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Abstract— In this paper we present a geometric framework
for modeling soft robots using the finite element method. The
framework is based on the geometrically exact Cosserat rod
theory formulated on a Lie group. The method has been
demonstrated to be able to simulate the dynamics of a generic
robotic mechanism, consisting of an articulated robot with soft
arms and soft joints.

Index Terms— Soft robotics, Cosserat rod theory, differential
geometry, mathematical modeling.

NOMENCLATURE

˙(·) derivative with respect to time
(·)′ derivative with respect to space
(̃·) Lie algebra operator
(·, ·) Linear operator
(̂·) Lie bracket operator
t ∈ R, time
α ∈ R, reference curve parametrization
u ∈ R3, position vector
R ∈ SO(3), rotation matrix
HI ∈ SE(3), nodal frame
HJ,I ∈ subgroup of SE(3), relative frame
ηI ∈ R6, velocity vector
ηj,I ∈ RkI , kI ≤ 6 relative velocity vector
f ∈ R6, deformation vector
σ ∈ R6, stress vector

I. INTRODUCTION

Mathematical modeling of soft robots is a an open challenge
in the robotics community. Several approaches have been
proposed in the recent years [1], [2], [3], [4], [5]. In this short
paper we formulate the dynamics of articulated soft robots
and soft-bodied robots using a novel screw-based nonlinear
finite element method. The method combines the Cosserat
rod theory with the finite element method in a multibody
dynamics framework, using techniques from the differential
geometry of Lie groups and Lie algebras.
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A. Motivations

Most of current methods can be used to model either
articulated soft robots [1], [6], [7] or soft-bodied robots [2],
[5], [8]. One of the first attempts in modeling multi-body
systems of soft arms is made by Renda et al. in [9], where
they model a rigid joint as a special case of immaterial soft
body with unitary length. In this paper we focus on a more
generic approach involving absolute variables for describing
the absolute motion of the rigid and soft bodies and relative
variables for describing the relative motion between the
bodies. In this framework, the joints behave as algebraic
constraints which prevent the non-allowed relative motion
between two or more adiacent bodies. The benefits of this
geometric framework are: (i) it allows modeling all low-
pair joints using concepts of Lie subalgebra; (ii) it allows
modeling robotic manipulators structured in a serial and
parallel topology; (iii) it allows the simulation of both active
and passive joints; (iv) it allows to model both rigid and soft
joints. The rest of the paper summarizes the main aspects
of the framework, which was introduced for the first time
in [10] and it is exhaustively explained in [11].

II. SYSTEM MODELING
A generic multibody system of soft and rigid arms is seen
as composed by:
• Nodal frames ∈ SE(3), for the description of the rigid-

body transformations of the nodes of the finite element
mesh of the system;

• Relative frames ∈ subgroup of SE(3) , for the descrip-
tion of the relative transformations between the nodes.

In the following we show the equations governing the mod-
eling of rigid and soft bodies, joints and articulated systems.

A. Rigid body

A single rigid body is represented by a single six degrees-of-
freedom node to which a local frame H is associated. The
equations of motion of a rigid body are given by

Ḣ = Hη̃ (1)
Mη̇ − η̂TMη = gext (2)

where M ∈ R6×6 is the mass matrix of the rigid body and
gext ∈ R6 is the vector of external forces.

B. Soft body

A single soft body is represented by the continuous assembly
of two-dimensional cross sections moving upon a three-
dimensional curve according to the infinite rigid-body trans-
formations defined by internal laws of deformation. Hence,



the position field of a soft arm with length L is given by:
α ∈ [0, L] 7→ H(α) ∈ SE(3). According to the Cosserat rod
theory, the equations of motion of a soft body take the form
of partial differential equations (PDE) as

Ḣ = Hη̃ (3)
H′ = Hf̃ (4)

Mη̇ − η̂TMη − σ′ + f̂
T
σ − gext = 0 (5)

where we omitted the dependency of the quantities on the
material abscissa α. The spatial discretization process uses
an helical shape function connecting two nodes A and B
(placed at α = 0 and α = L) such that the approximation of
the kinematic shape of the soft arm is given by

H(α) = HA expSE(3) (αf) (6)

where expSE(3) (·) is the exponential mapping on SE(3). By
applying (6) to (3)–(5), the equations of motion of the soft
body take the form of ordinary differential equations (ODE)

ḢA = HAη̃A (7)
ḢB = HBη̃B (8)

M(f)η̇AB + C(f ,ηAB)ηAB +Kf = 012×1 (9)

where M,C andK are rispectively the discretized mass,
velocity and stiffness matrices, while ηAB = [ηTA ηTB ]

T .

C. Rigid/Soft Joint

The relative motion between two nodes A and B of the
finite element mesh of the system is described by the relative
transformation frame HJ,I ∈ Lie subgroup of SE(3) as

HB = HAHJ,I (10)

To model soft joints, internal stiffness and/or damping el-
ements can be added between the nodal frames HA and
HB (see Fig. 1). In this case, there exists an internal
deflection of the joint I given by δI = αI − α0

I . Springer
and damper add internal elastic force and internal dissi-
pation force respectively as gint,I,K(αI) = KIδI and
gint,I,D(αI) = DI δ̇I , where KI = diag(KI,1, . . . ,KI,KI

)
and DI = diag(DI,1, . . . , DI,DI

) are the diagonal matrices
of stiffness and damping coefficients of joint I .
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Fig. 1: Soft joint with internal stiffness and damping.

D. Rigid/Soft Multi-body system

A generic robot is constituted by soft and rigid bodies
connected through rigid and soft joints. The equations of
motion of a generic robot using this geometric finite element
framework take the form of differential algebraic equations
(DAE) on a Lie group as

Ḣ = HÃη (11)
gine(H,η, η̇) + gint(H) +ATϕT

q (H)λ− gext(H) = 0 (12)

ϕ(H) = 0 (13)

where A is a matrix taking into account the particular
joints, gine,gint and gext embody the sum of inertia, internal
and external forces, while ϕ, ϕq and λ are respectively the
constraint equations, the constraint gradient and the lagrange
multipliers due to the presence of joints.

III. EXAMPLE

As illustrative example of the formulation, we show the
dynamic analysis of a generic robotic mechanism (GRM).
The GRM is composed by rigid and soft bodies, articulated
in a kinematic chain with one branched tree and one closed
loop. The GRM topology is illustrated in Fig. 2. The GRM
comprises six rigid bodies, each one with the following mass
and rotation inertia properties: m = 0.15 kg; Jxx = Jyy =
Jzz = 1× 10−4 kgm2. Instead, each of the five soft bodies
have the following mass and stiffness matrices

M = diag(0.1 kgm−1, 0.1 kgm−1, 0.1 kgm−1, . . . (14)
. . . 0.5 kgm, 0.5 kgm, 0.5 kgm)

K = diag(1× 106 N, 1× 106 N, 1× 106 N, . . . (15)
. . . 1Nm2, 1Nm2, 1Nm2)

which correspond to a very soft arm. The initial configuration
of the GRM is given in Table I, while the joints are defined
in Table II. There are a total of eight joints: four passive
and four actuated. All joints are revolute about the z−axis,
except joint 5 which rotates about x−axis and joint 3
which is prismatic. The active joints are actuated with a
bang-bang acceleration profile (triangular velocity profile)
for 1 s, according to the data in Table III. Three actuation
forces are applied on the system at points 6,7 and 8. These
forces follow a S−shaped profile for 1 s (see Table IV).
The system is subject to gravity downward z−direction.
The dynamic simulations are performed using SimSOFT©,
our physics engine for soft robots [12]. Snapshots of the
simulation are shown in Fig. 3a–3d. As output, we plot the
3D displacements, velocities and accelerations of the tip of
the GRM (point 8) as well as of the free joint (4). The
simulations are performed with the assumption of: (i) rigid
joints; (ii) soft joints with internal stiffness K = 10Nm−1

for the prismatic joint and K = 10Nmrad−1 for the revolute
joints; (iii) soft joints with internal stiffness (same as before)
and damping D = 5Nsm−1 for the prismatic joint and
D = 5Nmsrad−1 for the revolute joints.
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Fig. 2: Geometric description of the GRM. Solid lines: rigid
bodies; Dashed lines: soft bodies.

TABLE I: Initial configuration of the GRM.

Point x [m] y [m] z [m]
0 0 0 0
1 0.2 0.6 0
2’ 1 1 0
3’ 1.2 0 0
2 0 1 0
3 0.2 1.5 0
4 0.5 1.3 0.2
5 0.8 1.6 0.2
6 1 1.8 0.3
7 1.2 2 0.4
8 1.4 2.2 0.5

TABLE II: Kinematic joint definition of the GRM. A =
actuated; P = passive. c = cos; s = sin.

Joint eu eω A/P
0 03×1 [0 0 1]T A
1 03×1 [0 0 1]T P
2’ 03×1 [0 0 1]T P
3’ 03×1 [0 0 1]T P
2 03×1 [0 0 1]T A
3 [c(1.1903) s(1.1903) 0]T 03×1 A
4 03×1 [0 0 1]T P
5 03×1 [1 0 0]T A

TABLE III: Point-to-point motion of the actuated joint with
bang-bang acceleration profiles. qi, qf = initial, final values.

Joint q0 q2 q3 q5
qi [m] or [rad] 0 0 0 0
qf [m] or [rad] π/6 π/6 0.75 π/3
q̈ [ms−2] or [rads−2] 2/3π 2/3π 3 4π/3

TABLE IV: Point-to-point force motion with S−shaped
force profiles. fi, ff = initial, final values.

Actuation force f1x f1y f2x f2y f3x f3y
fi [N] 0 0 0 0 0 0
ff [N] 100 -100 -100 100 100 -100
f̈ [Ns−2] 400 -400 -400 400 400 -400

IV. CONCLUSIONS AND FUTURE WORK

In this short paper we summarized a novel screw-based
finite element formulation for modeling of articulated soft
robots and soft-bodied robots. We tested the capabilities
of the method on a hybrid mechanism, composed by rigid
and soft bodies connected through rigid and soft joints,
simulated using SimSOFT©, our simulation environment for
soft robots. A future work is planned for building a soft
robotics research testbed, to validate different models and
control algorithms for soft robotic systems.
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(a) t = 0 s (b) t = 0.33 s (c) t = 0.66 s (d) t = 1 s

Fig. 3: Snapshots of the GRM in SimSOFT©

Fig. 4: Displacements, velocities and accelerations of the tip (8) and of the free joint (4) of the GRM.


