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Abstract—This paper presents a new procedure to design a
control law using the classical interconnection and damping as-
signment technique within the passivity-based port-Hamiltonian
framework. The sought goal is to reduce the complexity of solv-
ing the so-called matching equations. The proposed approach is
applied to two case studies of planar rolling nonprehensile ma-
nipulation, namely, the ball-and-beam and the eccentric disk-on-
disk. The performance of the resulting controllers is illustrated
through both simulations and experimental results, showing the
applicability of the design in a real setup.

Index Terms—Dynamic manipulation, nonprehensile rolling
manipulation, passivity-based control, underactuated systems.

I. INTRODUCTION

THE port-Hamiltonian (pH) formalism has gained the at-
tention of the control and robotics research communities

in the last decade as a methodology for modeling and control
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design of a complex system [1]–[5]. Rooted in the classical
mechanics, the pH formalism is a representation of the system
dynamics that explicitly reveals energy and physical proper-
ties related to the energy exchange, power flow, and intercon-
nection structure. Such physical information is exploited for
the design of control algorithms within nonnegligible dynamics
tasks. In particular, the method of interconnection and damping
assignment passivity-based control (IDA-PBC) is here consid-
ered [2], [5]. The IDA-PBC aims at finding a control law such
that the closed loop preserves the Hamiltonian structure, with
a minimum of the potential energy at the desired equilibrium,
and a further damping injection to ensure asymptotic stabil-
ity. The IDA-PBC method differs from other nonlinear control
methodologies, typically applied in robotics, such as feedback
linearization, where a linear dynamics is imposed at the expense
of exact cancelation of the nonlinear system dynamics, which
may cause robustness problems. The control law is then obtained
by matching the open-loop and desired closed-loop dynamics.
Such a match is guaranteed by solving a set of partial differen-
tial equations (PDEs), the so-called matching equations, which
is also a bottleneck of the IDA-PBC approach despite the exis-
tence of constructive and explicit solutions for many structured
problems (see, e.g., [6]–[8]).

In this paper, a new procedure to solve the matching equations
for a class of mechanical systems is proposed. The carried-out
approach reduces the complexity of the IDA-PBC design, while
preserving its effectiveness. Under certain conditions, the pro-
posed method consists of giving the explicit solution of a subset
of PDEs resulting from the matching equations, while trans-
forming the remaining PDEs in a set of algebraic equations.
This novel procedure for the IDA-PBC design can be applied
to underactuated planar mechanical systems with separable and
nonseparable Hamiltonians, i.e., with constant and nonconstant
mass matrices, respectively. Such a class of systems includes
nonprehensile planar rolling manipulation tasks, which are
here proposed as robotic case studies to illustrate the design
procedure outlined in this paper.

Nonprehensile planar rolling manipulation systems address
those tasks that involve an actuated manipulator referred to as
hand and an object that is manipulated without form or force
closure grasps [9]. The disk-on-disk [1], [10], [11], the ball-
and-beam [12]–[15], and the butterfly robot [16]–[18] are some
robotic benchmarks used to simulate different nonprehensile
planar rolling manipulation tasks. In detail, the disk-on-disk is
composed of an upper disk (object) free to roll without slipping
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on the rim of a lower actuated disk (hand). The ball-and-beam
consists of a beam (hand) actuated by a torque around its center
of mass (CoM) together with a ball (object) rolling on it. The
butterfly robot is composed of an actuated butterfly-shaped link
(hand) on whose rim a ball (object) can freely roll. In all these
cases, the control objective is to balance the object and drive
the hand toward the desired configuration. In this paper, two
nonprehensile planar rolling robotic systems with nonseparable
Hamiltonian are considered as case studies: the ball-and-beam
and the eccentric disk-on-disk. This last example is a variant
of the disk-on-disk system, where the center of rotation of the
hand and its geometric center are not coincident. Simulation
tests on the ball-and-beam and experiments on the real physical
prototype of the eccentric disk-on-disk system are presented to
confirm the performance of the proposed control methodology.

The outline of this paper is as follows. Section II highlights the
novelties proposed within this paper. Existing control designs
for the selected case studies are described in Section III. A
summary of the IDA-PBC is presented in Section IV. The main
result of this paper is shown in Section V. The general dynamic
model for nonprehensile planar rolling manipulation systems
is derived in Section VI. The ball-and-beam and the eccentric
disk-on-disk case studies are deeply analyzed in Sections VII
and VIII, respectively. Section IX concludes this paper.

II. NOVELTIES

As will be detailed in Section IV, the matching equations are
split into two subsets of PDEs, namely the kinetic and the po-
tential energy matching equations. In this paper, under certain
conditions and through a suitable parameterization of the de-
sired closed-loop mass matrix, an explicit solution is provided
for the potential energy matching equation. This new procedure
reduces the complexity of the IDA-PBC design by simulta-
neously finding the desired potential energy function for the
closed-loop system and simplifying the choice of the desired
mass matrix. Once the solution of the potential energy match-
ing equation is found, the procedure to solve the kinetic energy
matching equation takes inspiration from [19], without solving
any PDEs.

The approach here proposed differs from [3], where the PDEs
derived from the kinetic energy matching condition are trans-
formed into a set of ordinary differential equations. Moreover,
in [3] and [14], a necessary condition for the validity of the
methods is that the mass matrix of the system depends only on
the unactuated variable. Differently, in the proposed control ap-
proach, the open-loop mass matrix and the desired closed-loop
mass matrix can be dependent on both actuated and unactuated
variables.

It is worth underlining that the proposed control approach
can be applied to many two-dimensional (2-D) underactuated
mechanical systems having the structure outlined in Section V.
Nonprehensile planar rolling manipulation systems fit into such
a class. Therefore, the generalized dynamic model of non-
prehensile rolling between arbitrary shapes in 2-D, presented
in [20], is extended by formulating the dynamics in the pH form.
Besides, the assumption that the center of actuation of the hand

and its geometric center are coincident is dropped. This small
technical contribution, in addition to the above-outlined control
approach, overcomes the limitation in [20]. In that work, non-
prehensile planar rolling manipulation systems are shown to be
differentially flat only if they have a constant mass matrix (i.e., a
separable Hamiltonian). The method proposed in this paper, in-
stead, can be applied to systems having a separable Hamiltonian
or a nonseparable Hamiltonian indifferently. The proposed con-
trol can be thus elected as a unifying approach to solving the sta-
bilization problem of nonprehensile planar rolling manipulation
systems. As sketched in [21], finding general strategies to settle
a class of problems is yet an open issue within the nonprehensile
manipulation domain.

III. EXISTING CONTROL DESIGNS FOR THE

SELECTED CASE STUDIES

In the following, a brief state-of-the art about the modeling
and the control of the ball-and-beam and the eccentric disk-on-
disk is provided. These case studies are considered to bolster
the proposed control approach. A more comprehensive analysis
about nonprehensile manipulation is tackled in [21].

On the one hand, the ball-and-beam system has been exten-
sively studied in the past years due to its peculiar feature: it
fails to have a well-defined relative degree. Hence, feedback
linearization cannot be applied. The authors of [13] propose
an approximate input–output linearization, whereas an output
feedback controller is introduced in [22]. The authors of [12]
show a technique for obtaining stable and robust oscillations for
such a system consisting of two steps: the former aims at finding
a control law such that the closed loop of a reduced model of the
dynamics is a second-order Hamiltonian system, which presents
stable oscillations; in the latter step, the controller is extended
to the full system using backstepping. A control method for a
redundant manipulator to balance the ball-and-beam system is
shown in [15]. A force/torque sensor attached to the end effec-
tor of the manipulator is used for estimating the ball position.
Since it involves significant noise, a state-feedback controller is
employed along with an observer.

On the other hand, the eccentric disk-on-disk has some char-
acteristics that make it attractive as a benchmark. In [1], an
IDA-PBC controller is designed ad hoc via a coordinate transfor-
mation for the traditional disk-on-disk (separable Hamiltonian),
but it cannot be directly extended for the eccentric disk-on-
disk (nonseparable Hamiltonian). It is worth noticing that the
dynamic behavior and the stability properties of the eccentric
disk-on-disk are similar to the circular ball-and-beam investi-
gated in [23]–[25]. In [24], the Jordan form of the model of the
circular ball-and-beam is linearized near the unstable equilib-
rium to design a linear controller. A linear control approach is
also used in [23], where the limits of the beam actuator are taken
into account. A geometric passivity-based control approach for
this system is presented in [25]. Also, in that work, the authors
propose a technique to avoid the solution of the matching condi-
tions. Nevertheless, the gyroscopic term is not addressed for the
control design within [25], since the energy shaping is applied
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to a modified dynamics resulting from a geometric feedback
transformation.

IV. IDA-PBC IN A NUTSHELL

The pH framework allows modeling of mechanical systems
including the information about the energy transfer explicitly.
The canonical Hamiltonian equations of motion are[

q̇
ṗ

]
=

[
On In
−In On

]
∇H(q,p) +

[
On×m
G(q)

]
u (1)

where q ∈ Rn is the configuration vector, p ∈ Rn is the mo-
menta vector, u ∈ Rm is the control input, G(q) ∈ Rn×m is the
input mapping vector, In ,On ∈ Rn×n are the identity and the
zero matrices, respectively, and On×m ∈ Rn×m is an n×m
matrix with all-zero entries. The function H : R2n → R is the
Hamiltonian, which represents the total energy (kinetic plus
potential) stored in the system, having the form

H(q,p) =
1
2
pT M−1(q)p + V (q)

where V (q) ∈ R is the potential energy function and M(q) =
MT (q) ∈ Rn×n is the positive-definite mass matrix.

Stabilization of (1) to the desired equilibrium (q,p) =
(q� ,0n ), where 0n ∈ Rn is the zero vector, is achieved us-
ing the IDA-PBC by assigning the target dynamics to the closed
loop [14]
[

q̇

ṗ

]
=

[
On M−1(q)M d(q)

−M d(q)M−1(q) J2(q,p)

]
∇Hd(q,p)

(2)
where J2(q,p) ∈ Rn×n is the desired interconnection matrix,
and M d(q) ∈ Rn×n is the desired mass matrix. The desired
total energy function is given by

Hd(q,p) =
1
2
pT M−1

d (q)p + Vd(q)

with Vd(q) ∈ R being the desired potential energy function.
Then, (q� ,0n ) will be a stable equilibrium configuration of the
closed loop (2) if:

C.1 M d(q) is symmetric and positive definite;
C.2 q� = arg minVd(q);
C.3 J2(q,p) is skew-symmetric.
The stabilization of the desired equilibrium is achieved by

identifying the class of Hamiltonian systems that can be obtained
via feedback. The conditions under which this feedback law
exists are the matching conditions, i.e., matching the original
dynamic system (1) and the target dynamic system (2)

[
On In

−In On

]
∇H +

[
On×m

G

]
u

=
[

On M−1M d

−M dM
−1 J2

]
∇Hd (3)

where the dependence of the functions on their argument
has been dropped to simplify the notation. The first line in
(3) is straightforwardly satisfied, while the second line in (3)

corresponds to the following set of PDEs:

G⊥ (∇qH(q,p) − M d(q)M−1(q)∇qHd(q,p)

+J2(q,p)M−1
d (q)p

)
= 0 (4)

where G⊥ is the full-rank left annihilator of G. The PDEs (4)
can be separated into the two subsets of PDEs as

G⊥ (∇q (pT M−1(q)p) − M d(q)M−1(q)∇q (pT M−1
d (q)p)

+ 2J2(q,p)M−1
d (q)p

)
= 0 (5)

G⊥ (∇qV (q) − M d(q)M−1(q)∇qVd(q)
)

= 0 (6)

where (5) and (6) are the kinetic and the potential energy match-
ing equations, respectively. By solving (5) and (6) for M d(q),
Vd(q), and J2(q,p), subject to C.1–C.3, the energy shaping
control is given by

ues = (GT G)−1GT (∇qH(q,p)

− M d(q)M−1(q)∇qHd(q,p) + J2(q,p)M−1
d (q)p).

(7)

It is worth remarking that not every desired M d(q), Vd(q),
and J2(q,p) can be chosen, but only those solving (5) and (6)
subject to the conditions C.1–C.3.

By applying (7) to the Hamiltonian dynamics (1), the
closed-loop target dynamics (2) is obtained. Damping aimed at
achieving asymptotic stability is then injected through

udi = −KvG
T∇pHd(q,p) (8)

where Kv ∈ Rm×m is a symmetric and positive-definite matrix.
The damping injection (8) and the energy shaping control (7)
are then assembled to generate the IDA-PBC

u = ues + udi . (9)

Therefore, through this adjustment, the closed-loop
dynamics (2) is modified as follows:[

q̇

ṗ

]
=

[
On M−1(q)M d(q)

−M d(q)M−1(q) J2(q,p) − Rd

]
∇Hd(q,p)

(10)
in which dependencies have been dropped, and Rd =
GKvG

T ∈ Rn×n is the positive-(semi)definite dissipation
matrix [4], [14].

V. MAIN RESULT

Consider the class of underactuated Hamiltonian systems
(1) with n = 2, m = 1, G = e1 =

[
1 0

]T
, and, consequently,

G⊥ = eT2 =
[
0 1

]
. The first step toward the proposed resolu-

tion to solve the matching conditions is related to the poten-
tial energy PDEs and the conditions of symmetry and positive
definiteness of the desired closed-loop mass matrix. Let q =[
q1 q2

]T
be the configuration vector, and let

M(q) =
[
b11(q) b12(q)
b12(q) b22(q)

]
(11)

be the expression of the mass matrix in (1). To look for a solution
of the potential energy matching equation, the desired inertia
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matrix is parameterized as follows:

M d(q, c1) = Δ
[
a11(q, c1) a12(q, c1)
a12(q, c1) a22(q, c1)

]
(12)

where Δ = b11(q)b22(q) − b212(q) > 0 is the determinant of
M(q), and c1 ∈ Rnc 1 is a set of gains, with nc1 ≥ 0, useful
to design the controller. Under this assumption, the potential
energy matching equation (6) becomes

eT2 (∇qV (q) − Γ(q)∇qVd(q, c2)) = 0 (13)

where c2 ∈ Rnc 2 is a set of gains, with nc2 ≥ 0, useful to design
the controller, and

Γ(q, c1) =
[
a11b22 − a12b12 a12b11 − a11b12

a12b22 − a22b12 a22b11 − a12b12

]
. (14)

The PDE (13) can be equivalently written as

∇q2 V (q) + α(q)∇q1 Vd(q, c2) + β(q)∇q2 Vd(q, c2) = 0
(15)

with

α(q, c1) = a22(q, c1)b12(q) − a12(q, c1)b22(q)

β(q, c1) = a12(q, c1)b12(q) − a22(q, c1)b11(q). (16)

The main advantage of the proposed approach is the use of
the scalar functions α(q, c1) and β(q, c1). A suitable choice of
these functions allows the possibility to have an explicit solution
of (15) (see the Appendix). Notice that the form of α(q, c1) and
β(q, c1) and the gains c1 and c2 are selected such that Vd(q, c2)
satisfies C.2. Once α(q, c1), β(q, c1), c1 , and c2 are chosen,
the terms a12(q, c1) and a22(q, c1) of the desired mass matrix
are retrieved as

a12(q.c1) = −α(q, c1)b11(q) + β(q, c1)b12(q)
Δ

a22(q, c1) = −α(q, c1)b12(q) + β(q, c1)b22(q)
Δ

. (17)

Through this choice, the proposed desired closed-loop mass
matrix is structurally symmetric, while condition C.1 is fulfilled
only if a11(q, c1) > 0 and a11(q, c1)a22(q, c1) − a2

12(q, c1) >
0. Therefore, by selecting a11 as

a11(q, c1) =
kaa

2
12(q, c1)

a22(q, c1)
> 0 (18)

where ka > 1 is a constant parameter, the conditions for M d to
be positive definite are met if

α(q, c1)b12(q) + β(q, c1)b22(q) < 0. (19)

Hence, the gains c1 have to be chosen to fulfill (19) without
destroying the conditions found to satisfy C.2. If this is possible,
then the desired mass matrix takes the form

M d(q) =

⎡
⎣−ka(αb11 + βb12)2

(αb12 + βb22)
−(αb11 + βb12)

−(αb11 + βb12) −(αb12 + βb22)

⎤
⎦ . (20)

Otherwise, it is necessary to redesign α(q, c1) and β(q, c1) and
find another solution for (15).

Subsequently, the degree of freedom given by the matrix
J2(q,p) is used to satisfy the kinetic energy matching equation
(5). The approach proposed in [19] is followed to deal with
the kinetic energy matching equation without solving any PDE
again. The interconnection matrix J2 is chosen through the
following structure:

J2(q,p) =
[

0 j2(q,p)
−j2(q,p) 0

]
. (21)

Since eT2 J2(q,p) = −j2(q,p)eT1 , the kinetic energy matching
condition (5) can be expressed as

eT2 ∇q (pT M−1(q)p) −eT2 M d(q)M−1(q)∇q (pT M−1
d (q)p)

− 2j2(q,p)eT1 M−1
d (q)p = 0. (22)

The scalar function j2(q,p) can be obtained solving (22) as an
algebraic equation

j2(q,p) =
(
2eT1 M−1

d (q)p
)−1 (

eT2 ∇q (pT M−1(q)p)

−eT2 M d(q)M−1(q)∇q (pT M−1
d (q)p)

)
. (23)

The IDA-PBC law can be finally computed from (9). The pro-
posed constructive solution is resumed in the flowchart depicted
in Fig. 1.

The method used to satisfy the kinetic energy matching
equation, inspired by [19], provides a solution that is not al-
ways well defined. Close to the equilibrium, the numerator
of (23), which has a quadratic dependence on p, tends to-
ward zero faster than the denominator, which depends lin-
early on p, thus avoiding any singularity issues. Despite this, a
study about the denominator of the relation (23) reveals that,
far from the equilibrium, it might be nullified if the equal-
ity (α(q, c1)b12(q) + β(q, c1)b22(q))p1 = (α(q, c1)b11(q) +
β(q, c1)b12(q))p2 holds, with p =

[
p1 p2

]T
. This situation is

addressed in practice by saturating the denominator of (23) when
its absolute value is under a small enough threshold. The sim-
plification of the design proposed here is at the expense of the
presence of possible singular solutions of (23), but these can al-
ways be numerically managed in the controller implementation.

Remark: The main result of this section can be thus applied
to any underactuated mechanical system, regardless the pres-
ence of a separable Hamiltonian or a nonseparable Hamiltonian,
whose dynamic model can be expressed as in (1) with n = 2,
m = 1, and G = e1 .

VI. DYNAMIC MODEL OF NONPREHENSILE PLANAR ROLLING

MANIPULATION SYSTEMS

In this section, the dynamic model of nonprehensile planar
rolling systems is derived in the pH form. This formulation
extends the works in [1], [11], and [20] by removing the some-
what restrictive assumption that the hand can only rotate around
its CoM, which allows considering a more general class of
tasks, as shown in Fig. 2. Consider the inertial world fixed
frame Σw , which is without loss of generality attached to the
holder where the hand is actuated (i.e., the center of rotation
of the hand). Also, let Σh be the frame attached to the CoM
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Fig. 1. Flowchart of the proposed constructive solution.

Fig. 2. General nonprehensile planar rolling manipulation system with the
center of rotation of the hand (indicated by the × symbol) not corresponding
to its CoM. The world fixed frame Σw is in red. The hand frame Σh and the
object frame Σo , in green and blue, respectively, are placed at their respective
centers of mass (CoMs).

of the hand, while Σo is the frame attached to the CoM of
the object. Let θh ∈ R be the angle of the hand in Σw , while
po ∈ R2 and θo ∈ R are the position and the orientation, re-
spectively, of Σo in Σw (see Fig. 2). The shapes of both the
object and the hand are represented by an arclength param-
eterization: sh ∈ R and so ∈ R are the arclength parameters
for the hand and the object, respectively. At least, locally, the
shapes should be of class C2 . Any point of the hand shape
is given by the chart chh(sh) =

[
uh(sh) vh(sh)

]T ∈ R2 , ex-
pressed with respect to Σh , while any point of the object shape
is given by coo(so) =

[
uo(so) vo(so)

]T ∈ R2 , expressed with
respect to Σo . Notice that sh increases counterclockwise along
the hand, while so increases clockwise along the object. With
this choice, the pure rolling assumption is ṡh = ṡo . Without
loss of generality, the frames Σw and Σh coincide at θh = 0, the
point sh = 0 is at the intersection between the vertical (gravita-
tional) axis of Σw and the hand shape (i.e., ch(0) =

[
0 vh(0)

]T
in Σw ), and thus, sh = so at all times during rolling. Therefore,
the contact location will be specified only by sh throughout the
remainder of this paper. As the first assumption, the hand and
the object maintain pure rolling contact for all time. The ar-
clength parameterization implies the property ‖ch ′h ‖ = 1, with
the symbol ′ indicating the derivative with respect to the pa-
rameter sh . The same holds for coo(sh). At the contact point
chh(sh), the tangent vector to the shapes is expressed as th(sh) =
ch ′h ∈ R2 forming an angle φh(sh) = atan2(v′h(sh), u

′
h(sh))

in Σh . The same tangent can be expressed with respect to
Σo with an angle φo(sh) = atan2(v′o(sh), u

′
o(sh)). The signed

curvatures of the shapes are defined as κh(sh) = φ′h(sh) =
u′h(sh)v

′′
h(sh) − u′′h(sh)v

′
h(sh), κo(sh) = φ′o(sh) = u′o(sh)v

′′
o (sh) −

u′′o(sh)v
′
o(sh). The relative curvature at the contact point is

given by

κr (sh) = κh(sh) − κo(sh). (24)

Notice that κh(sh) > 0 and κo(sh) < 0 denote convexity at
the contact point for the hand and the object, respectively.
Hence, κr (sh) > 0 guarantees a single contact point at least
locally [11]. The following constraint expresses the angle of the
tangent th(sh) with respect to Σw : θh + φh(sh) = θo + φo(sh).
Therefore, taking into account (24), the following relations hold:

θo = θh + φh(sh) − φo(sh) (25a)

θ̇o = θ̇h + κr (sh)ṡh . (25b)

Assuming that R(θ) ∈ SO(2) is the rotation matrix in the
2-D space, notice that the relation Ṙ(θ) = R(θ̄)θ̇ holds with
θ̄ = θ + π

2 . The position of the CoM of the hand in Σw is de-
noted by ph(θh) = [uw (θh) vw (θh) ]T ∈ R2 . The coincidence
between the contact points on both the hand and the object
is expressed by ph(θh) + R(θh)chh(sh) = po + R(θo)coo(sh),
yielding to the equation po = ph(θh) + R(θh)chh(sh) −
R(θo)coo(sh), and, consequently, ṗo = γ(q)θ̇h + η(q)ṡh =
[γ(q) η(q) ]q̇, with

γ = p�
h + R(θ̄h)chh − R(θ̄o)coo (26a)

η = R(θh)ch ′h − R(θo)co′o − κrR(θ̄o)coo (26b)
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Fig. 3. Representation of the ball-and-beam system. The world fixed frame
Σw is in red. The hand frame Σh and the object frame Σo , in green and blue,
respectively, are placed at their respective CoMs.

in which dependencies have been dropped, while (25b) is in-
cluded and (25a) has to be plugged in. The symbol � indicates
the derivative with respect to θh , and the configuration vector
is defined as q = [ θh sh ]T . For this class of systems, the ki-
netic energy is given by T = 1

2 (Ih θ̇2
h +mh ṗ

T
h (θh)ṗh(θh) +

mo ṗ
T
o ṗo + Io θ̇

2
o ) = 1

2 pT M−1(q)p, with p = M(q)q̇, and
the elements of the mass matrix are given by b11(q) =
Ih + Io +mhp

�T
h p�

h +moγ
T (q)γ(q), b12(q) = Ioκr (sh) +

moγ(q)T η(q), and b22(q) = Ioκ
2
r (sh) +moη(q)T η(q). The

potential energy is, instead, given by

V (q) = geT2 (mopo(q) +mhph(q)). (27)

This class of systems can be then expressed in the pH form (1),
with n = 2, m = 1, and G = e1 .

VII. CASE STUDY 1: THE BALL-AND-BEAM

The ball-and-beam is a standard benchmark belonging to the
class of nonprehensile planar rolling manipulation systems. It
is composed of a ball rolling on one-degree-of-freedom linear
beam. In the following, the ball-and-beam dynamic model is
retrieved from the general formulation presented in Section VI.
Afterwards, the procedure proposed for the IDA-PBC design
is applied. Simulations are finally performed to evaluate the
performance of the controller.

A. Dynamic Model of the Ball-and-Beam

The ball-and-beam system is shown in Fig. 3. It is composed
of a beam that can rotate around its CoM and a ball that can
only roll along the beam. The shape of the hand (i.e., the beam)
is parameterized through the chart chh(sh) = [−sh dh ]T ,
with dh ∈ R+ being a fixed distance between CoM of
the beam and the surface where the ball rolls. The shape
of the object (i.e., the ball) is parameterized by the chart
coo(sh) = −ρo [ sin sh

ρo
cos sh

ρo
]T ,with ρo ∈ R+ being the radius

of the ball. For this system, the center of rotation of the hand
corresponds to its geometric center. By considering (24), the
signed curvatures of the beam and the ball are κh = 0 and
κo = −1/ρo , respectively. The relative curvature is thus given
by κr = 1/ρo . The ball’s angular velocity is instead given

by (25b) as θ̇o = θ̇h +
ṡh
ρo

. To compute the mass matrix of

the system, the vectors γ(q) and η(q) in (26) are γ(q) =
[−(ρo + dh)cθh + shsθh −(ρo + dh)sθh − shcθh ]T and
η(q) = −[ cθh sθh ]T .The resulting elements of the mass matrix
are b11 = cb1 + cb2s

2
h , b12 = Io

ρo
+modh +moρo , and b22 =

Io
ρ2
o

+mo , where cb1 = Ih + Io +mod
2
h + 2modhρo +moρ

2
o

and cb2 = mo . The potential energy (27) for this system
becomes V (q) = mog[(dh + ρo) cos(θh) − sh sin(θh)].

In the literature, it is usual to neglect the square of sh in
b11(sh). This assumption holds for slow angular rates of the
beam, balls with a small mass, and short beams [13], [20], but
it is not included in this paper.1

B. Control Design for the Ball-and-Beam

The sought goal is to stabilize the equilibrium q� = (0, s�h ),
where s�h is the desired location of the ball on the beam.
Following the procedure outlined in Section V, the quanti-
ties M(q) and V (q) are retrieved from the previous sub-
section. The amount Δ can be thus computed. For this case
study, the functions α(q, c1) and β(q, c1) are designed as
α(θh , k) = k sin(θh)/θh = ksinc(θh) and β(θh) = −sinc(θh),
where k ∈ R is a gain. Notice that the sinc(·) function is analytic
everywhere. Assuming the domain of interest as −π < θh < π,
then 0 < sinc(θh) < 1. Replacing the chosen functions in (15),
the potential energy matching equation becomes

−mog sin(θh)+ksinc(θh)∇θh Vd(q)−sinc(θh)∇sh Vd(q) =0.
(28)

Taking into account the results provided in the Appendix, a
solution of (28) is given by

Vd(q, c2) =
mogθ

2
h

2k
+ f

(
θh + ksh

k
, c2

)
(29)

where f(·) is a generic function of its arguments. To satisfy
C.2, the function f(·) is chosen such that the desired potential
function (29) results as follows:

Vd(q, kf ) =
mogθ

2
h

2k
− cos

(
kf
k

[θh + k(sh − s�h)]
)

(30)

with kf ∈ R a gain. To verify that q� is a minimum for (30), the
corresponding Jacobian is first computed as

∇Vd(q) =

⎡
⎣ mo g

k θh + kf
k sin

(
kf
k [θh + k(sh − s�h)]

)
kf sin

(
kf
k [θh + k(sh − s�h)]

)
⎤
⎦ (31)

where it is possible to verify that ∇Vd(q) is zero at q� . Then,
the corresponding Hessian is given by

∇2Vd(q) =

⎡
⎣ mo g

k +
k 2
f

k 2 cosφ
k 2
f

k cosφ
k 2
f

k cosφ k2
f cosφ

⎤
⎦ (32)

with φ = kf
k (θh + k(sh − s�h)). It is possible to verify that

∇2Vd(q) is positive definite at the desired equilibrium q� if
k > 0 and kf 	= 0. Through these conditions, the desired poten-
tial function Vd(q) has a minimum at the desired equilibrium
q� .

1It is worth noting that the model here derived is slightly different from other
models addressed in the literature. For example, the model in [3] and [14] does
not take into account the distance between the CoM of the beam and the surface
where the ball rolls, as instead addressed by dh in this paper.
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Afterwards, inequality (19) must be solved. With the choices
selected above, such an inequality becomes

kb12 − b22 < 0 (33)

which has the straightforward solution k < b2 2
b1 2

. Since it is easy

to verify that b2 2
b1 2

> 0, such a solution is not in contrast with the
condition k > 0 necessary to make ∇2Vd(q) positive definite.
Therefore, the gain k has to be chosen as 0 < k < b2 2

b1 2
.

Finally, the entries a12(q) and a22(q) of M d(q) are
computed, as in (17), as follows:

a12(q) = − sinc(θh)(kb11(sh) − b12)
Δ

a22(q) = − sinc(θh)(kb12 − b22)
Δ

(34)

while a11(q) is taken as in (18). Therefore, the desired mass
matrix is positive definite, and it can be written as follows:

M d(q) =

[
− ka b

2

(kb1 2 −b2 2 ) −sinc(θh)b

−sinc(θh)b −sinc(θh)(kb12 − b22)

]
(35)

with b = kb11(sh) − b12 . The kinetic energy matching equation
(5) is satisfied using (23), while the IDA-PBC control law is
computed from (9).

C. Simulations of the Controlled Ball-and-Beam

Numerical tests are proposed to assess the performance of the
controller for the ball-and-beam case study. The values of the
parameters of the dynamic model aremo = 0.05 kg, ρo = 0.1 m,
Io = moρ

2
o , dh = 0.01 m, Ih = 0.02 m2 ·kg, and g = 9.81 m/s2 .

The controller gains are instead chosen as k = 4, ka = 10, kv =
10, and kf = 1. The sought goal is to stabilize the ball at the
position s�h = 0 m on the beam, that is, q� = (0, 0). Simulations
are performed in the MATLAB/Simulink environment.

1) Test 1: In this first test, the chosen initial conditions are
θh(0) = 0.2 rad, θ̇h(0) = 0.01 rad/s, sh(0) = 0 m, and ṡh(0) =
0 m/s.

Fig. 4 shows the results obtained in this first simulation. In
particular, the figure depicts the time histories of θh(t), θ̇h(t),
sh(t), and ṡh(t). The plots show that the controller can drive
the states to the desired configuration, while demanding a suffi-
ciently smooth control torque.

2) Test 2: In this further test, several simulations are car-
ried out starting the ball-and-beam system from different initial
configurations. The performance of the proposed controller is
evaluated through the phase portrait shown in Fig. 5. In partic-
ular, the different initial conditions (θh(0), θ̇h (0), sh (0), ṡh(0))
are assigned as follows: (0.1, 0, 0.1, 0) in black, (−0.1, 0, 0.1, 0)
in blue, (0.1, 0,−0.1, 0) in red, and (−0.1, 0,−0.1, 0) in green.
All the trajectories arrive at the origin of the phase plane, mean-
ing that the sought goal is reached.

Besides, as an example, Fig. 6 depicts the surface of
the desired potential function Vd . This exhibits a minimum at the
desired equilibrium point q� , as expected. Moreover, the red line
of Fig. 6 represents the trajectory of θh(t) and sh(t) upon the
surface of Vd when the controlled system starts at the initial

Fig. 4. Simulation test for the ball-and-beam system controlled by the
proposed IDA-PBC controller. (a) Time history of θh (t). (b) Time history
of θ̇h (t). (c) Time history of sh (t). (d) Time history of ṡh (t).

Fig. 5. Evolution of the controlled ball-and-beam system in the phase plane
for different initial conditions (θh (0), θ̇h (0), sh (0), ṡh (0)): (0.1, 0, 0.1, 0)
black line, (−0.1, 0, 0.1, 0) blue line, (0.1, 0,−0.1, 0) red line, and
(−0.1, 0,−0.1, 0) green line.

condition given by (−0.1, 0,−0.1, 0). The trajectory ap-
proaches the minimum of the potential energy as desired.

VIII. CASE STUDY 2: THE ECCENTRIC DISK-ON-DISK

The eccentric disk-on-disk system is composed of a disk
freely rolling in full gravity upon a one degree of freedom actu-
ated disk. The difference from the standard disk-on-disk system
is given by the fact that the center of actuation does not coincide
with the CoM. Besides, the design of a stabilizing controller
for the eccentric disk-on-disk is complicated by the presence of
two unstable equilibrium configurations and gyroscopic forces.
In the following, the eccentric disk-on-disk dynamic model is re-
trieved from Section VI. Afterwards, the procedure proposed for
IDA-PBC design is applied. Experiments are finally carried out.
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Fig. 6. Surface of the desired potential function Vd with a minimum
at the desired equilibrium configuration. The red line represents the 3-
D trajectory in the plane θh (t) − sh (t) starting from initial conditions
(θh (0), θ̇h (0), sh (0), ṡh (0)) = (−0.1, 0,−0.1, 0). (a) 3-D view of Vd .
(b) 2-D view of Vd in the plane (θh , sh ).

A. Dynamic Model of the Eccentric Disk-on-Disk

The eccentric disk-on-disk system is represented in
Fig. 7. In this system, the shape of the hand (i.e., the
bottom actuated disk) is parameterized through the chart
chh(sh) = ρh [− sin sh

ρh
cos sh

ρh
]T , with ρh ∈ R+ being the

radius of the hand. The shape of the object (i.e., the top disk)
is parameterized by the chart coo(sh) = −ρo [ sin sh

ρo
cos sh

ρo
]T ,

with ρo ∈ R+ being the radius of the top disk. The po-
sition of the CoM of the hand in Σw is given by
ph(θh) = λ[−sθh cθh ]T , with λ ∈ R− being the distance
between the center of actuation and the CoM of the hand
multiplied by a minus sign, and |λ| < ρh . By consider-
ing (24), the relative curvature is given by κr = ρh +ρo

ρh ρo
. The

upper disk angular velocity is given by θ̇o = θ̇h + κr ṡh . To
compute the mass matrix of the system, the vectors γ(q) and
η(q) are γ(q) = −(ρh + ρo)[ cos(θh + sh

ρh
) sin(θh + sh

ρh
) ]T −

λ[ cθh sθh ]T , and η(q) =−ρoκr [ cos(θh + sh
ρh

) sin(θh+ sh
ρh

) ]T .
Therefore, the mass matrix has the following elements:
b11 =cb1 + cb2 cos( shρh ), b12 =cb3 + cb4 cos( shρh ), and b22 = Io
κ2
r +moρ

2
oκ

2
r , where cb1 = Ih + Io + λ2(mh +mo) +mo(ρh

+ ρo)2 , cb2 = 2λmo(ρh + ρo), cb3 = Ioκr +mo
(ρh +ρo )2

ρh
,

and cb4 = moλρoκr . The potential energy (27) for the
eccentric disk-on-disk is given by V (q) = g(mo(ρh +
ρo) cos(θh + sh

ρh
) + (mo +mh)λ cos(θh)).

Fig. 7. Representation of the eccentric disk-on-disk system is shown in this
figure. The center of rotation of the hand (indicated by the × symbol) does not
correspond to its CoM. The world fixed frame Σw is shown in red. The hand
frame Σh is represented in green, while the object frame Σo is represented in
blue. Σh and Σo are placed at the respective CoMs.

B. Control Design for the Eccentric Disk-on-Disk

The sought goal is to balance the upper disk at the upright
position of the hand. In this configuration, the bottom disk can
present its CoM both above and below its center of actuation.
With a proper change of coordinates, it is possible to express
the desired equilibrium point as q� = (0, 0) in both cases.

Following Section V, the quantities M(q) and V (q) are re-
trieved from the previous subsection. The amount Δ can be thus
computed. The functions α(q, c1) and β(q, c1) are designed
as α(θh , sh) = sinc(θh + sh

ρh
) and β(θh , sh , k) = ksinc(θh +

sh
ρh

), where k ∈ R is a gain. Assuming the domain of interest as
−π < (θh + sh

ρh
) < π, then 0 < sinc(θh + sh

ρh
) < 1. Replacing

the chosen functions in (15) yields

− cv sin
(
θh +

sh
ρh

)
+ sinc

(
θh +

sh
ρh

)
∇θh Vd(q)

+ ksinc

(
θh +

sh
ρh

)
∇sh Vd(q) = 0 (36)

where cv = mog
ρh +ρo
ρh

is a positive parameter. Taking into ac-
count the results provided in the Appendix, a solution of (36) is
given by

Vd(q, c2) =
cv θ

2
h(ρh − k) + 2cv θhsh

2ρh
+ f(sh − kθh , c2)

(37)
where f(·) is a generic function of its arguments. To satisfy C.2,
f(·) is chosen such that (37) becomes

Vd(q, kf ) =
cv θ

2
h(ρh − k) + 2cv θhsh

2ρh
+ kf (sh − kθh)2

(38)
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where kf ∈ R is a gain. To verify that q� is a minimum for (38),
the corresponding Jacobian is first computed as

∇Vd(q) =

[
cv (−kθh +θh ρh +sh )

ρh
+ 2kkf (kθh − sh)

cv θh
ρh

− 2kkf θh + 2kf sh

]
(39)

where it is possible to verify that ∇Vd(q) is zero at q� . Then,
the corresponding Hessian is given by

∇2Vd(q) =

[
cv + 2k2kf − cv k

ρh
−2kkf + cv

ρh

−2kkf + cv
ρh

2kf

]
. (40)

It is possible to verify that ∇2Vd(q) is positive definite at the de-
sired equilibrium q� if k > −ρh and kf >

cv
2ρh (k+ρh ) Through

these conditions, Vd(q) has a minimum at the desired equilib-
rium q� .

Afterwards, inequality (19) must be solved. With the choices
selected above, such an inequality becomes

b12(sh) + kb22 < 0 (41)

which has the straightforward solution k < − b1 2 (sh )
b2 2

. Since

it is possible to verify that ρh >
(cb 3 −cb 4 )

b2 2
, such a solution is

not in contrast with the condition k > −ρh necessary to make
∇2Vd(q) positive definite. Therefore, the gain k must be chosen
as −ρh < k < − cb 3 −cb 4

b2 2
.

Finally, the entries a12(q) and a22(q) of M d(q) are com-
puted as in (17), as follows:

a12(q) = −
sinc

(
θh + sh

ρh

)
(b11(sh) + kb12(sh))

Δ

a22(q) = −
sinc

(
θh + sh

ρh

)
(b12(sh) + kb22)

Δ
(42)

while a11(q) is taken as in (18). The desired mass matrix is thus
positive definite, and it can be written as follows:

M d(q) =

[
Δa11 −hs(b11 + kb12)

−hs(b11 + kb12) −hs(b12 + kb22)

]
(43)

where hs(q) = sinc(θh + sh
ρh

). The kinetic energy matching
equation (5) is satisfied using (23), while the IDA-PBC con-
trol law is computed from (9).

C. Experiments on the Eccentric Disk-on-Disk

The performance of the proposed IDA-PBC controller is eval-
uated on the experimental eccentric disk-on-disk setup shown
in Fig. 8(a). The lower disk (i.e., the hand) is actuated by a DC
Minertia R01SA motor, able to give a peak torque of 0.54 N·m
and mounting an RSD-14B Harmonic Drive model whose gear-
head ratio is 50:1. With this configuration, it is possible to reach
a continuous torque of 5.5 N·m with a maximum peak of 27 N·m,
while the position accuracy is of about 13 arcsec. The rotation
axis of the motor is placed at a distance |λ| = 0.04 m from the
geometric center of the hand, as shown in Fig. 8(b). The lower
disk is homogeneous, and then, the geometric center coincides
with its CoM.

Fig. 8. Experimental prototype of the eccentric disk-on-disk system. (a) Setup
is mounted in full gravity between two plexiglass. Rubber bands of small thick-
ness encircle both disks. On the left, a block allows the possibility to stop the
upper disk to set the proper initial condition. (b) Detail of the experimental
setup. It is possible to notice the displacement between the geometric center of
the disk and its center of rotation attached to the motor shaft (black circle).

The control algorithm, coded in C++, runs on an external
PC with a Linux-based operating system. A full-custom 120-W
motor driver provides the motor commands. This device can
give an accurate measure of the current as feedback, thanks to
an ad-hoc designed circuit, while the encoder signal is instead
elaborated by a dedicated high-frequency device able to man-
age the considerable quantity of interrupts of the encoder. The
feedback control signals are elaborated by an ARM CORTEX
M3 microcontroller (32 bit, 75 MHz), on whose firmware the
low-level inner control loop for the current runs at a frequency of
4 kHz. The microcontroller receives the inputs from the external
PC through a universal serial bus. The low-level controller out-
puts the current reference for the motor servo, which provides
the torque to the hand. Therefore, the torque u resulting from
the IDA-PBC controller is transformed into a current reference,
uc , for the inner-control loop as

uc =
1
km

(u+ μdθ̇h +fssign(θ̇h))+ kp(θ̂h − θh) +kd(
˙̂
θh −θ̇h)

(44)

where θ̂h and ˙̂
θh are the desired hand position and velocity,

respectively, obtained by integrating the following expression
of the hand acceleration, resulting from the dynamics of the
eccentric disk-on-disk derived in Section VIII-A:

¨̂
θh =

(
b22

Δ

)(
u+

b12h2

b22
− h1

)
(45)

where h1 = c11 θ̇h + c12 ṡh + ∇θh V and h2 = c21 θ̇h + c22 ṡh
+ ∇sh V , while the Coriolis terms are c11 = −λmo(ρh +
ρo)ṡh sin (sh/ρh)/ρh , c12 = −λmo(ṡh + θ̇hρh)(ρh + ρo) sin
(sh/ρh)/ρ2

h , c21 = λmo(ρh + ρo)θ̇h sin (sh/ρh)/ρh , and
c22 = 0. The gains and the parameters in (45) are ex-
perimentally tuned as kp = 3, kd = 30, the motor con-
stant km = 0.054 N·m/A, the viscous friction coefficient
μd = 0.13672 N·s, and the torque required to overcome friction
from rest fs = 0.2118 N·m . The values of μd and fs are found
through some preliminary tests as in [11]. The microcontroller
executes the computation of uc at a frequency of 1 kHz.

A visual system provides the measurement of the angular
position of the object, ψ ∈ R, that is the angle that the cen-
ter of the upper disk forms with respect to Σw , increasing
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Fig. 9. First experimental test for the eccentric disk-on-disk system controlled
by the proposed IDA-PBC controller. (a) Time history of θh (t). (b) Time history
of θ̇h (t). (c) Time history of sh (t). (d) Time history of θ̇h (t). (e) Time history
of u(t). (f) Time history of ψ(t).

counterclockwise. This measure is elaborated from the ge-
ometry of the system to retrieve the current value of
the arclength parameter of the hand: sh = ρh(ψ − θh −
arcsin ( λ

ρo +ρh
sin (ψ − θh))). The visual system consists of an

uEye UI-122-xLE camera providing 360 × 340 pixel images to
the PC at 75 Hz, which is also the high-level controller sample
rate to compute u from the IDA-PBC controller. With the aim
to increase the efficiency of the vision processing, the image
elaboration algorithm focuses on an 80 × 80 pixel region of
interest.

The values of the parameters of the eccentric disk-on-disk
dynamic model aremo = 0.224 kg,mh = 0.33 kg, ρo = 0.075 m,
ρh = 0.125 m, Io = moρ

2
o , Ih = mhρ

2
h , λ = −0.04 m, and g =

9.81 m/s2 .
In the following, two tests are carried out. The objective is to

stabilize the equilibrium q� = (0, 0). The controller gains are
experimentally tuned as k = −0.121, ka = 2.05, kv = 0.057,
and kf = 3550. The video of the performed experiments is
attached to the manuscript.

Notice that an open question is how generalizing the IDA-
PBC approach to set constraints in the contact forces. For this
reasons, the friction cones are not explicitly addressed in the
formulation. This means that for particular choices of either
control gains or initial condition of the system, the upper disk
may slip or even lose contact with the lower disk. An analysis
would be thus necessary to verify whether the continuous rolling

Fig. 10. Second experimental test for the eccentric disk-on-disk system con-
trolled by the proposed IDA-PBC controller. (a) Time history of θh (t). (b) Time
history of θ̇h (t). (c) Time history of sh (t). (d) Time history of θ̇h (t). (e) Time
history of u(t). (f) Time history of ψ(t).

assumption is satisfied during the entire experiments. Such anal-
ysis can be performed by empirically measuring the frictional
coefficient between the two disks and comparing it with the min-
imum frictional coefficient necessary to ensure rolling computed
from the normal and frictional forces employing the measured
experimental data. The procedure is detailed in [1] for the disk-
on-disk setup, and it is not reported here, since it is out of the
scope from the purposes of this paper.

1) Test 1: In this first test, the chosen initial conditions are
θh(0) = 0 rad, θ̇h(0) = 0 rad/s, sh(0) = −0.01 m, and ṡh(0) =
0 m/s. Through these choices, the upper disk starts with an initial
angle of about ψ(0) 
 −6◦ with respect to the vertical axis of
Σw .

Fig. 9 shows the results obtained in this first experimental
test. In particular, the figure depicts the time histories of θh(t),
θ̇h(t), sh(t), ṡh(t), u(t), and ψ(t). The plots show that the con-
troller can balance the object at the upright unstable position [see
Fig. 9(f)], while demanding a sufficiently smooth control torque
[see Fig. 9(e)]. However, from Fig. 9(a) and (c), it is possible
to notice that θh and sh do not go exactly to zero, respectively,
while, instead, the angle ψ does. In particular, the steady-state
value of θh is around 1.5◦, while sh is around 0.0024 m. These
small errors are mainly due to calibration uncertainties of the
vision system, plus some uncertainties on the model parameters.
These last are rationally related to the experimental identifica-
tion carried out to estimate the parameters of the motor.
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2) Test 2: In this second test, the chosen initial conditions
are θh(0) = 0 rad, θ̇h(0) = 0 rad/s, sh(0) = −0.0043 m, and
ṡh(0) = 0 m/s. Through these choices, the upper disk starts
with an initial angle of about ψ(0) 
 −2.5◦ with respect to the
vertical axis of Σw . The goal is the same as in the first test.
Besides, the upper disk is voluntarily perturbed after around
10 s to test the robustness of the proposed control technique
against external disturbances.

Fig. 10 shows the results obtained in this second experimental
test. As before, the figure depicts the time histories of θh(t),
θ̇h(t), sh(t), ṡh(t), u(t), and ψ(t). The plots show that the
controller can balance the object at the upright unstable position
[see Fig. 10(f)], while demanding a sufficiently smooth control
torque [see Fig. 10(e)], and rejecting an external disturbance.
The effects of the external perturbation are easily appreciable
from all the plots. As for the first test, from Fig. 10(a) and (c),
it is possible to notice that θh and sh do not go exactly to zero,
respectively, while, instead, the angle ψ does. In particular, the
steady-state value of θh is around −0.55◦, while sh is around
0.001 m. The same discussion regarding the source of the small
steady-state error expressed in Test 1 applies also for Test 2.

IX. CONCLUSION

A novel method to reduce the complexity of the IDA-PBC
design was proposed in this paper. The achieved results can be
applied to any underactuated mechanical systems expressed in
the pH form, having a separable Hamiltonian or a nonseparable
Hamiltonian indifferently, whose dynamic model has dimen-
sion 2. While the proposed approach aims at reducing the de-
sign complexity, it preserves the effectiveness of the IDA-PBC
method. The proposed procedure employs a target potential en-
ergy matching equation, depending on a parameterization of the
desired closed-loop mass matrix, to simultaneously simplify the
identification of the desired mass matrix and select the desired
energy function for the closed-loop system. The control method-
ology was applied to the class of the nonprehensile planar rolling
manipulation systems, overcoming some limitations appearing
from a literature review. Two benchmark examples were ad-
dressed: the ball-and-beam and the eccentric disk-on-disk case
studies. Simulations and experiments on the real physical setup
were presented to evaluate the performance of the controllers.

Hence, the described methodology proposes a systematic
procedure to design the control law for the broad class of
underactuated mechanical planar system through the IDA-PBC
framework, without explicitly solving the PDEs of the kinetic
matching equation and providing a closed-form solution for the
potential matching equation. The introduced design was also a
generalization of [20], since it addressed nonseparable Hamil-
tonian systems without the constraint that the hand must rotate
around its CoM: this meant it was thus possible to solve a gen-
eral nonprehensile planar rolling manipulation problem through
the proposed IDA-PBC framework. The chosen benchmark
examples highlighted the benefit of employing the described
methodology. In particular, it was possible to consider a more
complicated, yet accurate, dynamic model for the ball-and-beam
example rather than, for instance, in [3] and [14], while neither

linearization nor simplification of the dynamic model was
needed for the eccentric disk-on-disk example, as in [24] and
[25], respectively. Further academic examples that may benefit
of the proposed methodology and that are not classifiable as
nonprehensile manipulation case studies are the Acrobot and
the Pendubot systems, the inertia-wheel pendulum, and the
TORA system, with and without gravity.

Future extensions of this paper aim at the development of
analytical solutions to remove any potential singularity, which
is inherited from the procedure proposed in [19]. Besides, the
generalization to systems with higher dimensions than n = 2
and m = 1 (i.e., three-dimensional (3-D) nonprehensile rolling
manipulation systems exhibiting nonholonomic constraints
[26]–[29]) is indeed a current work.

APPENDIX

In this appendix, given V (q1 , q2), α(q1 , q2 , c1), and
β(q1 , q2 , c1), the explicit solution of (15) is provided for some
particular cases. For the sake of clarity, given a generic function
f(a, b, c) of its arguments, the function f(d, e, h) is computed
by substituting a = d, b = e, and c = h. Some possible cases
of interest are reported in the following, but the analysis can be
extended.

Case 1: Consider α(q1 , q2 , c1) = k1γ(q1 , q2) and β(q1 , q2 ,
c1) = k2γ(q1 , q2), with k1 , k2 ∈ R and γ(q1 , q2) ∈ R a com-
mon function. This case is the one employed in Sections VII
and VIII. The explicit solution is

Vd(q, c2) = −
∫ q1

1

∇q2 V
(
σ, k1 q2 −k2 q1 +k2 σ

k1

)

k1γ
(
σ, k1 q2 −k2 q1 +k2 σ

k1

) dσ

+ f

(
k1q2 − k2q1

k1
, c2

)
(46)

with f(·) ∈ R any function of its arguments.
Case 2: Consider α(q2 , c1), β(q2 , c1), and V (q2), that is,

they depend on the variable q2 only. The explicit solution for
this example is

Vd(q, c2) = −
∫ q2

1

1
β(σ, c1)

dV (σ)
dσ

dσ

+ f

(
−q1 +

∫ q2

1

α(σ, c1)
β(σ, c1)

dσ, c2

)
. (47)

Case 3: Consider α(q1 , q2 , c1) = 0. The explicit solution for
this example is

Vd(q, c2) = −
∫ q2

1

∇q2 V (q1 , σ)
α(q1 , σ)

dσ + f(q1 , c2). (48)

Case 4: Consider β(q1 , q2 , c1) = 0. The explicit solution for
this example is

Vd(q, c2) = −
∫ q1

1

∇q2 V (σ, q2)
α(σ, q2)

dσ + f(q2 , c2). (49)
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