−γk, and G† is a pseudo-inverse of

G. The initial condition is set as c0 = c(tj−1). The coefficient

γk ∈ (0, 1] is chosen at each iteration according to a monotone

sequence, using a linear search algorithm, as the maximum

value that does not produce invalid solutions, i.e.

γk = max{γ ∈ (γk−1, 1] | P (c′k, τ
′
k) > 0}, (32)

with γ−1 = 0. Hence, the following modified gradient flow is

computed:

ck+1 = c′k + αkQ̄
′

kξ(P
′
k
−1W bP

′
k
−1 −W p). (33)

where Q̄
′

k = Q̄(q′
k, τ

′
k,Gtj ) and P ′

k = P (c′k, τ
′
k).

The algorithm works as follows. If the optimal solution

c(tj−1) is still compatible with the constraints at the current

time tj , then γ0 is set to 1 at the first iteration, and thus

c′k = ck, q′
k = qk, τ ′

k = τ k, and the gradient flow (33) is the

same as (28). On the other hand, if c(tj−1) is not compatible

with the constraints, a value 0 < γ0 < 1 is likely to be found

so that P (c′k, τ
′
k) > 0. The reason is that, when γ0 is close

to zero, the virtual contact force vector c′k has to balance a

“virtual” external wrench close to that of the previous sampling

time he,tj−1
; moreover, the quantities q′

k and τ ′
k are close

to the joint positions and torques at the previous sampling

time. The new solution computed with the modified gradient

flow (33), thanks to the effect of the barrier function in the

cost function, goes away from the boundary. This allows to

increase γk at each step, i.e., to balance an external wrench

closer to he,tj as well as to consider joint positions and torques

closer to qe,tj
and τ e,tj respectively, until γk = 1. Obviously,

the optimization cycle can not end until γk = 1.

Notice that, if P (c′k) ≤ 0 also with γ0 = 0, then a new

initial solution has to be evaluated with the algorithm proposed

in Section V.

D. Iterative single-hand grasping force optimization

To speed up the computation, a further simplification in

the algorithm can be introduced by splitting the bimanual

optimization problem into two simpler single-hand problems.

In this case, the initial point iterative self-evaluation algorithm

presented in Subsection VI-C can be employed to find the

initial common solution. Then two independent optimization

procedures can be started separately for each hand, and the

corresponding solutions are composed only at the end to

achieve a unique wrench vector solution. The price to pay with

the simplified algorithm is that the solution is not optimal in a

global sense and it is possible that the single-hand optimization

problems have no solution.

This latter situation can be avoided in most cases by consid-

ering a suitable weighted pseudo-inverse of the grasp matrix

in (29), with the goal of achieving a load sharing between the

hands. In detail, at each sampling time, the minimum residual

torque is evaluated for for the right (δτ,r) and left (δτ,l) hand.

Then the weighting matrix:

WG = diag

(

δτ,r + δτ,l
δτ,r

Inrm,
δτ,r + δτ,l

δτ,l
Inlm

)

, (34)

is computed, where nr and nl are the number of contact points

for the right and for the left hand, respectively. The above

matrix is used for the evaluation of the weighted pseudo-

inverse of the grasp matrix

G† = W−1

G G(GW−1

G GT)−1. (35)

With this choice, the quadratic form cTWGc is minimized,

resulting in a redistribution of the load between the hands in

reason of their capability to provide torques.

This approach, as demonstrated in the following case study,

can produce a reduction of up to 50% of the computational

time when a large number of joint torque constraints are active.

Moreover this approach allows to compute in parallel the two

GFO problems for the two hands, thus achieving a further 50%

reduction of the computational time in case of multi-threading

execution.

VII. CASE STUDY

The proposed GFO algorithm has been tested in simulation

using two DEXMART hands [37] (5 fingers with 20 joints,

15 are independent) mounted on an anthropomorphic torso (7
DOFs for each arm plus 3 DOFs for the torso), as shown in

Fig. 2. The total number of actuated joints of the two hands is

N = 30. It is assumed that the external wrench acting on the

object is estimated by using the contact force measurements

provided by force/tactile sensors mounted on the fingertips

of the DEXMART hands [38]. The hands grasp a cylinder

representing a bottle half filled with water in two different

grasp cases: n = 5 + 5 (all fingers are employed) and n =
3 + 3 (only the thumb, the forefinger, and the little finger

are employed for each hand). The case of contact points with

friction is considered, i.e. m = 3, while the task consists in

pouring water by reorienting the bottle. In details, the bottle

is initially grasped with the main axis aligned to the vertical

direction, then the task can be decomposed into three phases:

• a rotation of 135 deg about the horizontal axis through

the geometric center of the cylinder is commanded;

• the hand is stopped while some water is poured from

the bottle (the mass and inertia of the bottle change

accordingly);

• the opposite rotation is commanded to bring the bottle

back to the initial pose.

The joint trajectories of the robot have been computed using a

classical closed loop inverse kinematics algorithm. The contact

points on the bottle have been set fixed, so that the grasp
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Fig. 2. Top: Anthropomorphic torso with two DEXMART hands grasping a
bottle. Bottom Section of the grasped bottle with graphical representation of
the gravity force and torque (black arrows), of the resultant force and torque
applied by the fingers (red arrows), of the optimal contact forces (green arrows
if not affected by joint torque constraints, orange arrow otherwise), and of
the friction cones.

matrices are constant, while the Jacobian matrices of the two

hands are variable.

A dynamic simulation has been performed using Mat-

lab/Simulink, where the variation of the position of the center

of mass of the water and that of its weight have been

considered. Figure 2 shows on the bottom a section of the

bottle half filled with water. The intensity of the gravity force

is proportional to the length of the black vertical arrow applied

to the instantaneous center of mass (of length proportional to

the intensity of the force), while the intensity of the gravity

torque with respect to the center of the bottle is proportional to

the length of the black circular arrow. The red arrows represent

the external force and torque balancing the gravity effects and

resulting from the contact forces applied by the fingers. These

latter are represented by green arrows if not affected by joint

torque constraints, orange arrows otherwise. The friction cone

limits in the contact points are colored in yellow. A sequence

Fig. 3. Sequence of significant configurations of the bottle and of the forces
during task execution with n = 10.

of significant configurations of the bottle during task execution

with n = 10 is shown in Fig. 3.

A. Joint torque limits constraints

The action of the friction and of joint torque limits con-

straints is shown considering two different simulations: in the

first one only the friction constraint is considered, without any

constraint on the joint torque limits, while in the second one

different torque limits are set for the fingers. In particular,

the maximum torques of the thumb actuators are assumed

higher than those of the actuators of the other fingers of the

hand (±0.5 vs. ±0.075Nm for the cases n = 10, ±0.5 vs.

±0.125Nm for the cases n = 6).
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Fig. 4. Evolution of the contact forces at the fingers from the thumb (left)
to the little finger (right), in the case n = 10. Top: right hand. Bottom: left
hand. The blue (red) curves correspond to the forces without (with) torque
constraints. The green lines represent the friction cones.

In Fig. 4, a synthetic graphical representation of the evo-

lution of the contact forces on the plane containing all the

contact points is provided, for the case n = 10. In detail, for

a given contact point, the couple of green lines represents the

friction cone limits, while the contact force at a given time is

represented by a line segment that begins in the contact point.

The other endpoint draws over time the red (blue) curve, in

the case that joint constraints are (are not) considered. The

red/blue shadowed areas are the cones filled by the contact

forces during the execution of the task. As expected, the

contact forces remain always inside the friction cones, in both

simulation cases, according to the barrier function considered

into the cost function (18).

In Fig. 5 a comparison of the norm of the contact wrenches

and of the joint torques is shown, with and without joint

torque constraints, in the case n = 10. The difference between

the torques in the two cases is very small while the contact

wrenches are smaller (in norm) in the presence of torque

constraints, which impose a better distribution of the load

between the fingers.

The time history of the minimum residual torque (for all

the actuators) is shown in Fig. 6. The effect of the barrier

function acting also on the torques allows full respect of the

limits, without affecting significantly the contact wrenches as

shown in Fig. 5.

B. Affine constraint decomposition

The effectiveness of the proposed affine constraint decom-

position has been verified by computing the amount of flops

which are required for the evaluation of the matrices Q

in (28) and Q̄ in (23), respectively. In particular, for the

considered case study with n = 10, when all the torque

joint constraints are activated (N = 30), the evaluation of

Q requires 3.54Mflops (0.28ms on a Intel single-core at

2.8GHz), while the evaluation of Q̄, for a time-varying grasp

configuration, requires 3.02Mflops (0.24ms), with a reduction
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Fig. 5. Time history of the norm of the contact wrenches (top) and of the
joint torques (bottom) in the case n = 10, with (red) and without (blue) joint
torque constraints.
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Fig. 6. Time history of the residual torques (Top: case n = 10, Bottom: case
n = 6), with (red) and without (blue) joint constraints. Negative values (the
yellow area) correspond to the violation of one or more joint torque limits.

of 14.8%. On the other hand, for the case of constant grasp

configuration, the evaluation of Q̄ requires 3.01Mflops, which

corresponds to a reduction of 15.2%.

C. On-line joint torque constraints selection

The benefits resulting from the adoption of the on-line joint-

torque constraints selection are shown in Fig. 7, where the time
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Fig. 7. Time history of the computational time effort for the cases with all
constraints (black), στ = 0 (red), στ = 0.5 (green), στ = 0.8 (blue), and
unconstrained (gray). Top: case n = 10. Bottom: case n = 6.
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Fig. 8. Time history of the number of active joint torque constraints for the
cases with: all constraints (black), στ = 0 (red), στ = 0.5 (green), στ = 0.8
(blue), and no constraints (gray). Top: case n = 10. Bottom: case n = 6.

history of the computational time effort is represented. All the

presented simulations are performed on an Intel i7 dual-core

at 2.8Ghz. The corresponding number of active joint torque

constraints is reported in Fig. 8.

In particular, four different cases are compared: all con-

straints (black lines), στ = 0 (red lines), στ = 0.5 (green

TABLE I
AVERAGE COMPUTATIONAL TIMES

Case
n = 5 + 5 n = 3 + 3

[ms] [ms]

All constraints 23.7 6.64
στ = 0 18.1 5.64
στ = 0.5 4.21 1.53
στ = 0.8 0.56 0.48
No constraints 0.30 0.29

lines), στ = 0.8 (blue lines), and unconstrained (gray lines),

where στ is the threshold for joint torque constraints activa-

tion. By considering the case n = 10, the achieved reduction

of the average computational time varies between a minimum

of about 24% for στ = 0 to a maximum of about 98% for

στ = 0.8. The numerical values of the average computational

times for different values of στ are shown in Table I.

Notice that, already with στ = 0.5 the computational time

is less than 5ms for the case n = 10 and 2ms for the

case n = 6. With στ = 0.8 a computational time less than

1ms is achieved for both n = 6 and n = 10 cases. Those

values are fully compatible with force feedback control, which

typically runs at 0.5 ÷ 1 kHz. Higher values of στ allow

to reduce the computational time at the expense of a less

balanced torque distribution among the joints. Namely, some

torques can reach values that are closer to their limits, thus

producing higher consumption of the corresponding actuators,

gears and/or tendons.

D. Initial point iterative self-evaluation

Assuming that all the constraints are active, the average

computational time in the case that the initial point self-

evaluation algorithm is not employed, is 31ms in the case

n = 10 and 11.5ms in the case n = 6. The corresponding

average times achieved using the initial-point iterative self-

evaluation algorithm are those reported in the first row of

Table I. Therefore, the proposed algorithm allows a reduction

of computational time of about 23% in the case n = 10 and

about 42% in the case n = 6.

E. Iterative single-hand grasp force optimization

The adoption of the sub-optimal single-hand GFO algorithm

can provide a significant reduction of the computational time

up to 50% with respect to the optimal dual-hand algorithm,

as shown in Fig. 9 for the case n = 10, assuming that all the

joint torque constraints are active. The adoption of a multi-

threading parallel computing on a dual-core CPU can further

reduce the overall computation time by 70%.

However, the sub-optimal solution has reduced performance

in terms both of the norm of contact wrenches and of the

norm of the joint torques (see Fig. 10). Consequently, also the

residual torques are significantly reduced, as shown in Fig. 11,

although the imposed torque constraints are never violated.

As shown in these figures, the adoption of the weighted

pseudo-inverse of the grasp matrix in (35) can improve the

achieved solution resulting in a well-shared load between the

two hands. This behavior is mainly due to the reduction of the
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Fig. 9. Time history of the computational time effort for the cases of dual-
hand (black) and single-hand GFO without (red) and with (blue) parallel
computing, in the case n = 10 and considering all the constraints.
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Fig. 10. Time history of the norm of the contact wrenches (top) and of
the joint torques (bottom) with n = 10 for the cases of local single-hand
optimization without (blue) and with (green) weighted pseudo-inverse of the
grasp matrix, and global dual-hand (red).

DOFs available to the optimization algorithm by considering

separately the two hands instead of both together.

On top of Fig. 12 the time history of the normalized load-

sharing coefficients δτ,r/(δτ,r+δτ,l) (red) and δτ,l/(δτ,r+δτ,l)
(blue) employed in (35) is shown in the case n = 10, while

the time history of the norm of the load force and moments for

the right and left hand in the cases of sub-optimal and optimal

method are shown on the bottom-left and bottom-right of the

figure. As expected, the whole balance of effort between the

hands is degraded with respect to the optimal solution, despite

the adoption of the online load sharing technique.

VIII. CONCLUSION

A new algorithm for on-line grasping force optimization for

bimanual dextrous-hand robotic systems has been presented in

this paper, considering also joint torque limits. The computa-

tional load of the algorithm has been reduced by adopting
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Fig. 11. Time history of the minimum residual torque (n = 10) for the cases
of local single-hand optimization without (blue) and with (green) weighted
pseudo-inverse of the grasp matrix, and global dual-hand (red).

an iterative formulation based on a dynamic set of active

constraints and by avoiding the evaluation of the initial point

at the beginning of each iteration, as required by alternative

approaches. Moreover, a sub-optimal single-hand optimization

algorithm has been proposed and compared with respect to

the dual-hand centralized algorithm. Finally, a new initial-

point evaluation algorithm has been proposed. A simulation

case study has been presented to show the feasibility and the

effectiveness of the proposed technique.

APPENDIX A

EXPONENTIAL CONVERGENCE OF THE CONSTRAINED

GRADIENT FLOW (23)

The existence of P∞, its uniqueness, as well as the fact

that every critical point of Φ is a global minimum have been

addressed in [35], while the proof of convergence of (22) has

been presented in [8].

The proof the exponential convergence of the linearly con-

strained gradient flow (23) can be made similarly to [8], [35],

although the extension is not straightforward.

The first step is to prove that equation (23) defines a

constrained gradient flow of Φ with respect to a suitable

Riemannian metric on the smooth manifold

C = {P ∈ C
r×r|P = P ′ > 0,Aξ(P ) = b}

of the Hermitian positive definite matrices that satisfy the

linear constraints. To this purpose, it is convenient to start from

the unconstrained case, i.e. from the mapping Φ : P(r) → R

defined on the smooth manifold P(r) of the Hermitian pos-

itive definite matrices. Using standard differential geometry

concepts, the derivative of Φ : P(r) → R at P is defined as

the linear map DΦ|P(X) : TP(P(r)) → R

DΦ|P(X) = tr((W p − P−1W iP
−1)X), X ∈ TP(P(r)),

(36)

where TP(P(r)) is the tangent space of manifold P(r) at P .

This definition coincides with the usual derivative of Φ(P ),
when expressed in local coordinates.

To define the gradient vector field ∇Φ of the mapping Φ :
P(r) → R, it is required to specify a Riemannian metric on

P(r). The standard Riemannian metric is:

〈〈X,Y 〉〉 = tr(X ′Y ) = vec(X)′vec(Y ) X,Y ∈ TP(P(r)),
(37)
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Fig. 12. Top: Time history of the normalized load-sharing coefficients
δτ,r/(δτ,r + δτ,l) (red) and δτ,l/(δτ,r + δτ,l) (blue) in the case n = 10.
Middle: Time history of the norm of the load force for the right (red) and
left (blue) hand in the cases of local (continuous lines) and global (dashed
lines) method. Bottom: time histories of the norm of the corresponding load
moments.

where the vec(·) operator stacks the columns of a matrix

into a vector. The gradient vector field ∇Φ(P ) is uniquely

characterized by the following two properties:

1) ∇Φ(P ) ∈ TP(P(r)) for all P ∈ P(r)
2) DΦ|P(X) = 〈〈∇Φ(P ),X〉〉 for all X ∈ TP(P(r)).

Therefore, in view of the expression (36), by using the

Riemannian metric (37), it is

∇Φ(P ) = W p − P−1W iP
−1.

This proves that Eq. (22) defines a gradient flow of Φ on P(r).
In the constrained case, if Eq. (23) defines a gradient flow,

then the constrained gradient vector field gradΦ(P ) of Φ :
C → R must satisfy the identity:

ξ(Ṗ ) = −ξ(gradΦ(P )) = Qξ(W p − P−1W iP
−1). (38)

On the other hand, gradΦ(P ) is a gradient vector field if and

only if, with a suitable Riemannian metric, the properties 1)

and 2) are satisfied, i.e.:

1’) gradΦ(P ) ∈ TP(C) for all P ∈ C
2’) DΦ|P(X) = 〈〈gradΦ(P ),X〉〉 for all X ∈ TP(C),
where TP(C) is the tangent space of C at P , defined as:

TP(C) = {X ∈ C
r×r|Aξ(X) = 0}.

In order to prove that the above properties hold with gradΦ(P )
in (38), it is useful to consider the expressions:

ξ(P ) = Hvec(P ) (39)

vec(P ) = Kξ(P ), (40)

where H is a constant (sparse) (nm + 2N × r2) matrix, K

is a constant (sparse) (r2 × nm + 2N ) matrix, with HK =
Inm+2N and KH = Ir2 , and the vec(·) operator stacks the

columns of a matrix into a vector. Notice that, being r =
2(n + N), H is a low rectangular matrix while K a high

rectangular matrix.

Notice that, being Q = (I−A‡A), for all X ∈ TP(C) it is

Qξ(X) = ξ(X), or equivalently KQHvec(X) = vec(X).
The weighted pseudo-inverse of the matrix A is chosen as

A‡ = MAT(AMAT)−1, (41)

where M is the following square diagonal (nm+2N)-matrix

M = HHT =

[

MG O

O I2N

]

, (42)

being MG a square diagonal (nm)-matrix. With this choice

KQH becomes Hermitian, i.e. KQH = H ′Q′K ′.

Using the above definitions, it is straightforward to prove

that property 1’) is satisfied, because, in view of (38), it is

Aξ(gradΦ(P )) = 0 ⇒ gradΦ(P ) ∈ TP(C) ∀P ∈ C
Moreover, by using the Riemannian metric (37) on C, the

following equalities hold:

〈〈gradΦ(P ),X〉〉 = vec(X)′vec(gradΦ(P ))

= vec(X)′KQξ(W p − P−1W iP
−1)

= vec(X)′KQHvec(W p − P−1W iP
−1)

= (KQHvec(X))′vec(W p − P−1W iP
−1)

= vec(W p − P−1W iP
−1)′vec(X)

= DΦ|P(X) ∀X ∈ TP(C)
showing that also property 2’) is satisfied. Hence, Eq. (23)

defines a constrained gradient flow on C.

The next step consists in proving that the convergence rate

of P with the constrained gradient flow (23) is the same as

in the unconstrained case. To this purpose, notice that the

eigenvalues of Q are either zero or one, being an orthogonal

projector. Moreover, they are the solutions of the equation

det(λI −Q) = det(λ∗I −A‡A) = 0, (43)

where λ∗ = 1 − λ and λ∗ are the eigenvalues of A‡A.

Since rank(A‡A) = 6 + 2N < nm + 2N already for

n > 2, then nm − 6 eigenvalues are zero. Hence nm − 6
eigenvalues of Q are 1 and the remaining 6 + 2N are zero,

i.e. λ1,...,nm−6 = 1 and λnm−5,...,nm+2N = 0. Hence, the

singular value decomposition of Q is

Q = UΣV T, (44)
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where Σ = diag(1, . . . , 1, 0, . . . , 0), and U and V are unitary

matrices. Multiplying both sides of (23) by UT yields:

UTξ(Ṗ ) = ΣV Tξ(W p − P−1W iP
−1)

=

[

Inm−6 O

O O

] [

V 1

V 2

]

ξ(W p − P−1W iP
−1),

(45)

corresponding to a change of coordinates. The constrained

elements of ξ(P ) are those in the lower part of (45) and their

derivatives are zero meaning that the P (t) remains on the

constraint surface. Moreover, for the unconstrained elements,

the same convergence rate of (22) is preserved.

The convergence of the gradient flow (28) can be proven

in a similar way. In this case, the following weighted pseudo-

inverse matrices must be chosen

G‡ = MGG
T(GMGG

T)−1 (46)

A‡
τ = MAT

τ (AτMAT
τ )

−1. (47)

APPENDIX B

CONSTRAINED MONOTONE INCREASING FLOW (26)

Let P 0 = {pi,j} denote an Hermitian matrix, λr(P 0) its

minimum eigenvalue, and vr = {vr,i}, with i, j = 1, . . . , r
the corresponding eigenvector. The following identity holds

(P 0 − λrI)vr = 0. (48)

Differentiating (48) with respect to pi,j yields

(

∂P 0

∂pi,j
− ∂λrI

∂pi,j

)

vr + (P 0 − λrI)
∂vr

∂pi,j
= 0. (49)

Hence, by multiplying the above equation by vT
r , we have

vT
r

(

∂P 0

∂pi,j
− ∂λrI

∂pi,j

)

vr = 0, (50)

that can be rewritten as

∂λr

∂pi,j
= vT

r

∂P 0

∂pi,j
vr = vr,ivr,j , (51)

being vT
r vr = 1. Thus, the following identity holds

∂λr

∂P 0

= vT
r vr. (52)

On the other hand, the time derivative of λr can be expressed

as

λ̇r = tr

(

(

∂λr

∂P 0

)′

Ṗ 0

)

= vec(vrv
T
r )

′vec(Ṗ 0). (53)

Hence, the choice of the constrained gradient flow (26) yields

λ̇r = vec(vrv
T
r )

′KQξ(vrv
T
r )

= vec(vrv
T
r )

′KQHvec(vrv
T
r ) ≥ 0,

(54)

being KQH Hermitian and positive-semidefinite.
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