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Abstract. Kinematic modeling of continuum robots is challenging due
to the large deflections that these systems usually undergone. In this
paper, we derive the kinematics of a continuum robot from the evolution
of a three-dimensional curve in space. We obtain the spatial configuration
of a continuum robot in terms of exponential coordinates based on Lie
group theory. This kinematic framework turns out to handle robotic
helical shapes, i.e. spatial configurations with constant curvature and
torsion of the arm.
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1 Introduction

The great capabilities for locomotion and manipulation exhibited by biologi-
cal structures as elephant’s trunks, snakes and octopus tentacle have inspired
researchers towards recreating their robotics counterpart. A continuum (or con-
tinuous backbone) robot can be defined as a continuously bending, infinite
degrees-of-freedom robot with an elastic structure [1]. The use of continuum
robots in practical applications requires accurate mathematical models which can
predict the robot’s shape and motion. The inherent compliance of such mechani-
cal systems suggests to use classical elasticity theories for long slender objects to
describe their nonlinear behavior [2]. Despite recent improvements which have
led to a faster computation of the governing equations for the robot’s shape
[3,4], we are still far to use these methods in real-time. Thus, over the years, a
lot of effort has been done in deriving simplified and more analytically tractable
models. A promising approach, mostly limited to kinematic analysis, begins by
describing the desired three-dimensional curve in space, then fitting the physical
robot to the theoretical analytical curve [5].

Using this approach, the constant curvature model have been developed [6].
It represent the robot as a series of mutually tangent circular arcs, which can be
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described by only three parameters (radius of curvature, angle of the arc, bend-
ing plane). The constant curvature approximation has been successfully applied
to many continuum robots [7,8]. However, this approach does not match the
effective biological counterpart of novel designs, as the Festo’s Bionic Handling
Assistant (BHA), whose backbone curve has a continuously changing curva-
ture [9]. The current variable curvature framework models the backbone of a
single segment of the continuum manipulator using a piecewise constant cur-
vature assumption. The major limit of current variable curvature kinematics
framework is that they consider only bending and neglect torsion [10]. Hence, a
variable curvature kinematic framework which can handle all the components of
deformation is highly desirable.

In this paper, we derive a kinematic model for continuum manipulators
using differential geometry techniques [11] and exponential coordinate repre-
sentation [12], to provide an intuitive and effective description of the robot’s
configuration. The variable deformation framework is then integrated analiti-
cally under the hypothesis of constant curvature and torsion of the backbone.
The shape of the robot turns out to possibly deform as a series of mutually
tangent helixes, instead of circular arcs as in common variable curvature frame-
works. We start by describing the evolution of a three-dimensional curve in space
using the Serret-Frenet formulas. Then, we fit a continuum robot to the analyt-
ical curve through the exponential mapping. Finally, we give two examples and
we demonstrate that this approach includes the constant curvature kinematics
framework.

2 Geometric Description of a Spatial Curve

In classical differential geometry [11], a material abscissa s ∈ [0, 1] is usually
used to parametrize a three-dimensional curve Γ . The position vector of a point
P ∈ Γ can be defined as u(s) = [u1 u2 u3]T . The unit tangent vector is t(s) =
du(s)/d s, the unit normal vector n(s) is such that t · n = 0, and the unit
bi-normal vector b(s) is defined as b = t × n. The collection of these three
unit vectors constitutes a local triad R(s) = [t(s) n(s) b(s)] along the curve.
The evolution of the curve in space is conveniently described by the formulas of
Serret-Frenet [11], which take the form

t′(s) = κ(s)n(s) (1)
n′(s) = −κ(s)t(s) + τ(s)b(s) (2)
b′(s) = −τ(s)n(s) (3)

where (·)′ denotes the derivative with respect to s, while κ(s) and τ(s) indicate
the curvature and the torsion of the curve. The vectors t′(s), n′(s), b′(s) can be
collected in a 3 × 3 matrix R′(s) =

[
t′(s) n′(s) b′(s)

]
such that the evolution of

the curve in space can be written in the compact form (see e.g., Fig. 1)

H′(s) = H(R′(s),u′(s)) =
[
R′(s) u′(s)
01×3 1

]
∈ SE(3) (4)
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where SE(3) is the Special Euclidean group of the 4 × 4 homogeneous matrices.
Let us introduce a 4 × 4 matrix f̃(s) as

f̃(s) =

⎡

⎢
⎢
⎣

0 −fω3(s) fω2(s) fu1(s)
fω3(s) 0 −fω1(s) fu2(s)

−fω2(s) fω1(s) 0 fu3(s)
0 0 0 0

⎤

⎥
⎥
⎦ ∈ se(3) (5)

where se(3) is the Lie algebra associated to SE(3). In screw theory, the elements
of se(3) are called twists. In this case, f̃(s) takes the meaning of deformation
twist of the curve. Notice that the Lie algebra se(3) is isomorphic to R

6, with
f(s) = [fT

u (s) fT
ω (s)]T ∈ R

6.
With this in mind, Eq. 4 can be rewritten as

H′(s) = H(s)f̃(s) (6)

stating that the spatial differential kinematics of the curve is simply expressed
by the product of the deformation twist with the 4 × 4 homogeneous matrix

H(s) = H(R(s),u(s)) =
[
R(s) u(s)
01×3 1

]
∈ SE(3) (7)

which describe the configuration of the curve in three-dimensional space. There-
fore, the current configuration of the curve in this variable deformation frame-
work is computed by integrating (6) over the length of the curve, once that its
deformation is known. This is not a trivial problem, since the three-dimensional
curve evolves on SE(3), which is a non-linear and non-commutative space.
Indeed, closed-form solutions to (6) are usually unknown; general methods must
employ a numerical integration scheme. Particularly appealing are the geomet-
ric integration schemes which do not involve parametrization of rotation, as
the method of Crouch and Grossman [13] and the Munthe-Kaas [14]. In the
next section we will provide an analytical solution to (6), which is appealing for
describing the kinematics of a particular class of continuous backbone robots.

e1

e2

e3

s

t(s)

n(s)b(s)

u(s)

P

Γ

Fig. 1. Geometric description of a spatial curve.
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3 Kinematic Modelling

Our kinematic approach is to fit the physical manipulator to the analytically
desirable three-dimensional curve, whose evolution in space is described by (6).
In this section we will derive a consistent helical kinematics framework which
accounts for constant curvature and torsion of the robot’s shape. Throughout
this paper we will assume that the robot is inextensible and no shear effects
are considered. With this hypothesis, the position and orientation parts of the
deformation vector read

fu =

⎡

⎣
1
0
0

⎤

⎦ fω =

⎡

⎣
τ
0
κ

⎤

⎦ (8)

where we are considering initially straight configurations of the robot’s shape
aligned with e1 axis.

3.1 Forward Kinematics

Under the assumption of constant curvature and torsion, f̃ does not depend
on s. Thus, the solution of (6) exists in closed form and it is given by

H(s) = H0 expSE(3) (sf) (9)

where s ∈ [0, L], being L the length of the arm, H0, the configuration at s = 0, is
a constant of integration, and expSE(3)(·) is the exponential mapping on SE(3),
which maps an element of the Lie algebra f̃ ∈ se(3) into an element of the Lie
group H ∈ SE(3). Formally, it is defined by

expSE(3)(f) =
[
expSO(3)(fω) TT

SO(3)(fω)fu

01×3 1

]
(10)

where expSO(3)(·) is the exponential map on the special Orthogonal group SO(3),
the group of the rotation matrices. This is given by

expSO(3)(fω) = I3×3 + α(fω)f̃ω +
β(fω)

2
f̃
2

ω (11)

and it is known as Rodrigues’ formula. In (11), we have

α(fω) =
sin(‖fω‖)

‖fω‖ β(fω) = 2
1 − cos(‖fω‖)

‖fω‖2 (12)

Indeed, TT
SO(3)(·) is the transpose of the tangent operator on SO(3), which is

defined from the derivative of the exponential map as

TSO(3)(fω) = I3×3 − β(fω)
2

f̃ω +
1 − α(fω)

‖fω‖2 f̃
2

ω (13)
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By separating the rotation and position part of (9), we obtain

R(s) = R0 expSO(3) (sfω) (14)

u(s) = u0 + R0TT
SO(3) (sfω) sfu (15)

where R0, the rotation matrix at s = 0, and u0, the position vector at s = 0,
are constant of integration. Since we are considering arms aligned with e1 and
initially straight, we have R0 = I3×3 and u0 = 03×1.

As a matter of fact, the exponential mapping introduces a local parametriza-
tion which allows describing the configuration of a curve, which belongs to SE(3),
i.e. a non-commutative and non-linear space, with an element belonging to a lin-
ear space, namely the Lie algebra se(3).

3.2 Inverse Kinematics

The inverse kinematics maps the configuration of the continuum robot to the
deformation vector. In our hypothesis, the inversion of (9) exists in closed form
and it is given by

f = logSE(3)

(
H−1

0 HL

)
(16)

where HL is the configuration at s = L, and logSE(3)(·) is the logarithmic
mapping on SE(3), which maps back an element of the Lie group into an element
of its corresponding Lie algebra. It is defined by

logSE(3)(H) =

[
f̃ω T−T

SO(3)(fω)u
01×3 1

]

(17)

where we have indicated H =
(
H−1

0 HL

)
, f̃ω = logSO(3)(R) and

logSO(3)(R) =
θ

2 sinθ
(R − RT ) (18)

with

θ = acos
(

1
2
(trace(R) − 1)

)
, θ < π (19)

Indeed, T−T
SO(3)(·) is the transpose of the inverse of the tangent operator on

SO(3), which is defined as

T−1
SO(3)(fω) = I3×3 +

1
2
f̃ω +

1 − γ(fω)
‖fω‖2 f̃

2

ω (20)

with

γ(fω) =
‖fω‖

2
cot

(‖fω‖
2

)
(21)
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4 Test Cases

In this section we consider two test examples, one relating a continuum arm with
constant curvature, one relating a continuum arm with constant curvature and
torsion.

4.1 Continuum Arm with Constant Curvature

Let fω = [0 0 κ]T . By developing (9), it is easy to demonstrate that the config-
uration of the robotic arm is given by

H(s) =

⎡

⎢
⎢
⎣

cos(sκ) −sin(sκ) 0 1
κ sin(sκ)

sin(sκ) cos(sκ) 0 1
κ (1 − cos(sκ))

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (22)

which corresponds to the robot’s shape obtained with constant curvature kine-
matics framework [6,15]. A circular desired end point trajectory is shown in Fig. 2.
The parameters used in this example are: L = 1m; κ = π/10 : π/10 : πm−1.

It is easy to verify that, computing H0 = H(s = 0) and HL = H(s = L)
from (22), the use of (17) gives back fω = [0 0 κ]T .

Fig. 2. Whole arm shape configuration under a desired circular end point trajectory.

4.2 Continuum Arm with Constant Curvature and Torsion

Let fω = [τ 0 κ]T . By developing (9), the configuration of the robotic arm is
given by

H(s) =

⎡

⎢
⎢
⎣

1 − (1 − cos(sκg))
κ2

κ2
g

−sin(sκg)
κ

κg
(1 − cos(sκg))

κτ
κ2

g
s + (sin(sκg) − sκg)

κ2

κ3
g

sin(sκg)
κ

κg
cos(sκg) −sin(sκg)

τ
κg

(1 − cos(sκg))
κ

κ2
g

(1 − cos(sκg))
κτ
κ2

g
sin(sκg)

τ
κg

1 − (1 − cos(sκg))
τ2

κ2
g

(sκg − sin(sκg))
κτ
κ3

g

0 0 0 1

⎤

⎥
⎥
⎦

(23)
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where κg =
√

κ2 + τ2 is the Gaussian curvature of the arm. Equation (23) corre-
spond to an helical-shaped configuration of the whole arm. Figure 3 illustrate a
typical screw motion. The left hand figure shows the motion corresponding to a
fixed torsion τ = 3m−1 and varying curvature κ = 0 : π/2 : 2π m−1. Indeed, the
right hand figure shows the motion corresponding to a fixed curvature κ = 3m−1

and varying torsion τ = 0 : π/2 : 2π m−1.
It is easy to verify that, again, computing H0 = H(s = 0) and HL =H(s= L)

from (23), the use of (17) gives back fω = [τ 0 κ]T .

Fig. 3. Whole arm screw motion of a manipulator with constant curvature and torsion.

5 Conclusions

A variable deformation kinematic framework based on differential geometry has
been presented for spatial three-dimensional curves. In order to derive analyt-
ical solutions, we have integrated the spatial differential kinematic model by
using a constant deformation assumption. In particular, we have developed the
analytical solutions for constant curvature and torsion robots, whose backbone
configuration in space resembles the shape of an helix, i.e. a spatial curve with
constant curvature and torsion.

The kinematic modeling of compound continuum robots will arise naturally
from the framework. Future works of the authors will investigate closed-loop
inverse kinematics algorithms to iteratively solve the inverse kinematics of single-
segment and multiple-segments continuum robots.
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