
Contents lists available at ScienceDirect

Fusion Engineering and Design

journal homepage: www.elsevier.com/locate/fusengdes

Screw-based dynamics of a serial/parallel flexible manipulator for DEMO
blanket remote handling

Stanislao Graziosoa,⁎, Giuseppe Di Gironimoa, Daniel Iglesiasb, Bruno Sicilianoa

a CREATE/University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
b RACE/UKAEA, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

A R T I C L E I N F O

Keywords:
DEMO
Remote maintenance
Robot dynamics
Flexible manipulators
Tokamak

A B S T R A C T

Remote handling of heavy in-vessel components inside nuclear fusion reactors requires the use of large robotic
mechanisms, whose numerical analysis is highly complex. As a matter of fact, these robots are subject to large
deformations, either induced by the geometric configuration of their mechanical structure or by the heavy
payloads they usually transport. This work was motivated by the need of deriving physical-based predictive
models able to simulate the mechanical behavior of such large robotic mechanisms, while performing dynamic
tasks. The method formulates the dynamics of robotic manipulators on a Lie group, and uses a finite element
procedure to discretize the flexible bodies. The method is applied to a complex mechanism, the serial/parallel
flexible manipulator which has been recently selected for DEMO blanket remote handling. The case studies
investigated in this paper involve the simulations of this manipulator while handling the inboard and outboard
blanket segments according to the sequence of maneuvers planned for their removal processes from the vessel.
The results show that such dynamic simulations could give useful information for design, analysis and control of
remote handling equipment. The generality of the method makes this approach prone to be easily used in
simulating the dynamics of other flexible manipulators for remote handling of large in-vessel components inside
nuclear fusion reactors.

1. Introduction

The vertical maintenance system (VMS) for EU DEMO remote
maintenance developes a concept for breeder blanket replacement via
the upper ports at the top of the vacuum vessel (VV) [1]. The blanket
handling procedure involves the use of robotic manipulators for the in-
vessel operations and overhead cranes for the ex-vessel operations [2].
Typically, around 80 breeder blanket segments, each of ∼12.5 m long
and weighting up to 80 tonnes, will be contained into the vessel. Fur-
ther, an ideal gap of 20mm is required between two adiacent segments,
in order to maximize tritium breeding and minimize neutron streaming
[3]. Manipulating and handling such large components while main-
taining tight clearances is highly challenging, since their motion often
results in high levels of vibrations [4,5]. In order to predict and thus
cancels these vibrations, methods able to simulate the nonlinear de-
formation of the in-vessel components and the large manipulators
which are required to manouvre the components, in static and dynamic
conditions, are highly required. This problem was indicated as one of
the main issue in the current remote handling research for nuclear fu-
sion [6].

Over the past years, many mathematical models have been in-
troduced to simulate the dynamics of large flexible manipulators [7].
Currently, the most adopted approaches in the robotics research include
lumped parameters models [8], assumed mode models [9], transfer
matrix models [10]. They assume linear elasticity, small deflections,
light damping and rotational motion of modest angular rate. Further-
more, they are usually suited only for serial manipulators with revolute
joints [11]. Even if these are reasonable assumptions for most robotic
devices, the nature of the movements for in-vessel operations, the me-
chanical complexity of the mechanisms involved, as well as the scale of
the loads in a fusion scenario, push towards an alternative approach.
We have tackled this problem by using a screw–based nonlinear finite
element approach for flexible manipulators [12–14]. Finite element
procedures provide several features of interest in this context: (i)
modeling of manipulators with rigid/flexible elements; (ii) modeling of
manipulators with all kind of joints, which can be either rigid or flex-
ible; (iii) modeling of serial/parallel kinematic chain's topology using
the same systematic approach. The finite element discretization process
takes place within a modeling framework formulated on a Lie group,
which uses the screw notations [15]. Then, the screw–based dynamic

https://doi.org/10.1016/j.fusengdes.2018.12.029
Received 11 May 2018; Received in revised form 25 October 2018; Accepted 11 December 2018

⁎ Corresponding author.
E-mail address: stanislao.grazioso@unina.it (S. Grazioso).

Fusion Engineering and Design 139 (2019) 39–46

0920-3796/ © 2018 EUROfusion Consortium. Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2018.12.029
https://doi.org/10.1016/j.fusengdes.2018.12.029
mailto:stanislao.grazioso@unina.it
https://doi.org/10.1016/j.fusengdes.2018.12.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2018.12.029&domain=pdf


model could be numerically solved by using geometric time integrators,
which might significantly speed up the numerical computation of the
equations of motion [16,17]. In this work, we apply this model for the
dynamic simulation of the hybrid kinematic mechanism which has been
recently proposed as the blanket transporter [18]. The main objective of
this paper is to show how a general-purpose finite element mathema-
tical formulation is promising towards modeling and simulation of
manipulators for EU DEMO remote handling. In this context, dynamic
models are essential for mechanical design, analysis of manipulator

Fig. 1. Hybrid kinematic mechanism for EU DEMO blanket remote handling.

Fig. 2. Model of the hybrid kinematic mechanism.

Table 1
Point-to-point joint positions for the OBS removal. Linear measurements in
[mm]; angular measurements in [deg].

T1 T2 T3 A B C

Home 3242.8 3242.8 3242.8 0 0 0
0 3032.8 2510.7 2814.7 −8.56 15.72 5.50
1 3003.5 2717.5 2742.7 −4.96 15.44 5.32
2 3032.8 2510.7 2814.7 −8.56 15.72 5.50
3 2891.6 2360.7 2674.4 −8.87 15.95 5.50
4 2839.4 2517.1 2393.9 5.52 14.89 5.45
5 2091.1 1763.3 1603.3 6.91 16.19 5.43
6 2437.4 2052.3 1899.5 7.17 23.29 4.80

Fig. 3. Joint trajectories for the OBS removal.
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structures, design of model-based control algorithms, simulation of
motion.

The rest of the paper is outlined as follows. In Section 2 we briefly
describe the mechanics of the serial/parallel robotic manipulator. In
Section 3 we derive its dynamic model, formulated on a Lie group. The
dynamical simulations of the serial/parallel robotic manipulator during
the blanket removal processes are addressed in Section 4. Finally, in
Section 5 we discuss the conclusions of the current work and some
possible future works.

2. Mechanics

The hybrid kinematic mechanism (HKM) illustrated in Fig. 1 is the
recent system proposed for remote maintenance of breeder blanket
segments for DEMO [18]. It allows the installation and replacement of
the inboard and outboard blanket segments through the vertical upper
port of the vessel. The HKM topology is hybrid, i.e. it includes a parallel
and a serial kinematic structure. The parallel section comprises three
linear actuators Ti which position the mechanism in space. The base of
each actuator has a gimbal arrangement built into the port interface
plate, while the other extremity of the actuator is linked with the me-
chanism through an hinge joint. The three revolute joints A, B and C in
a serial configuration create an extended wrist. They respectively allow
for a rotation about the axis x, y and z. The conceptual design of the
HKM is fully described by Keep et al. in [18].

3. Dynamics

The screw-based formulation used in this work is based on absolute
variables for the description of the large amplitude motions of the ele-
ments (rigid and flexible bodies), and relative variables for the

description of the relative motions inside the joints. In the SE(3)
formalism, these variables take the meaning of frames, which are:

• Nodal frames. A single rigid body is described by the motion of one
node applied at its center of gravity, to which a local frame is at-
tached. A flexible body is modeled as a discrete beam element
composed by two extreme nodes, to which two local frames are
attached and interpolated through an helical shape function [19].
For node I, we use the notation HI. These local frames belong to the
SE(3) group; they have six degrees of freedom, namely three
translations and three rotations, collected in a 4×4 matrix as

= ⎡
⎣

⎤
⎦×

H
R u

0 1I
I I

1 3 (1)

where RI is a 3×3 rotation matrix and uI is a 3×1 position vector,
which define respectively the orientation and the position of the
node with respect to a fixed inertial reference frame.

• Relative frames. If we consider two generic nodes H1 and H2 con-
nected by a generic joint, the relative motion allowed by the joint J
between the two nodes 1 and 2 can be described as

=H H HJ I2 1 , (2)

where HJ,I is a relative frame. These frames belong to a subgroup of
SE(3); they have kJ≤ 6 degrees of freedom, depending on the joint
[20].

The derivatives of the frames might be used to define the velocity
and deformations of the bodies. Let us consider a scalar ∈a ℝ; the
derivatives of the nodal and relative frames HI and HJ,I with respect to a
can be written as

=d H H a( ) ͠a I I I (3)

Fig. 4. Displacements of the tip of HKM in the test trajectory for the OBS removal. Solid line: HKML; Dotted line: HKMD.
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= = ∼d H H a H A a( ) ͠a J I J I J I J I J j I, , , , , (4)

where se∈a (3)͠ I . The element a͠I is the Lie algebra associated to the Lie
group HI∈ SE(3). In the screw theory, the Lie algebra se∈a (3)͠ I is called
twist. It is composed by a positional part = ∈v v vv [ ] ℝT

1 2 3
3 and a ro-

tational part = ∈ω ω ωω [ ] ℝT
1 2 3

3 as

=
⎡

⎣

⎢
⎢
⎢

−
−

−

⎤

⎦

⎥
⎥
⎥

ω ω v
ω ω v

ω ω v
a

0
0

0
0 0 0 1

͠ I

3 2 1

3 1 2
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(5)

where in the up left 3× 3 block of the matrix we can recognize the
typical structure of the skew-symmetrix matrix associated with the
rotational part of the twist.

The matrix ∈ ×A ℝJ
k6 J in (4) spans the subspace of the allowed re-

lative motions foreseen by the joint, while ∈a ℝJ I
k

, J in (4) is a custom

vector depending on the joint. For example, for a revolute joint, AJ

reduces to a six–dimensional vector and aJ,I reduces to a scalar as

= ⎡
⎣

⎤
⎦

= aA 0
n a;J r

x
r

j I r r,
3 1

, , (6)

where ∈n ℝr
3 is the axis of the joint and ∈a ℝr is the derivative of the

rotation angle. Indeed, for a prismatic joint we have

= ⎡
⎣

⎤
⎦

=
×

aA
n

0 a;J p
p

j I p p,
3 1

, ,
(7)

where ∈n ℝp
3 is the axis of the joint and ∈a ℝp is the derivative of the

axial displacement.
The equations of motion of a flexible robotic manipulator based on

the screw-theory have been presented in [12]. In the rest of this section,
we underline the main aspects which have led to the development of
the dynamic model of the HKM.

3.1. Equations of motion

The equations of motion of a flexible manipulator composed by n
nodes and m joints can be written as differential-algebraic equations
(DAE) formulated on a Lie group as

= ∼H HAη˙ (8)

+ + =f H η η̇ f H f H λ f H( , , ) ( ) ( , ) ( )φine int ext (9)

=φ H 0( ) (10)

The kinematic equations (8) involve the time derivative of the ele-
ment H, which collects the motion variable of the manipulator as

= … …H H H H Hdiag( , , , , , )n J J m1 ,1 , (11)

Fig. 5. Reaction forces of the HKM at the boundaries (inter-
face with vertical port), during the test trajectory for the OBS
removal. Red: 1cl; Green: 2cl; Blue: 3cl (see Fig. 2). Solid line:
HKML; Dotted line: HKMD. (For interpretation of the refer-
ences to color in text/this figure legend, the reader is referred
to the web version of the article.).

Table 2
Point-to-point joint positions for the IBS removal. Linear measurements in
[mm]; angular measurements in [deg].

T1 T2 T3 A B C

Home 3242.8 3242.8 3242.8 0 0 0
0 1433.5 2102.0 2006.6 5.78 −24.28 −5.14
1 1439.2 2058.5 1956.2 5.83 −21.16 −5.22
2 1433.6 2102.0 2006.6 5.78 −24.28 −5.14
3 1291.7 1978.1 1879.2 6.01 −25.04 −5.11
4 1411.4 1817.2 1725.1 4.69 −14.00 −5.47
5 2387.2 2357.4 2294.7 1.48 6.57 −5.59
6 2414.8 2249.4 2446.6 −7.28 5.91 −5.63
7 2175.1 1709.8 1944.9 −9.56 17.34 −5.42
8 2162.9 1720.8 1909.7 −8.02 17.47 −5.40
9 2183.2 1837.6 2008.2 −6.13 3.88 −5.64
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where HI, I=1, …, n denotes a nodal frame, while HJ,I, I=1, …, m
denotes a relative frame. The element (11) can be interpreted as an
element of a (6n+6m)-dimensional Lie group. The velocity vector

∈ +η ℝ n m6 6 is given by

= ⎡⎣
… … ⎤⎦η η η η ηT T

J
T

J m
T T

1 n ,1 , (12)

where ∈η ℝI
6 denotes the absolute velocity vector of each node, while

∈η ℝJ I,
6 is the relative velocity vector of each joint. These vectors

comes up respectively from (3) and (4), where the scalar a is re-
presented by the time variable t. The joint matrix ∈ + × +A ℝ n m m k(6 6 ) (6 ) is
given by

= … …× ×A I I A Adiag( , , , , , )m6 6 6 6 1 (13)

where n denotes the number of nodes, m the number of joints,
k= k1+…+ km the degrees of freedom of all joints (each joint has kJ
degrees of freedom). It includes the matrices AJ whose expression de-
pends on the particular joint involved in the model (for a revolute joint,
see (6), for a prismatic joint, see (7)).

The dynamic equations (9) include the discretized global inertia
forces fine, the discretized global internal forces fint, the discretized
constraint forces fϕ and the discretized global external forces fext. The
internal forces include the elastic forces of the beams and the elastic
forces of the joints. Indeed, an elastic joint can be modeled as a spring
element inside the joint: the presence of a spring element I add to the
internal forces the contribution given by fint,I(δI)=KIδI, where

= …K KK diag( , )I I I k,1 , J is the diagonal stiffness matrix and δI is the in-
ternal deflection of the joint. The constraint forces, using the Lagrange
multiplier method, can be expressed as fφ(H, λ)=ATφq(H)λ, being φq

the gradient of the constraint (10) and λ the Lagrange multiplier vector
associated with the constraint (10).

The kinematic constraint equations (10) involve six constraints for
each joint. These equations basically state which are the direction of

allowed motion, according to the joints included into the model.
Finally, the DAE system (8)–(10) must be solved for (H, λ). To this

end, several numerical solution methods exist from the literature;
particularly appealing are the implicit geometric time integration
schemes for the prediction phase and Newton–Raphson iterative pro-
cedures for the correction phase [21].

3.2. Description of the HKM dynamic model

The model of the HKM is illustrated in Fig. 2. It comprises four rigid
bodies (rbi, i=1, …, 4), five universal joints (green circles), five pris-
matic joints (red rectangles), five hinges and three revolute joints (blue
circles). The inertia properties of the rigid bodies (mass and rotation
inertia) have been estimated from the CAD model of the manipulator.

We use two strategies to account for flexibility in the linear actua-
tors. The first one follows a lumped approach, by modeling the linear
actuator as a longitudinal system with point mass-spring behaviour.
The spring stiffness was calculated based on the cross-section area of
the actuator and Young's modulus, by considering structural steel as
material. The HKM modeled with this approach will be indicated in the
following as HKML. The second strategy follows a distributed approach,
by modeling the linear actuator with one nonlinear beam where the
only finite stiffness is the axial one, which has been computed again
using the cross-section area of the actuator and Young's modulus, by
considering structural steel as material. The HKM modeled with this
approach will be indicated in the following as HKMD.

The objective of the HKM is to safely handle an heavy payload,
namely the breeder blanket. In a first investigation, we consider the
breeder blanket as a point mass applied in its center of gravity (CoG).
Thus, its influence on the HKM is equivalent to a force fz downward z-
axis, whose intensity is given by the weight force of the breeder blanket,
plus two torques τx and τy about the x and y axes whose intensity is
given by the product of the weight force and the distance between the
CoG and the interface with blanket segment, respectively computed
along the y and x axes. The value of the forces and moments applied at
at the interface with blanket segments are given in the next section.

4. Simulations and results

The case study simulates the dynamics of the HKM while performing
the sequence of maneuvers which have been planned for the removal of
the outboard blanket segment (OBS) and inboard blanket segment
(IBS). The two sequences of maneuvers translate into two sequences of
point-to-point motions. Each joint of the manipulator moves from an
initial to a final configuration through a sequence of points so as to
guarantee a correct blanket removal. In particular, for the OBS removal,
six maneuvers have been planned; for the IBS removal, nine maneuvers
have been planned [22]. In order to generate a joint motion trajectory
which can interpolate the sequences of point-to-point joint configura-
tion, a trajectory planning algorithm must be formulated. As a first
investigation, we suppose a bang-bang acceleration profile, with 0.5 s of
positive acceleration followed by 0.5 s of negative acceleration, to reach
each of the desired joint configuration. The bang-bang acceleration
profile translates into the triangular profile at the velocity level, and the
parabolic-parabolic profile (the S-shape) at the position level. The ac-
celeration value for each point-to-point sequence has been computed as

= −q q q t¨ 4( )/f i f
2, where qi is the initial position of the manouvre, qf the

final position of the manouvre, tf the time duration of each manouvre,
in this test case 1 s. The loads applied at the tip for simulating the
blanket will be given for the OBS and IBS removal processes. In the
following, for the two sequences, the displacements of the tip of the
robotic manipulator, as well as the reaction forces at the boundaries,
i.e. at the interface with the vertical port, for the two developed models,
HKML and HKMD are given. Further, we also report an error measuring
the distance between the two models, given by

Fig. 6. Joint trajectories for the IBS removal.
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= −e v vabs( )L DHKM, HKM, (14)

where v indicates the displacement or force values.

4.1. Removal of the outboard blanket segment

The removal of the outboard blanket segment involves six man-
euvers, given in Table 1. In this table, we also include the home con-
figuration of the manipulator, as well as the initial configuration of the
OBS removal sequence (indicated with 0). The resulting S-shaped joint
trajectories are illustrated in Fig. 3. The loads applied at the tip of HKM
are: fz=− 748 800 N, τx=388 100 Nm and τy=290 200 Nm. Notice
that these loads are applied when the HKM reaches the initial config-
uration 0, at t=1 s. Indeed, the trajectory from the home configuration
to the initial configuration allows configurating the mechanism into the
starting position of the sequence; thus, in this manouvre there is no
blanket at the interface. Fig. 4 records the displacements of the tip of
the manipulator in the trajectory corresponding to the OBS removal, for
the two models HKML and HKMD. As we can appreciate from the plots,
the two models give similar results; the relatively small error is due to
the high frequency induced by the flexible elements in the distributed
model. Fig. 5 reports the reaction forces at the boundaries of the model,
namely at the nodes 1cl, 2cl and 3cl. We can see that the reaction forces
assume relatively small values till 1 s, when the manipulator moves
without the payload. After, the reaction forces suddenly rise. Further,
for each point-to-point motion of 1 s duration, we can see an increase of
the forces at half of this duration, which correspond to the change of
curvature of the joint positional motion. The trajectory for the OBS
removal is critical for the mechanical structure after 5 s, since between
5 and 6 s the linear actuators suddenly change their excursions from the
4th to the 5th configuration. A possible solution is to spread this
manouvre into a larger time duration. The HKML and HKMD models

seem to give almost identical results regarding the reaction forces;
however, as we can see from the error plots, the differences reach va-
lues in the order of 104. This value seems huge, but it is one order of
magnitude less than the values of the forces. Even if part of this error is
due to the high frequency induced by the flexible elements in the dis-
tributed model, we can state that there could be a substantial difference
in estimating the reaction forces with less realistic models.

4.2. Removal of the inboard blanket segment

The removal of the inboard blanket segment involves nine man-
euvers, given in Table 2. As before, we also include the home config-
uration of the manipulator, as well as the initial configuration of the IBS
sequence (indicated with 0). The resulting S-shaped joint trajectories
are illustrated in Fig. 6. The loads applied at the tip of HKM are:
fz=− 588 600 N, τx=− 256 900 Nm and τy=682 100 Nm. Again,
these loads are applied when the HKM reaches the initial configuration
0, at t=1s. Indeed, the trajectory from the home configuration to the
initial configuration allows configurating the mechanism into the
starting position of the sequence, without the presence of the blanket at
the interface. Fig. 7 records the displacements of the tip of the ma-
nipulator in the test trajectory for the IBS removal, for the two models
HKML and HKMD. A close agremeent of the two models is observed
again; the relatively small error is due to the high frequency induced by
the flexible elements in the distributed model. Regarding the reaction
forces at the boundaries (see Fig. 8), in this case we can notice even a
worst condition for the mechanical structure at the interface. Indeed, in
this case, from the beginning (from the home to the initial configura-
tion) we have a larger excursion for the linear actuators and the re-
volute joints, as we can see from Fig. 6. A possible solution to mitigate
this behavior is to spread the initial manouvre into a larger duration.

Fig. 7. Displacements of the tip of HKM in the test trajectory for the IBS removal. Solid line: HKML; Dotted line: HKMD.
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For the errors, the discussion made for the OBS removal, is valid also for
the IBS removal.

5. Conclusions

In this paper we proposed the use of a screw-based dynamic model
to simulate the mechanical behavior of flexible manipulators used for
remote handling procedures. We have shown the feasibility of the ap-
proach by simulating the HKM while handling the outboard and in-
board blanket segment according to the sequence of maneuvers which
have been planned for their removal process. We have selected a test
joint trajectory algorithm and we have simulated the displacements of
the manipulator tip as well as the reaction forces at the boundaries, as
resulted from the simulations using two modeling assumptions.

Dynamic models could play an important role in providing in-
formation for the mechanical and control design. Further, they allow
simulating the motion of mechanical systems during remote tasks.

In challenging domains as fusion reactors vessels, where remote
handling procedures involve the manipulation/transportation of large
payloads in tiny spaces, it is crucial to have realistic virtual models
based on computational mechanics strategies, which can help in plan-
ning safe operations, in combination to full-scale physical mock up.
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