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Abstract— In this paper we derive the analytic solutions
for the statics of cantilever soft arm under external loading.
The main motivation behind this work is the development
of manageable and ready–to–use mathematical models of soft
robotic arm for various purposes. We formulate the problem
exploiting the Lie group structure of the arms’ configuration
space. This allows using the powerful mathematical tools
from differential geometry. The model builds upon the theory
of Cosserat rods: the mechanics–based perspective used to
describe the kinematics and statics allows including into the
model the large deformations due to axial, shear, torsion and
bending effects. The position fields of the manipulators’ shapes
are analytically integrated and validated with respect to exact
solutions and experiments.

Index Terms— Soft robotics, differential geometry, Cosserat
rods, mathematical modeling.

NOMENCLATURE

˙(·) derivative with respect to time
(·)′ derivative with respect to space
(̃·) R6 → se(3)

(·, ·) se(3)× se(3)→ se(3)

(̂·) R6 → R6×6

t ∈ R, time
α ∈ R, reference curve parametrization
u ∈ R3, position vector
R ∈ SO(3), rotation matrix
H ∈ SE(3), configuration matrix
η ∈ R6, velocity vector
f ∈ R6 deformation vector
σ ∈ R6, stress vector

I. INTRODUCTION

Modeling of soft robotic arms has shown significant ad-
vancements over the last few years, and many mathematical
formulations have been proposed [1]. Currently, the most
adopted kinematic modeling methods involve a discrete or
constant–curvature approximation. The first one discretizes
a continuous elastic structure through a series of rigid links
connected by conventional revolute, universal, or spherical
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Fig. 1. Externally loaded cantilever soft arm.

joints [2]. The second one represents a continuum robot
geometry with a finite collection of circular arcs, which are
defined by only three parameters, namely radius of curvature,
angle of the arc and bending plane [3]. More accurate results
can be achieved with a variable–curvature approach [4]. It
typically adopts a material–attached homogeneous reference
frame comprising a position vector u(α) ∈ R3 and a
rotation matrix R(α) ∈ SO(3), and expresses the arm
pose as a function of the material abscissa along the robot.
On the top of kinematics, lumped–parameters [5] or more
accurate distributed–parameters [6], [7], [8] models can
be used to derive mechanics–based representations of the
governing equations for the robot’s shape. The latter models
tipically involve classical elasticity theories from continuum
mechanics, including Euler–Bernoulli, Timoshenko, Kirchoff
and Cosserat beams [9], [10], [11].
However, the high complexity of these models, and the
associated tedious computer implementation, make their use
still limited. For accurate computer simulation of such me-
chanical systems, the current practice is still to use classical
nonlinear finite element solvers [12]. The main problem of a
numerical approach is that it can be used only for simulation,
since it complicates the derivation of model–based control
and planning algorithms. Therefore, the development of
managable and potentially useful analytical solutions for
practical problems in soft robotics is highly desirable.
In this paper we derive analytic solutions for the statics
of cantilever soft robotic arms subject to end loads. Many
practical systems can be modeled as cantilever arms, such
as soft actuators for whole–body manipulation [13], which
recently have been used as wearable systems for robotic
rehabilitation [14] [15].
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We model a soft robotic arm as a beam defined by a
continuous assembly of rigid cross–sections subject to trans-
formations along a three–dimensional curve. We define the
position and orientation fields of the arm on a Lie group, the
special Euclidean group SE(3) [16], [17]. After, we define
the velocity and deformation fields respectively from the
time and space derivatives on SE(3). A material costitutive
law between internal forces and internal deformations allows
defining the internal strain energy of the arm. Therefore,
we apply the principle of virtual work to derive the static
equilibrium equations. We analitically integrate these equa-
tions for the cantilever arms analyzed in this paper. Finally,
we validate the achieved closed–form solutions with respect
to exact solutions and experiments. Basic operations on Lie
groups are reported in Appendix.

II. KINEMATICS

The position field, which describes the configuration of the
soft arm, is represented by the mapping

α ∈ R 7→H(α) = H(R(α),u(α)) ∈ SE(3) (1)

where α ∈ [0, L] is the material abscissa which parametrizes
the reference curve of the soft arm with length L.
The deformation field is defined from the space derivative of
the position field. According to the definition of derivatives
on SE(3) (see, e.g. Eq. 61), an element f̃(α) ∈ se(3),
representing the deformation measures, can be introduced as

H ′(α) =H(α)f̃(α). (2)

The deformation measures are defined from the initial con-
figuration as

f(α) = f0 + ε(α) (3)

where f0 is the initial deformation vector and ε(α) is the
6× 1 strain vector which includes the classical position part
and orientation part of the deformations as

ε(α) =

[
γ(α)
κ(α)

]
(4)

where γ(α) includes the axial and the two shear defor-
mations, while κ(α) includes the torsional and the two
bending deformations. In the same way, the velocity field
is obtained by taking the time derivatives of the position
field. By using again the representation of the derivatives
on SE(3), the velocity variables are introduced as an element
η̃(α) ∈ se(3), which is associated to the 6 × 1 axial vector

η(α) =

[
v(α)
ω(α)

]
(5)

where v(α) and ω(α) are respectively the linear and angular
velocities. Hence, the derivative of (1) with respect to time
yields

Ḣ(α) =H(α)η̃(α) (6)

which constitutes the velocity field of a soft continuum arm.

III. STATICS
The static equilibrium equations are obtained by applying the
principle of virtual work, after having defined the internal
strain energy of the soft arm.

A. Strain energy
The internal strain energy is defined as

Vint =
1

2

∫
L

εTσ dα (7)

where

σ(α) =

[
n(α)
m(α)

]
(8)

is the vector of the stress resultants over the cross-section
of the arm, and n and m are the 3 × 1 resulting force
and resulting moment vectors. In particular, n1 is the force
along the reference curve, while n2 and n3 are the shear
forces along the cross-section axes. Indeed, m1 is the torsion
moment about the reference curve, while m2 and m3 are the
bending moments about the cross-section axes.
The internal forces σ and the mechanical strains ε can be
related through the material constitutive law. Linear consti-
tutive equations for an isotropic elastic material lead to

r =Kε (9)

where K is the 6× 6 stiffness matrix given by

K =

[
Kuu Kuω

SYM Kωω

]
(10)

In general, the stiffness matrix is not diagonal. In case of
an initially straight configuration of the soft arm, it becomes
diagonal when the reference curve is chosen to be the neutral
axis of the arm, and the normal and the bi-normal to the curve
are chosen to be the principal axes of the cross-sections. In
such case,

Kuu = diag(EA,GAy, GAz) (11)

contains the axial and shear stiffnesses, while

Kωω = diag(GJ,EIy, EIz) (12)

contains the torsional and bending stiffnesses. In (11) and
(12), E and G ∈ R denote respectively the Young and
the shear modulus. For an isotropic material, it holds G =
E/2(1 + ν), where ν ∈ R is the Poisson ratio. Using (9),
Eq. (7) becomes

Vint =
1

2

∫
L

εTKε dα (13)

where we can recognize the well known structure of the
internal energy for a linear elastic material expressed as a
quadratic form in ε.

B. Static equilibrium equations
According to the principle of virtual work, the manipulator
is in static equilibrium if and only if

δ(Vint) = δ(Vext) (14)
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where δ(Vext) is the virtual work done by the external forces.
The variation of the expression of the internal energy in (7)
reads

δ(Vint) =
∫
L

δ(ε)Tσ dα (15)

where, recalling the commutativity of the Lie derivatives
in (66), the variation of the strains can be expressed as

δ(ε) = δ(f) = (δh)′ + f̂δh (16)

in which we used δ(H(α)) = H(α)δ̃h(α). Inserting (16)
into (15) and integrating by parts yield

δ(Vint) =
[
δhTσ

]
|L0 −

∫
L

δhT (σ′ − f̂
T
σ) dα (17)

where the first term at the right hand side is interpreted as a
boundary condition.
In general, the virtual work done by the external forces can
be expressed as

δ(Vext) = δh(0)Tgext(0)−δh(L)Tgext(L)−
∫
L

δhTgext dα

(18)
where gext(α) =

[
gText,u g

T
ext,ω

]T
contains the resulting

forces and moments over the cross-sections due to the
external loading.
Finally, the weak form of the static equilibrium equations is
obtained by inserting (18) and (17) into (14), which yields[
δhT (σ − gext)

]
|L0 −

∫
L

δhT (σ′ − f̂
T
σ − gext) dα = 0

(19)
Indeed, the strong form reads

σ′ − f̂
T
σ = gext (20)

which constitute the Reissner equations for the static case.

IV. ANALYTIC SOLUTIONS

In this section we derive the closed–form analytic solutions
for the steady–state statics of cantilever soft arm subject to
external moments and forces.

A. External moments

External moments applied at the free end of cantilever soft
arms about the neutral axis or the cross-section axes induce
pure torsion/bending solicitations (see, e.g., Fig. 1). Since the
arms are clamped in the origin, we have that δh(0) = 06×1,
while the boundary conditions in the free end are

σ(L) =K(L)ε(L) = gext (21)

where we consider the soft arm made of linear elastic mate-
rial. Moreover, we consider constant cross-section properties
and constant initial curvature and torsion of the reference
curve. Under these hypothesis, f0 and K are constant over
the length of the arm.

1) Deformation field: The equilibrium equations in the
static configuration expressed by (20) become

Kε′ − f̂0
T

Kε = 06×1 (22)

where we used the fact that the stiffness matrix is constant
over the arm. In this case, the solution for the deformation
field can be expressed in closed form and it is given by

ε(α) =K−1F (α)Kε0 (23)

where ε0, the deformation at α = 0, is a constant of
integration and

F (α) =

[
LT (α) 03×3(

T SO(3)(αf
0
ω)αf

0
u

)̃
LT (α) LT (α)

]
(24)

with L(α) = expSO(3)

(
αf0

ω

)
. Notice that we indicate the

position part of the deformation with fu, while the orien-
tation part with fω . Indeed, the tangent operator T SO(3)(·)
is given in (73). Inserting (23), computed at α = L, in the
boundary condition given by (21), yields

σ(L) =KK−1F (L)Kε0 = gext(L) (25)

such that the constant of integration ε0 is given by

ε0 =K−1(F (L))−1gext(L) (26)

Therefore, by introducing (26) in (23), the solution for the
deformation field reads

ε(α) =K−1F (α)(F (L))−1gext(L) (27)

In the special cases of pure bending/torsion solicitations, the
external forces are given by

gext,u(L) = 03×1 (28)
gext,ω(L) = τa (29)

where τ ∈ R and a ∈ R3 is an arbitrary vector. For an
initially straight arm, we have F (α)(F (L))−1 = I6×6.
Hence, the deformation field in (27) becomes

ε =K−1
[
03×1
τa

]
(30)

Thus, it results that ε is constant along the continuum arm.
By separating the position and the orientation parts of the
strains, the solution reads[

γ
κ

]
=

[
03×1

K−1ωω(τa)

]
(31)

where Kωω is given in (12).

2) SE(3) field: The position and orientation fields are
obtained by solving the kinematic equations in (2). Since the
deformation field obtained above in (30) involves constant
strains, Eq. 2 can be integrated analitically and the solution
for the SE(3) field is given by

H(α) =H0 expSE(3)(α(f
0 + ε)) (32)

where H0 = H(R0,u0) is a constant of integration and
expSE(3)(·) is the exponential map on SE(3) given by (69).
Explicitly, Eq. (32) means

u(α) = u0 +R0T
T
SO(3)(α(f

0
ω + κ))α(f0

u + γ) (33)

R(α) = R0 expS0(3)(α(f
0
ω + κ)) (34)
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Fig. 2. Static configurations of a cantilever soft arm in pure bending.

Since we are considering initially straight arm, we have that
u0 = 03×1, R0 = I3×3 and f0

u = [1 0 0]T , f0
ω = 03×1.

As illustrative example, let us consider a pure bending tip
load as gext,ω(L) = τ [0 1 0]T . According to (31), the
deformations are given by

γ = [0 0 0]
T (35)

κ = [0 κy 0]
T (36)

where κy = τ/(EIy). Indeed, according to (33)–(34), the
position and rotation fields are given by

u(α) =

 1
κy

sin(ακy)
0

− 1
κy

(1− cos(ακy))

 (37)

R(α) =

 cos(ακy) 0 sin(ακy)
0 1 0

−sin(ακy) 0 cos(ακy)

 (38)

which is the exact solution known since Euler, i.e. the
solution for the position field of a cantilever soft arm in
pure bending and large displacements is a circle of radius
ρ = 1/κy [18]. By considering EIy = 1Nm2 and
L = 1m, the soft arm’s steady-state shape, for bending tip
loads τ = 1, 2, 3, 4, 5 Nm, is given in Fig. 2. The other two
cases are obtained in the same manner.

B. External forces

An external force applied at the free end of a cantilever
soft arm along the neutral axis induces a constant axial
deformation given by γ = [F/EA 0 0]T , being F the axial
force. The position field is then obtained using (32). Indeed,
a shear force along one of the cross-section axes involves a
more complex problem, described as follows. Let us consider
an end force P = [0 0 P ]T . Since the arm is clamped in
the origin, we have again that δh(0) = 06×1, while the
boundary conditions in the free end are again given by (21),

P 1 2 3 4

z

Fig. 3. Static configurations of a cantilever soft arm with a shear load.

since we consider the soft arm made of linear elastic material.
By splitting the position and orientation part, we obtain

Kuuγ(L) = P (39)
Kωωκ(L) = 03×1 (40)

Furthermore, we consider constant cross-section properties
and initially straight configuration of the arm. Under these
hypothesis, K is constant over the length of the arm, while
f0
ω = 03×1 and f0

u = [1 0 0]T , since the arm is aligned
along x.

1) Deformation field: The equilibrium equations in the
static configuration expressed by (20) become

Kuuγ
′ = 03×1 (41)

Kωωκ
′ − f̃

0

uKuuγ = 03×1 (42)

The solution of (41)–(42) can be expressed as

γ = c1 (43)

κ(α) = −(K−1ωω f̃
0

uKuu c1)α+ c2 (44)

where c1 and c2 are two constants of integration. They can
be determined from the boudary conditions (39)–(40) as

Kuuc1 = P (45)

Kωω(−(K−1ωω f̃
0

uKuu c1)L+ c2) = 03×1 (46)

giving the solutions

c1 =K−1uuP =

[
0 0

P

GAz

]T
(47)

c2 = −LK−1ωω f̃
0

uKuu c1 =

[
0 − LP

EIy
0

]T
(48)

Hence, the analytic solutions for the deformation field read

γ =

[
0 0

P

GAz

]T
(49)
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κ(α) =

[
0 − LP

EIy

(α
L
− 1
)

0

]T
(50)

which involve a constant shear strain and a variable bending
strain along the length of the arm.

2) SE(3) field: The configuration of the soft arm is
obtained by integrating (2). In this example, the position and
orientation parts of (2) read

u′(α) = R(α)(f0
u + γ )̃ (51)

R′(α) = R(α)κ̃(α) (52)

In order to integrate analytically (51)–(52) which involve a
variable deformation, we need to assume small displacements
for the SE(3) field. Accordingly, the rotation matrix and its
derivative read

R(α) = I3×3 + θ̃(α) R′(α) = θ̃
′
(α) (53)

where θ(α) = [0 θ(α) 0]T since the motion is planar. By
introducing (53) into (51)–(52), we obtain

u′(α) = f0
u + γ − f̃

0

uθ(α) (54)
θ′(α) = κ(α) (55)

The integration of Eqs. 54–55 is given by

u(α) = (f0
u + γ)α+ . . .

. . . − f̃
0

u(−(K
−1
ωω f̃

0

uKuu c1)
α3

6
+ c2

α2

2
) + c4 (56)

θ(α) = −(K−1ωω f̃
0

uKuu c1)
α2

2
+ c2α+ c3 (57)

where the boundary conditions u(0) = 0 and θ(0) = 0
yield c3 = 0 and c4 = 0. Hence, using (47)–(48), the
configuration of the soft arm reads

u(α) =

 α
0

α P
GAz

+ PL3

6EIy

(
3α2

L2 − α3

L3

)
 (58)

θ(α) =

 0

−PL
2

EIy

(
α
L −

α2

2L2

)
0

 (59)

In order to validate the model, let us consider the exper-
imental study in [19], where the elastic arm subject to a
shear force has the following properties: EIy = 36.28Nm2,
GAz = 0.9039× 106 Nm2 and L = 0.508m. Figure 3
shows the displacements along the z−direction of the arm,
when subject to four loading conditions: P1 = 4.448N,
P2 = 8.896N, P3 = 13.345N, P4 = 17.792N. A close
agreement of the analytic solution with the experimental
deflections is observed. For a more detailed analysis, we
define a percentage error measure e[%] as

e[%] =
z − ze
r/L

· 100 (60)

where z is the third component of the displacements com-
puted according to (58), ze is the experimental displacement
and r/L is the radial station along the arm’s length.

TABLE I
PERCENTAGE ERRORS OF THE SHEAR LOAD PROBLEM

r/L P1 P2 P3 P4

0.25 0.049 0.078 0.056 0.166
0.50 0.015 0.016 0.046 0.102
0.75 0.008 0.004 0.008 0.023
1 < 0.001 0.001 0.005 0.008

Table I reports the percentage errors for all the loading con-
ditions of this problem. Even if the errors slightly increase
by increasing the shear force, they are all far below 1%.

V. CONCLUSIONS

In this paper analytic models for the kinematics and the
statics of externally loaded cantilever soft arms were derived.
We approached the problem exploiting the Lie group struc-
ture of the configuration space, and we used the powerful
mathematical tools from differential geometry. The models
derive from the Cosserat rod theory, and they account for
the large deformations due to elongation, shear, torsion
and bending. The results shows that this approach leads to
the exact solution for arms in pure bending. Indeed, the
percentage errors of the analytic deflections, with respect to
the experimental deflections, when the arm is subject to a
shear force, are below 1%.
The availability of ready–to–use mathematical models could
be fundamental in designing efficient model–based con-
trollers and planning algorithms for practical and usual
problems in the emerging field of soft robotics.

APPENDIX

This Appendix reports some basic operations on a Lie group.

A. Lie derivative

Given a ∈ R and H ∈ SE(3), the Lie derivative of H with
respect to α reads

da(H) =Hh̃ (61)

where h̃ ∈ se(3) is an invariant vector field called Lie
algebra. The Lie algebra se(3) is the space of 4×4 matrices
as

h̃ =

[
h̃ω hu
01×3 0

]
(62)

where

h̃ω =

 0 −hω,3 hω,2
hω,3 0 −hω,1
−hω,2 hω,1 0

 (63)

is the rotational skew-symmetric matrix. The Lie algebra h̃ ∈
se(3) is isomorphic to R6, with

h =

[
hu
hω

]
(64)

where hω = [hω,1 hω,2 hω,3]
T and hu =

[hu,1 hu,2 hu,3]
T .
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B. Lie bracket

Given h̃1 ∈ se(3) and h̃2 ∈ se(3), defined respectively from
the Lie derivative of H with respect to a ∈ R and b ∈ R,
the commutativity of the cross derivatives can be written as

db(h̃1)− da(h̃2) = [h̃1, h̃2] (65)

where [·, ·] denotes the Lie bracket operator. According to
the isomorphism se(3) ' R6, Eq. 65 can be expressed in
terms of vectors in R6 as

db(h1)− da(h2) = ĥ1h2 (66)

where

ĥ =

[
h̃ω h̃u
03×3 h̃ω

]
(67)

C. Exponential map

Eq. 61 can be seen as a linear differential equation on a Lie
group. If h does not depend on a, the solution is given by

H(a) =H0 expSE(3)(ha) (68)

where H0 is a constant of integration and expSE(3)(·) is the
exponential map on SE(3) which is given by

expSE(3)(h) =

[
expSO(3)(hω) T TSO(3)(hω)hu

01×3 1

]
(69)

The 3×3 upper left block in (69) is the exponential map on
the special Orthogonal group SO(3), which is the space of
the rotation matrices. It is given by the Rodriguez’ formula
as

expSO(3)(hω) = I3×3 + α(hω)h̃ω +
β(hω)

2
h̃
2

ω (70)

where

α(hω) =
sin(‖hω‖)
‖hω‖

β(hω) = 2
1− cos(‖hω‖)
‖hω‖2

(71)

Indeed, the 3 × 1 upper right column vector in (69) contains
the tangent operator defined in the next paragraph.

D. Tangent operator

The tangent operator on SE(3) is given by

T SE(3)(h) =

[
T SO(3)(hω) T uω+(hu,hω)

03×3 T SO(3)(hω)

]
(72)

where

TSO(3)(hω) = I3×3 −
β(hω)

2
h̃ω +

1− α(Hω)

‖hω‖2
h̃
2
ω (73)

is the tangent operator on SO(3) and

T uω+(hu,hω) =
−β
2

h̃u +
1− α
‖hω‖2

[hu,hω ] + . . . (74)

. . . +
hT
ωhu

‖hω‖2

(
(β − α)h̃ω + (

β

2
−

3(1− α)
‖hω‖2

)h̃
2
ω

)
(75)
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