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Abstract. Diagnostic data logs generated by systems components rep-
resent the main source of information about the system run-time be-
havior. However, as faults typically lead to multiple reported errors that
propagate to other components, the analysts’ work is hardened by dig-
ging in cascading diagnostic messages. Root cause analysis can help to
pinpoint faults from the failures occurred during system operation but
it is unpractical for complex systems, especially in the context of Indus-
try 4.0 and Railway domains, where smart control devices continuously
generate high amount of logs.

The AID4TRAIN project aims to improve root cause analysis in both
Industry 4.0 and Railway domains leveraging AI techniques to automat-
ically infer a fault model of the target system from historical diagnostic
data, which can be integrated with the system experts knowledge. The
resulting model is then leveraged to create log filtering rules to be applied
on previously unseen diagnostic data to identify the root cause of the oc-
curred problem. This paper introduces the AID4TRAIN framework and
its implementation at the current project stage. Further, a preliminary
case study in the railway domain is presented.
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1 Introduction

Diagnostic data logs are the primary source of data for understanding the
behavior of a system. Diagnostic data logs are sequences of text lines –typically
stored in log files– reporting on the runtime behavior of a system [3], including
entries highlighting the occurrence of system failures. Their analysis has been
extensively used for troubleshooting [7, 19, 2].

Root cause analysis is a well-established practice aiming at identifying
the fault originating failures occurred during system operation. Understanding
the fault underlying the occurrence of a failures is of paramount importance
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since it provides insights about the potential corrective actions to prevent fail-
ures from appearing later on and to avoid severe consequences [8], such as data
and economical loss, damage to the environment. However, root cause analysis
is often carried out in a manual fashion. Human experts generally rely on their
experience to identify suspicious log entries, often by querying for predefined
keywords. Understanding and traversing the diagnostic data logs from different
components demands for substantial cognitive work by human experts. Highly
specialized analysts are expected to face a number of challenges, which encom-
pass the high volume and heterogeneity of data, the presence of different error
and failure mode, the presence of corrupted, duplicated or redundant data, or
even worst, the absence of data to infer the root cause of the occurred problem,
the absence of consolidated and automatic analysis procedures.

This is especially true in the context of Railway and Industry 4.0 do-
mains, where smarts and control objects continuously generate high amount of
diagnostic data logs. In these domains the root cause analysis is important to
improve the reliability and safety of the operation. Complex systems like Train
Control and Monitoring System (TCMS) [5] and smart manufacturing leverag-
ing Industrial Internet of Things (IIoT) technologies [1] encompass a wide set of
heterogeneous subsystems and components, each one generating diagnostic data
logs. In addition, the presence of a fault typically leads to errors propagating
through the system components, generating cascading diagnostic messages that
increase the complexity of the root cause analysis and the cost of maintenance.

In this paper, we introduce the AID4TRAIN (Artificial Intelligence-based
Diagnostics for TRAins and INdustry 4.0 ) project, which aims to support and
improve the root cause analysis in Industry 4.0 and Railway domains leveraging
Artificial Intelligence (AI) and data analytics approaches. The project purses
the idea to bring together the system view provided by diagnostic data logs and
the system expert knowledge, modeled as fault trees. AI and data analytics ap-
proaches are used to infer the fault model of the target system from historical
diagnostic data in automatic way, which is then checked and integrated with
the knowledge of system experts. The inferred fault tree model is subsequently
leveraged to create log filtering and correlation rules to be applied on previously
unseen diagnostic data to identify the root cause of occurred problems. The
project is being developed by Critiware S.r.l. and an industrial railway part-
ner acting as problem owner and data provider (Hitachi Rail Italy), and with
the support of a national research center (CINI). The paper describes the con-
cepts underlying the AID4TRAIN framework, its main components, and reports
preliminary results obtained in a railway case study.

2 Problem Statement

Diagnostic systems available on modern train are able to automatically report
information related to potential faults or functional anomalies. However, as an-
ticipated, the consequences of a fault are hardly confined on the component that
is first affected by the problem, and can have cascade effects (and related diagnos-
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Fig. 1. Example of diagnostic log and filtering.

tic messages) on many components. This leads to logs with an excessive number
of lines which hardens the root cause analysis task, impacting to the overall life-
cycle cost of a working train, due to the need of highly specialized maintenance
staff. The analysis is impaired by several factors: data volume and heterogene-
ity, variety of fault types, presence of corrupted, redundant or repeated data,
and, in rare cases, lack of useful information to reconstruct the event of interest.
On the other hand, modern train supervision and control systems are equipped
with more powerful computing resource, if compared to past systems, opening
to novel opportunities to automate the on-board selective diagnostic task.

While there is still the need for human experts, to ultimately judge the hy-
pothesized cause of a fault and program a maintenance action, the problem we
aim to solve is to reduce the gap between the expert and the raw data, by provid-
ing a simplified view of knowledge automatically extracted from data in the form
of fault trees. The challenge we address in this paper is to infer these models by
mining potential correlations across huge volumes of data, spanning significant
hours of functioning of the on-board equipment, in production environments.
Learned grouping rules can be then used, in a later stage of the project, to au-
tomatically filter raw data on-board, hence reducing the amount of information
to be delivered to the specialist, in case of anomalies.

As an example, a very common scenario pointed out by analyzing diag-
nostic data logs provided by the railway partner of the project is related to
the activation of a train control block. When a train driver enables the con-
trol bank, typically a huge number of anomalies are reported into the diagnos-
tic log. As shown in the data block of Fig. 1, this event (i.e., Control bank

enabled) is recorded in diagnostic logs along with the cascading anomalies4

(e.g., Cod.06-Failure to communicate, Emergency braking activated by

traction, Cod.40-General Conduct discharged). The maintenance experts
inferred that these cascading events are related to the activation of the control
block (and then to the diagnostic systems not ready yet or still in startup phase),
after time consuming manual analysis. Our framework aims to easy out this man-
ual process by pinpointing only primary events (i.e., Control bank enabled

in this example) and identifying secondary events (e.g., Emergency braking

activated by traction), generating a data log where secondary events can be
easily filtered out (as shown the filtered data block in Fig. 1) to easy out both
operation and maintenance of the train system. Therefore, the aim here is to
generate rules allowing to classify events in primary and secondary, through the
analysis of historical diagnostic data logs collected during the system runtime.

4 Only a fragment of the log is reported due to space limitations.
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3 Proposed Framework

The core of AID4TRAIN is a framework aiming to support smart maintenance
processes by enhancing failure diagnostics. The core of the framework is a central
Fault-Tree Database (FTD), which includes causal relationships between events
occurring during the system behavior. The FTD is composed by a set of fault-
tree models. These models are either provided by the diagnostics experts, by
means of the Fault-Tree Editor (FTE), or proposed automatically by looking
at past diagnostic events occurred in production, by means of the Artificial
Intelligence-based Log Analyzer (AILA), as depicted in Fig. 2.

The FTE makes it easier for the domain expert to model well-known relation-
ships between detected anomalies and possible root causes (e.g., from technical
datasheet of the target system and its components). The AILA tool both iden-
tifies new failure modes and enhances existing fault trees by applying artificial
intelligence algorithms to the historical field failure data logs. This component
will automatically propose new fault trees to the domain experts. The expert
can discover subtle fault chains leading to some system error that are not pre-
viously known. The tool can also propose new root events, in case a sequence
of reported diagnostic events occurs multiple time in the same conditions but a
root cause is not know. These discovered root events should be further analyzed
by the experts and refined by means of the FTE tool.

The FTD stores all the relationship to effectively help both the system op-
erators and the maintenance teams to quickly identify anomalies in all the diag-
nostics event produced by the system. To this purpose, another key component
of the framework is the Fault-Tree Model Compiler (FTMC), which translates
fault-tree models in log filtering rules. Those rules classify all the diagnostics
events occurring during the system operation in either “primary” (e.g., the root
cause) and “secondary” (e.g., the related propagating events). Diagnostic logs
and filtering rules are imported and analyzed by means of the Log File Analyzer
(LFA). This component analyses the set of anomalies reported in diagnostic
logs, and it applies the rules given by the FTMC to point out automatically the
possible primary causes of the events.

At the current project stage we are focusing on the design and implementa-
tion of the AILA component, which is presented in Section 4.

AI-based Log
Analyzer

Fault-Tree
Editor

Fault-Tree
Model Compiler

Log File Analyzer

Historical
Diagnostics
Logs

Fault-Tree
Database

Domain
Expert
Models

Filtering
Rules

Diagnostic
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Root
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Fig. 2. AID4TRAIN framework components.
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4 The AI-based Log Analyzer

The Artificial Intelligence-based Log Analyzer (AILA) of the AID4TRAIN frame-
work is a Python-based component, leveraging both temporal coalescence and
unsupervised AI techniques to infer potential filtering rules. AILA implements
the flow shown in Fig. 3, which encompasses the following three steps.

Tupling. The event-tupling is a well-known technique [4] for temporal coa-
lescence. A tuple is a collection of events that are close in time. The principle
is due to the empirical observation that often multiple events that are reported
together are due to the same underlying fault. Moreover, the same fault may
persist, repeat often over time, and propagate to other components, which in
turn may report an additional event into the log file. Two subsequent events are
included in the same tuple if the time elapsed between the two occurrences is less
than a fixed window size. Otherwise, they will be grouped in two different tuples.
In this process the choice of the window size is a crucial factor, and represents
a configuration of AILA. The obtained tuples are then represented by a binary
sequence. Each element represent the presence of a particular event in the tuple.

Clustering. The AILA component assumes that the historical diagnostic
data are not labeled (as in our railway case study), which prevents the use of
supervised AI techniques. Therefore, in this step the tuples including a similar
set of events are grouped together in a cluster leveraging an unsupervised AI
technique, in order to learn a potential filtering rule. To this purpose we apply
a hierarchical clustering technique based on single linkage [20]. To measure the
distance between two tuples, we use the hamming distance, which is directly
proportional to the number of different events occurred in the tuples. For each
cluster we compute the number of events within the clusters, the probability
of occurrence of the event within the cluster, and the average duration of the
tuples within the cluster. Each cluster is considered to be a potential learned
filtering rule if it contains at least two events and at least two tuples. Indeed,
clusters with a single tuple are likely due to chance. Moreover, clusters with less

Fig. 3. The Artificial Intelligence-based Log Analyzer component.
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than two events are not useful to learn potential correlations between events.
The clustering step leverages a list of known interesting events, i.e., events that
domain experts already known to be relevant in the target system, e.g., events
representing root cause of failures. The clustering step leverages this list to divide
the generated clusters in two groups: (i) clusters containing known interesting
events and (ii) clusters containing no interesting events.

Fault Tree building. Each cluster is transformed in a two-level fault tree.
The root of the tree is the primary event, which is selected depending on the
group the cluster belongs to. If the cluster contains an interesting event, this
event is used as primary event of the tree, i.e., Interesting event-ID in Fig. 3;
otherwise, the primary event is represented by a potential unknown event, i.e.,
New event-ID in Fig. 3, which needs to be investigated from domain experts.
The remaining events of the cluster are used as leaves of the tree, representing
secondary events. The inferred trees represent filtering rules, which can be sum-
marized as follows: when all the events composing the fault tree occur within
the related time window (i.e., the average duration of the tuples within the clus-
ter), the root event of the tree is marked as primary, while all other events as
secondary. This allows analysts to easily filter-out all the secondary events from
diagnostic logs, focusing only on the primary ones when analyzing diagnostic
data for root cause analysis.

Before considering the rules consolidated, the domain experts are expected to
review the obtained fault trees. To this purpose each rule is translated in a XML
standard representation of a fault-tree, which can further elaborated, discarded
and accepted by a domain expert by means of a graphical fault-tree editor5. It is
important to note that the reviews made by experts are provided as inputs to the
clustering step, which accepts the list of both accepted and discarded rules (in
order to prevent that rules already analyzed by experts will be reviewed again).
Further, if the experts identify new primary events during the analysis, they will
be included within the known interesting events list. The accepted trees will be
then provided to the Fault-Tree Model Compiler to translate the trees in filtering
rules, which can be interpreted by the Log File Analyzer. As already mentioned,
at this stage of the project we start addressing the design and implementation
of the AILA component, and leverage an existing editor as FTE; FTMC, FTD
and LFA components will be addressed later during the project lifetime.

5 Preliminary case study

As a preliminary case-study, we collected two weeks of diagnostic events logs
related to a single train during operation by means of the train control room
facility at our industrial partner. The collected dataset is not labeled; therefore,
no information is provided about the relationship of the events.

Before providing the dataset to the AILA component, we execute a data
preparation step, in order to transform the data in the format expected by

5 We use FTEdit as fault-tree editor (https://github.com/ChuOkupai/FTEdit) and
the Open-PSA Model Exchange Format as XML representation.
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AILA as well as to address suggestions provided by our industrial partner. First,
the raw output of the diagnostic systems is converted in a table, containing for
each event: a timestamp, the event-type and the event-code (which are described
in the train model of the specific train), a description in natural language of
the event and the name of the component affected. The obtained table is then
analyzed to discard duplicated events (i.e., events with the same event-code and
timestamp), according to the train control room team indications.

The dataset obtained after the data preparation step is composed by 57,653
events. In order to properly configure the AILA component, we first performed
a sensitivity analysis in order to select the tupling window the AILA should use
for the tupling step. Fig. 4 shows the number of tuples by the selected tupling
window. According to a previous study [4], a good tradeoff is represented by the
knee point of the curve. Therefore, we obtained a tupling window of 5 seconds,
corresponding to 5,744 tuples. The AILA component is then configured with the
obtained tupling window, and it is executed on the prepared dataset. The clus-
tering step performed by AILA generates 970 clusters. Only 348 clusters contains
more than a single tuple, and only 249 contains at least two diagnostic events.
Therefore, AILA considers the 249 remaining clusters as potential filtering rules
learned in an automatic way, with a reduction of about 95% with respect to
the number of tuples. Fig. 5 shows the distribution of the number of events for
each learned rule. The 70% of the total rules learned is composed by less than 5
events. Rules with more than 20 events represent only less than 7%.

In our preliminary study we also analyzed the effect of the tupling window
on the number of potential rules obtained from the clustering step. Fig. 6 shows
that by varying the tupling window from 1 to 18 seconds, the number of potential
rules ranges between 228 and 278, with an average of 253 rules, which is quite
near to the 249 rules obtained with the selected tupling window of 5 seconds.
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Fig. 4. Tupling windows size (knee point analysis).
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Distribution of number of events by rule
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Fig. 5. Distribution of the number of events in each learned rule.
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Fig. 6. Number of potential rules learned by tupling window selection.

As indicted in Section 4, the resulting clusters are then converted in the
Open-PSA fault-tree XML representation. As an example, the code fragment
in Listing 1.1 and the corresponding graphical output in Fig. 7 show the tree
representation of a rule inferred by a cluster, and which should be analyzed by
a domain expert. To facilitate the analysis of the expert, each node of the tree
(see Fig. 7) is enriched with the following information:

– an eventID, which is a combination of event name and event code extracted
from the train model of the system, e.g., 017- CloseIR ;

– the time window (for the root event only), i.e., @window parameter, indi-
cating the maximum time in which the rule applies;
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Fig. 7. Example of graphical representation of a learned rule.

– the component to which this event belongs to, i.e., @component parameter;
– the probability of occurrence, i.e., @probability parameter, which is defined

as the ratio of number of times the event occurred in the cluster and the
total number of tuples of the cluster;

– a natural language description of the event.

In the provided example, the cluster includes the events 017, 019, VT T2 4

and VT T7 4, which have been grouped together by AILA. These events happened
at least two times within a time window of 1.6 seconds. The event type CloseIR
(017) has been indicated by the domain expert as a potential interesting event
(through the dedicated list provided to AILA). Therefore, it has been placed
at the root of the fault-tree. The obtained tree represented an example of rule
obtained in an automatic way by using the AILA component, and that can be
analyzed and modified by experts through the FTE component. In this respect,
AID4TRAIN framework allows to obtain potential filtering rules from historical
data in an automatic way as well as to combine the view provided by logs with
the expertise of the analysts.

Listing 1.1. Fault-tree XML Open-PSA Representation.

1 <opsa−mef author=”AID4TRAIN”>
2 <de f ine−bas ic−event name=”019− 1Q ”>
3 < l a b e l>
4 @component T7_1Q_R

5 @probability 1 .00
6 IR closed in T7

7 </ l a b e l>
8 <a t t r i b u t e s><a t t r i bu t e value=” f a l s e ” name=”keep”/>
9 </ a t t r i b u t e s>

10 </ de f ine−bas ic−event>
11 <de f ine−bas ic−event name=”VT T2 4−VT T2 4”>
12 < l a b e l>
13 @component T2_1Q_P

14 @probability 1 .00
15 Unexpected Line Voltage Type

16 </ l a b e l>
17 <a t t r i b u t e s><a t t r i bu t e value=” f a l s e ” name=”keep”/>
18 </ a t t r i b u t e s>
19 </ de f ine−bas ic−event>
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20 <de f ine−bas ic−event name=”VT T7 4−VT T7 4”>
21 < l a b e l>
22 @component T7_1Q_P

23 @probability 1 .00
24 Unexpected Line Voltage Type

25 </ l a b e l>
26 <a t t r i b u t e s><a t t r i bu t e value=” f a l s e ” name=”keep”/>
27 </ a t t r i b u t e s>
28 </ de f ine−bas ic−event>
29 <de f ine−f au l t−t r e e name=”471”>
30 <a t t r i b u t e s><a t t r i bu t e value=”017− Close IR ” name=”top−event ”/

></ a t t r i b u t e s>
31 <de f ine−gate name=”017− Close IR ”>
32 < l a b e l>
33 @window 1 .6
34 @component VEHICLE

35 @probability 1 .00
36 Closure command IR/IP
37 </ l a b e l>
38 <and>
39 <bas ic−event name=”019− 1Q ”/>
40 <bas ic−event name=”VT T2 4−VT T2 4”/>
41 <bas ic−event name=”VT T7 4−VT T7 4”/>
42 </and>
43 </ de f ine−gate>
44 </ de f ine−f au l t−t r e e>
45 </opsa−mef>

6 Related Work

Event logs include empirical evidence about the errors occurred in a software
system, hence, log analysis is efficient in classifying the propagation of errors and
failure modes. Through heuristic tupling, the log errors are coalesced in tuples in
order to associate them with a failure mode. For instance, error events occurring
close in time are coalesced to represent a single failure mode. The validity of
heuristic models for time coalescence in event logs is discussed by Hansen et al.
[6]; their sensitivity analysis is also adopted in this paper. Spatial coalescence
heuristics are adopted in the analysis of larger systems such as data-centers and
supercomputers [15] [9]. Collisions are the main issue of tupling heuristics: errors
of different failure modes are associated to the same failure mode, for instance,
due to the tuning of the time window or because the chance that independent
failures occur on different nodes is not negligible. In this paper, the tupling
heuristics are adopted to identify independent log events root causes. Once we
get the tuples, we adopt the clustering to support the tuples.

Clustering techniques group the objects that are similar between them
and dissimilar between the objects of other clusters. Clustering methods in-
cludes Hierarchical and Partitional clustering [21]. Partitional clustering defines
at-priori the number of clusters, and searches the partition that maximizes a
given function cost. For instance, k-means [12] tries to minimize the total intra-
cluster variance at each iteration. Hierarchical clustering can be divisive or ag-
glomerative. Initially, agglomerative algorithms assume that each cluster (leaf)
contains a single object; subsequently, at each step, the ”closest” clusters are
joined to get a larger cluster. Measures of similarity between clusters are nec-
essary to link the clusters. Linkage methods, such as Single-link, Average-link
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and Complete-link, calculate the inter-cluster distance considering all combina-
tions of points between the two clusters [17] [18], while geometric methods adopt
geometric centers to represent the clusters, and to calculate the inter-cluster dis-
tance. For instance, the Ward’s method is a geometric method which minimizes
the intra-cluster variance. Divisive algorithms instead initially consider a parti-
tion formed by a single large cluster containing all the elements, and then divide
it iteratively. Divisive clustering, as opposed to agglomerative ones, needs to
measure the density or sparsity of points within a cluster to decide whether or
not to proceed with the division.

Fault Tree (FT) is a well-known method to model the propagation of com-
ponent failures in the system. FT is a tree, or more generally a directed acyclic
graph, composed of one Top-Level Event (TLE, the root of the tree) and several
intermediate events and basic events (the leaves). The events of an FT are linked
though Boolean gates generating new intermediate events [16]. By describing the
FT as Disjunctive Normal Form (DNF), each conjunction represents a cut-set,
and each cut-set is a root cause of the TLE. Usually, the FT is adopted in FTA
(Fault Tree Analysis) to qualitatively decompose the system failure in a hierar-
chical structure in order to identify the possible root causes as cut sets, or to
quantify system dependability attributes. Building a fault tree requires a lot of
manual effort, however, several studies discussed the possibility to build a fault
tree from observational data making assumptions on the data set and conduct-
ing statistical tests [14] [13] [10] [11]. Nauta et al. [13] is the first completely
automated tool to test the causality in the FT construction statistically.

We adopt the Fault Tree to model the filtering rules to detect the root causes
in diagnostic logs. In that case, we are not interested in the accuracy of the fault
tree in terms of a precise reproduction of the real hardware structure.

7 Conclusion

The paper described the key aspects underlying the AID4TRAIN project, which
will provide Artificial Intelligence and data analytics approaches for supporting
and improving the root cause analysis in Industry 4.0 and Railway domains. The
paper introduced the software framework envisioned by the project, the design
and implementation of its AI-based component, and a preliminary railway case.
Future work will focus on the extensive implementation and validation of the
AID4TRAIN framework in the context of real-world case study.
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