
1

Dependability Assessment of the Android OS
through Fault Injection

Domenico Cotroneo, Antonio Ken Iannillo, Roberto Natella, Stefano Rosiello

Abstract—The reliability of mobile devices is a challenge
for vendors, since the mobile software stack has significantly
grown in complexity. In this paper, we study how to assess
the impact of faults on the quality of user experience in the
Android mobile OS through fault injection. We first address the
problem of identifying a realistic fault model for the Android OS,
by providing to developers a set of lightweight and systematic
guidelines for fault modeling. Then, we present an extensible fault
injection tool (AndroFIT) to apply such fault model on actual,
commercial Android devices. Finally, we present a large fault
injection experimentation on three Android products from major
vendors, and point out several reliability issues and opportunities
for improving the Android OS.

I. INTRODUCTION

Reliability is a major factor that affects the quality of the
user experience of mobile devices [1]. In a mobile context,
the user perceives a poor quality of experience if the device
experiences a freeze or reboot, or if the device becomes slow
or unresponsive to user inputs (e.g., when the user is starting
a call, opening the list of contacts, writing a text message,
etc.) because of faults. For example, achieving a short launch
time (i.e., under 200 ms) for basic apps, such as the phone
and camera apps, has been a key performance goal since the
early design of the Android OS [2], [3]. Ideally, the Android
OS should be able to assure a good quality of experience
despite the occurrence of faults, such as by gracefully isolating
the faulty component without affecting the availability and
responsiveness of the mobile device.

Reliability is a challenging goal for device vendors, since
the mobile software stack has significantly grown in size and
complexity. The Android OS, which is the most widespread
mobile OS in commerce [4], has become a huge and sophisti-
cated system, as the Android Open-Source Project (AOSP)
now exceeds 20 million lines of code [5]. This growing
trend is reinforced by the fierce competition among device
vendors, which need to release new products at a fast pace,
and which heavily customize the mobile OS to differentiate
their products [6]–[8]. Unfortunately, this complexity also
increases the likelihood of faults from the components of the
mobile stack, including hardware-abstraction libraries, native
processes, device drivers, etc. [9]–[11]. The mobile OS needs
to manage these faults to prevent failures of the mobile device.

In this paper, we study how to assess the impact of faults on
the quality of user experience in the Android mobile OS. Fault
injection is a widely recognized technique to analyze these
reliability issues [12]–[14]: The injected faults aim to bring the
system to fail in a controlled environment, so that developers
can study the chain of events that lead to the failure, and they
can revise the system to prevent similar failures in the final

product. Fault injection sounds very attractive but, regrettably,
developers hardly put this approach in practice, since it comes
with high costs and many ambiguities. In particular, it is
difficult for them to define what faults to inject (fault model)
[15]–[17], due to the large number and heterogeneity of
hardware and software components in a modern mobile device.

Our assessment methodology aims to support developers
at defining, conducting, and analyzing fault injection tests in
a systematic and efficient way. Towards this goal, the paper
presents the following novel contributions:
• A lightweight fault modeling approach. The approach

guides developers at defining fault models through an archi-
tectural review of the mobile OS, by combining systematic,
lightweight guidelines with experts’ knowledge in order to
be applicable in large software systems.

• A comprehensive fault model for the Android OS. We
derived a fault model including over 600 software and
hardware-induced faults, and spanning across several areas
of the Android OS, including connectivity management,
telephony, multimedia, sensors, and basic OS components.

• An Android fault injection tool (AndroFIT). The tool enables
the implementation of the fault model through reusable
fault injection plugins, and an extensible architecture for
targeting resources and service interfaces in the Android
OS. Moreover, the tool has been designed to run experi-
ments on actual Android devices (i.e., not in an emulated
environment) and does not rely on the availability of
Android source code (i.e., it is applicable to proprietary,
closed-source versions of the Android OS).

• A large experimental fault injection campaign. We assessed
three Android devices from major commercial vendors
(Huawei, HTC, Samsung), pointing out several opportuni-
ties for improving reliability, including the lack of error
handlers, weak protocol and format parsers, and UIs prone
to stalls and performance degradation.
This paper is structured as follows. In Section II, we

give an overview on fault injection and on the Android OS.
Section III derives a fault model for the Android OS. In
Section IV, we introduce our fault injection tool. Section V
presents experimental results, and discusses reliability issues
and mitigation strategies. Section VII discusses related work.
Section VIII concludes the paper.

II. BACKGROUND ON THE ANDROID OS AND OVERVIEW
OF THE FAULT INJECTION METHODOLOGY

The goal of our dependability assessment is to evaluate
the impact of faults on the quality of user experience in
Android devices. Therefore, our methodology injects faults in



2

individual components of the mobile stack, and analyzes the
responsiveness and availability of the system as a whole in
the presence of the injected fault.

A key part of the methodology is on defining a fault model,
that is, a specification of what faults to inject in the Android
stack. This aspect can be tricky, as faults can originate from
any hardware and software component of the mobile stack.
Since the Android OS is a large, complex software system,
the methodology gives emphasis on injecting software faults,
which are a major cause of reliability issues in such systems
[15]–[17]. Software faults are residual defects (i.e., bugs) that
escape the software development process; in our context, soft-
ware faults can originate both from the open-source Android
development, and from proprietary customizations introduced
by the device vendors and its suppliers [6]–[9]. Moreover, the
methodology considers faults in the software that are induced
by the hardware I/O peripherals [10], [12], [18]. These faults
manifest themselves in software as unavailable or corrupted
I/O devices in the Linux kernel. Examples of both categories
of faults include: buffer overruns and other forms of data
corruption; exhaustion of memory, CPU, and other resources;
synchronization errors, such as delayed or lost events; API or
ABI incompatibilities; I/O and filesystem errors from device
drivers and the kernel.

......

......

Linux kernel

RILD 
process

GPSD 
process

Camera 
HAL

Sensors 
HAL Bi

on
ic

SQ
Li

te

Socket SocketLib Lib

Telephony 
Manager

Location 
Mgmt. 

Service
Camera 
Service

Sensor 
Service

Binder

Activity Mgr., 
Package Mgr.

Lib

Binder Binder Binder Binder

Third-party apps
Stock apps (camera, phone, app store, ...)

Android Framework API

System calls and virtual device filesystem

So
ftw

ar
e 

Fa
ul

t I
nj

ec
tio

n

Fa
ilu

re
s

W
or

kl
oa

d

Na
tiv

e 
lib

ra
rie

s 
& 

pr
oc

es
se

s

An
dr

oi
d 

O
S 

Se
rv

ic
es

Fig. 1. Architectural overview of the Android OS.

The methodology performs a series of fault injection ex-
periments, where each experiment emulates a fault in one of
the components at the lower levels of the Android software
stack [19], showed in Fig. 1. The injected components are
denoted as “fault injection targets”. The uppermost layer of the
Android stack is represented by the Android Framework API,
which is a collection of Java classes that provide programming
abstractions to mobile apps. This API communicates with An-
droid OS services, which are mostly written in Java and which
run on separate, privileged processes: for example, the Media
Server process runs the Camera Service, and the System Server
runs the Activity Manager and many other core services.
Android services use hardware resources by interacting with
the Native layer, which consists of code libraries and separate
processes written in C and C++. All these layers communicate
both through traditional UNIX IPC mechanisms (e.g., UNIX

sockets), and through the Binder, a novel IPC mechanism
based on remote procedure calls (RPCs). Finally, the Linux
kernel provides access to the hardware resources through
system calls and the virtual device filesystem (i.e., virtual
device files in /dev/). Examples of fault injection targets
related to the camera device are: the Camera HAL (hardware
abstraction layer), which is a (typically proprietary) library
that handles the camera peripheral and performs image pre-
processing; the Camera Service, which exposes an abstract,
callback-oriented interface for mobile apps; and the low-level
device driver for the camera in the Linux kernel.

During an experiment, the Android device is exercised with
a workload that runs a set of mobile apps, and that emulates
user inputs on these apps. The workload is aimed at exercising
the system (e.g., by stimulating the camera app), in order to
let it experience the injected fault (e.g., in the Camera Service
or HAL). Moreover, the workload exercises other areas of the
system (such as networking, storage, sensors, etc.), in order
to assess whether the faults escalates into a failure in any of
these areas. Potential failures include crashes and stalls of
stock apps by the device vendor and of native OS processes;
and unrecovered errors of Android OS services (such as the
Camera Service, the Telephony Registry, etc.) that are denoted
by high-severity error messages from the Android OS.

The following of this paper provides more information on
how this general methodology can be applied in practice, by
focusing on the issue of defining a fault model for the Android
OS. Then, the paper delves into the practical implementation
of the methodology through automated tools.

III. FAULT MODELING IN THE ANDROID OS
The Android OS is a complex software system, with many

heterogeneous components. This heterogeneity makes fault
modeling difficult, since components can exhibit different
types of faults. The fault model for a component depends on
several factors, including the resources that are used by the
component, and the amount and type of services that are pro-
vided by the component. For example, if the component adopts
dynamic resource allocation or concurrency (e.g., it is multi-
threaded or event-driven), then it can be prone respectively
to resource leaks and to synchronization faults. Therefore, in
this paper, we introduce the Service Interfaces and Resources
(SIR) approach to define a realistic fault model for the Android
OS in a practical, yet systematic way.

Our fault modeling approach is founded on the observa-
tion that Android is a service-oriented system, with a well-
defined software architecture (Fig. 1). In Android, software
components have two fundamental roles: they are providers
of services that are consumed through well-defined interfaces
by remote procedure calls, libraries, sockets, system calls, and
other communication mechanisms; and they are managers and
users of resources, such as memory, threads, processes, com-
munication channels, and hardware devices. The interactions
between a component and the rest of the system (other OS
components, apps, and physical phone) must necessarily pass
through these service interfaces and resources.

Therefore, the first step of the SIR approach is the analysis
of the software architecture. We define a list of all the



3

service interfaces exposed by each OS component, along
with its resources. This information can be obtained from the
documentation of the OS, from the inspection of the source
code when available (e.g., open-source components) and of the
binary code (e.g., by inspecting the dependencies of a binary
executable), and from queries to the OS kernel about resource
utilization at run-time. It is worth noting that fault modeling
does not require a full understanding of components’ internals,
but only the identification of interfaces and resources.

The second step of the SIR approach is to define failure
modes for the service interfaces and resources that were iden-
tified by the architectural analysis. These failure modes will
be injected for assessing the dependability of the Android OS.
The SIR defines the failure modes using lightweight guidelines
and checklists, to allow developers to systematically identify
which of a pre-defined failure types apply to each component
and to each interface/resource. We defined these guidelines
and failure types on the basis of the scientific literature on
dependable computing [20]–[23] and on our previous work
on modeling the effects of software faults [17].

The failure modes are the potential outcomes of faults that
can occur inside the component, and that can affect the rest
of the system through components’ interfaces and resources
(Fig. 2). The fault modeling approach focuses on failure
modes, rather than their root cause (i.e., the originating faults),
since they are both more efficient to inject through automated
tools1, and easier to reason about for a human analyst:
• Injecting faults inside a component (by mutating its source

or binary code [16], [25]–[27]) can be inefficient, since
component-internal injections are often dormant, i.e., the
injections do not change the behavior of the component as
perceived by the rest of the system; therefore, these dormant
injections cannot test fault tolerance, and result in a waste
of experimental time [12]–[14]. Instead, the injection of
failure modes in component’s interfaces and resources is
more efficient, as it directly injects the intended effects of
component-internal faults [17], [28]–[31].

• Moreover, from the perspective of a human analyst, it is
easier to define the fault model by starting from the analysis
of component’s interfaces and resources, which are simpler
to enumerate than the (very large) set of software faults that
can possibly occur inside the component’s internals (such
as the examples of software faults mentioned in Section II).

Android OS component
(e.g., Camera HAL, 

Camera Service, etc.)

Software bugs in 
low-level and 

third-party code

Hardware-induced 
faults (e.g., camera 
device unavailable)

Failure modes:
• Availability failure
• Timeliness failure
• Value failure
• Resource management failure

Resources

Interfaces Fault model
(fault injection at 

components' 
interfaces and 

resources)

Checklists, experience 
of the human analyst

Enumeration of interfaces 
and resources

Fig. 2. Relationship between faults, failure modes, and fault injection.

1This form of injection is in some cases referred to as error injection or
failure injection. According to the terminology of Avizienis et al. [24], the
failures of a component can be considered as faults from the perspective of
the system that integrates the component. Therefore, it is commonplace to
still refer to this form of injection as fault injection.

The SIR approach identifies which failure modes are appli-
cable to each interface and resource, and valid combinations
are added to the fault model for the component. Then, we
apply fault injection at the interfaces of the component, and
assess the robust behavior of the rest of the system. We
consider four types of failure modes, which were derived
from general failure classifications by previous studies, in-
cluding Barton et al. [20], Cristian [21] and Siewiorek et al.
[22]; the similarities between these failure classifications were
compared by Mukherjee and Siewiorek [23]. The component
failure modes include:
• The component refuses to provide a service to its user, by

returning an exception or error for the request (availability
failure);

• The component provides a service response only after a
long delay, or it does not return at all while its user waits
indefinitely (timeliness failure)

• The component produces a wrong service response, by
returning incorrect data to its user (output value failure);

• The component saturates, exhausts, or disables the re-
sources that it uses or manages (resource management
failure).
The checklists for assigning these failure modes are based

on previous experience of the research community on fault
injection [15], [16], [18], [31]–[33]. The first checklist focuses
on components’ services. The checklist includes questions to
identify which of the four generic failure modes can occur for
each service interface. A fault is added to the final fault model
if the scenario is plausible according to the checklist:
1) Does the service interface declare exceptions, or erroneous

return codes? If yes, add an availability failure for the
service.

2) Can the service lose a request (e.g., due to a service queue
overflow) or a reply (e.g., an asynchronous method call is
not followed by a response callback), without performing
any operation? This possibility should be considered when
the component is multi-threaded or event-driven. If yes, add
a timeliness failure for the service.

3) Can the service experience a long delay? This possibility
should be considered if the component processes large
amounts of data or performs high-volume I/O activity,
which may lead to performance bottlenecks. If yes, add
a timeliness failure for the service.

4) Can the service return a result (e.g., a numerical compu-
tation or a data structure) that may be incorrect due to a
bug? This possibility should be considered if the service
implements non-trivial algorithms or manages complex data
structures (e.g., services that make use of concurrency,
dynamic resource allocation, linked data structures, etc.)
[17], [31]. If yes, add an output value failure for the service.
In a similar way, the second checklist focuses on compo-

nents’ resources:
1) Can the process or thread that hosts the component ex-

perience a crash (i.e., killed by the OS), or terminate
prematurely, or be stalled (e.g., because of a deadlock),
before replying? This possibility should be considered when
the component is relatively large (several thousands of lines



4

of code) and includes native code. If yes, add a resource
management failure for the use of processes or threads.

2) Is the resource protected by permissions, and can it become
inaccessible due to lack of permission? For example, this is
the case of inter-process shared resources in UNIX systems.
If yes, add a resource management failure for the resource.

3) Can the component leak the resource (e.g., memory and file
descriptors that are frequently allocated/deallocated), thus
preventing further allocations of the resource? If yes, add
a resource management failure for the resource.

4) Does the component allocate new processes or threads?
These may terminate prematurely, or the component may
hit hard system limits when allocating them (e.g., ulimit in
UNIX systems). If yes, add a resource management failure
for the use of processes or threads.

5) Does the component manage persistent files (e.g., a
database file or a configuration file) that may be corrupted
when reading or writing it? If yes, add a resource manage-
ment failure for the corruption of the file.
Finally, for every item in the fault model, the SIR approach

adds information on the persistence of the faults, which
indicates the behavior of the injected fault over time, i.e.,
whether it is permanent (the fault persists for a long period of
time) or transient (the fault occurs only in a specific moment of
the execution). The fault is flagged as permanent if the fault’s
effects are persistent unless explicitly recovered or cleaned
(for example, a resource leak or a crash); or as transient, if
the fault is triggered by a rare environmental condition (such
as an external event). In the case that a fault can exhibit more
than one kind of persistence, we introduce multiple entries for
the fault in the fault model.

The SIR approach provides generic guidance for test en-
gineers, but it still leaves room for the human judgment, as
it is their call to decide whether a service is “complex” or a
condition is “rare” when applying the checklists. During our
work on the fault model for the Android OS, we cooperated
with the test engineers of a major Android vendor, by asking
them if a fault could be plausible according to their knowledge
and experience with the Android OS. Framing the discussion
in these terms helped us to iteratively improve the fault model,
and to make it accepted by the stakeholders as realistic.

A. The Android OS fault model
We applied fault modeling throughout components at the

lower layers of the Android OS. We targeted these components
as fault injection targets (FIT), since they are subject to
customizations both from the device vendor and its third-party
suppliers, which tend to introduce bugs [6], [8]. Moreover,
these components tend to be bug-prone since they deal with
concurrency, resource management and the hardware. In total,
we analyzed 27 components of Android, including Android
OS Services, native components, and device drivers [19]. The
components span across several areas of the Android OS,
including volume and connectivity management, telephony,
multimedia, sensors, and basic components of the Android
OS such as the System Server, the Zygote, etc..

We first performed an architectural review of these compo-
nents, to identify their service interfaces and resources. The

service interfaces include Binder services, services over UNIX
sockets, library APIs, and device drivers. The resource types
include processes and threads, memory, ordinary files, device
files, UNIX sockets and pipes, and Binder objects. Then, we
defined a comprehensive list of failure modes for these com-
ponents of the Android OS. In total, we identified 684 failure
modes across these components, by applying the checklists for
every API function, communication channel or resource of the
components, and by considering the nature of the components’
API (e.g., presence of return values to raise errors, output val-
ues that could be corrupted, synchronous/asynchronous nature
of the API, etc.). Since the fault model is large, we reported
the full list in a separate document, available as open data on
the web (https://figshare.com/s/406f05f915ec517e675c).

B. An example from the phone subsystem

As an example, we consider the phone subsystem as a
running example for this paper. The phone subsystem (Fig. 3)
includes the following components:
• RILD: a system process that embeds a proprietary, vendor-

specific RIL (Radio Interface Layer) library and the Event
Scheduler, which dispatches the events from the baseband
processor, and the commands from the upper layer;

• Baseband Driver and Processor: Baseband Driver exposes
a device file (e.g., /dev/ttyS1 or /dev/ttyUSB1) to
send/receive commands and events to/from the Baseband
Processor, which controls the physical communication with
the network.

Linux kernel
• Virtual device file (e.g., /dev/ttyS1)
• Phone/modem device driver

RIL Daemon (RILD)
• Event scheduler
• AT command parser
• Vendor RIL callbacks

UNIX Sockets

Telephony Manager,
SMS Manager, ...

Binder

Phone apps
(Dialer, SMS, ...)

Phone API

System calls

Baseband Processor

Software bugs
(e.g., race conditions in 

event scheduling)

Physical faults in the 
hardware (e.g., broken 

phone/modem controller)Fa
ul

t I
nj

ec
tio

n 
Ta

rg
et

s

Fig. 3. Examples of fault injection targets.

The RILD and the Baseband Driver represent potential
fault injection targets. The RILD provides services over a
UNIX socket, and consumes services of the Baseband Driver
through system calls on a device file. To apply the SIR
methodology, we obtained the list of all the service interfaces
and resources for the RILD and Baseband Driver, by looking
at public information on the Android architecture, and at run-
time information from the Linux kernel (e.g., using netstat for
inspecting UNIX sockets, and lsof for file descriptors).

The RILD provides two forms of services to the upper
layers of the Android stack. It receives and executes phone
commands from the phone library (e.g., on behalf of the phone
stock app) to start a call, to send a message, etc.; and it sends
phone events to the phone library, such as, to notifying them
that a call has been dropped. These RILD provides services

https://figshare.com/s/406f05f915ec517e675c


5

by using lower-level services from the Baseband Driver, by
writing commands for the modem, and by reading responses
from the modem, using the AT protocol. The RILD resources
include the RILD process and its threads; the memory used
for handling and queueing commands and events; the UNIX
socket for communicating with the phone library. Moreover,
the Baseband Driver exposes a virtual device file resource.

The service interfaces for these components are based on
socket and file primitives, such as receive, send, read, and
write. They all declare erroneous return codes that can be
encountered during service. Thus, we introduce availability
failures for these primitives. Moreover, the RILD service is
a multi-threaded service that could be flooded by several
messages in a short amount of time, or can be affected by
synchronization issues, which can cause the loss of service
commands and events. Thus, we introduce timeliness failures.
Similarly, we added timeliness failures to encompass potential
delays that can be accumulated when handling many messages.
Since the data handled by the RILD can be accidentally altered
because of faults in the data transfer procedures (e.g., due to
buffer overflows), we introduce output value failures for the
services of the RILD and the Baseband Driver. Finally, we
introduce resource management failures. Since the RILD is
hosted by a specific native process, we consider the possibility
that it could crash or hang. Sockets and virtual device files
can be unavailable due to issues with permissions, or due to
resource exhaustion caused by leaks. Similarly, memory in the
RILD process can become unavailable to due memory leaks.

IV. THE ANDROFIT FAULT INJECTION TOOL

We developed AndroFIT (Android Fault Injection Tool)
as a generic and flexible fault injection tool, which can
be configured to inject the failure modes identified by the
SIR approach across all of the several service interfaces and
resources in the Android OS.

A. AndroFIT design

We designed AndroFIT to avoid modifications of the source
code of the Android OS, thus avoiding the time-cost for
rebuilding the Android code base, and enabling fault injection
in commercial devices, for which the source code is unavail-
able. Therefore, we leverage UNIX mechanisms for dynamic
code loading and for interposing custom functions (hooks) in
function calls inside the fault injection target. The key part of
AndroFIT is a fault injection library, which is dynamic shared
library linked to the process in which the fault injection target
runs (such as, the System Server, the Media Server, etc.). The
fault injection library includes the following components.
Hook installer: The hook installer is executed immediately
when the fault injection library is dynamically loaded into
the system process, using the ptrace system call. The hook
installer modifies the entry points of the component to be
injected, such as the functions invoked when Binder trans-
actions are received. In particular, the hook installer modifies
the binary instructions and pointers that are used to invoke the
component to be injected. These instructions and pointers are
replaced with instructions or pointers to hook functions inside

the fault injection library. According to the fault modeling
method, the following functions should be hooked to cover
the components of the Android OS:

• Kernel-level interfaces: they include library functions and
system calls (read, write) that are used to access to the
hardware device through a virtual device file (such as
/dev/video0, /dev/smd0, etc.). The hook functions
can simulate faults of device drivers and filesystems. We
do not consider generic kernel bugs (e.g., scheduling and
memory management), but focus on these modules, as they
are developed outside the open-source Android project by
third parties (e.g., device vendors or their suppliers) and are
the kernel components most prone to failures according to
previous research studies [34]–[36].

• IPC interfaces: they include library functions and system
calls (sendmsg, recvmsg, ...) for IPC between Android
components, such as sockets, pipes, message queues, etc..
The hook functions can simulate faults on IPC-based
components, such as the RILD and Zygote process that
communicate with the upper layers through UNIX sockets
(e.g., /dev/socket/rild, /dev/socket/zygote).

• Binder interfaces: they include library functions and system
calls (in particular, ioctl) to access to the Binder driver,
using the virtual file /dev/binder. As discussed later,
the Binder driver is a low-level carrier for RPC calls
between Android components. Therefore, the tool also pro-
vides decoders to decode structure data (e.g., input objects
to RPCs).

• HAL APIs: they include library functions (such as the
Camera HAL API, the Sensors HAL API, etc.) that are
typically accessed by Android components (based on well-
defined API specification) through function pointers in
shared data structures. The hooks replace the pointers to
the original functions.

• Resource management APIs: they include library functions
and system calls to dynamically allocate and retrieve OS
resources (e.g., malloc and free for memory, open and close
for files, fork and clone for processes, msgget and shmget
for UNIX IPC resources, etc.).

Hook functions: The hook functions are invoked at every
invocation of the target component to be injected. Upon invo-
cation, the hook functions trigger the fault injection controller
and the other elements of the fault injection library. These
elements may, or may not (depending on the fault model and
on the user configuration) modify the contents or the timing
of the target component invocation. Then, the hook functions
return the execution of the original functions.
Binder decoder: The Binder decoder analyzes the raw bit-
stream transmitted when an Android component is invoked.
The Binder decoder reconstructs the original high-level Binder
transaction from the low-level bitstream. The result is a data
structure containing the parts of the Binder transaction, such
as the message type, size, and its individual fields (such as
integers, booleans, strings, etc.). This data structure allows
the fault injection controller to easily access and modify the
Binder transaction. The decoding process is fully automated,
using the AIDL specification of the Android component inter-



6

Fault Injection LibrarySystem processUser application 
process

APP

Android Java 
Framework 

APIs

Middleware 
library

Kernel

Android Java 
Framework 
Callbacks

Middleware 
library

Hardware 
Abstraction 

Library

Android Service
(Camera, Location, Connectivity, ...)

Native Interface

Method 
invocation

Intent 
message

Binder 
transaction

Hook 
functions

Hook installer

Binder decoder

Intent decoder

Fault injection 
controller

Raw trace 
(bitstream) of 

Binder transaction

Data structure with 
decoded fields of 
Binder transaction

Data structure 
with decoded 
input and output 
parameters of 
method invocation

Filter by probability

Filter by “file path” param

Filter by “msg type” param

...

Data corruption injector

Error code/except. injector

Timing injector

Resource injector

Fault model

Reusable fault 
injection modules

Reusable 
filtering 
modules

A fault is injected on 
service invocations

The controller 
orchestrates all of 
the other elements

AIDL 
specification

User configuration

Dynamic 
linking

Filter by foreground app

Fig. 4. Overview of the AndroFIT tool.

face to learn about which are the parts of a transaction.
Intent decoder: In a similar way to the Binder decoder, the
Intent decoder analyzes the raw bitstream to reconstruct Intents
(i.e., a high-level IPC abstraction used by Android apps, based
on Binder). The result is a data structure with the parts of the
Intent, such as the action, the category, and the class. This
data structure allows the fault injection controller to easily
access and modify the Intent. The decoding process is fully
automated using the AIDL specification.
Fault Injection Controller: This element orchestrates all the
other elements (hooking, decoders, injection modules, filtering
modules, monitoring). The Fault Injection Controller takes
in input the fault model. For each entry in the fault model,
the Fault Injection Controller automatically performs a fault
injection according to target service/resource, failure mode,
and timing described in the fault model. It first inserts a hook
function for the injection point, which calls the controller
when the injection point is invoked at run-time. In turn, the
controller invokes the filtering modules (discussed later) to
decide whether to inject in the current invocation.
Fault Injection Modules: The Fault Injection Controller uses
fault injection modules for modifying a service invocation or
resource access. The fault injection modules are reusable for
different injections across the software stack (for example, the
same injection module can be used for injecting faults on the
Binder for different services, such as the Camera Service and
the Connectivity Manager). These modules include:

• API errors/exceptions: the fault injection module forces
the interaction to terminate, by returning an error code or
exception;

• Timing: the fault injection module stalls the interaction for
a period of time, or indefinitely;

• Data corruption: the fault injection module modifies the
input or output values of the interaction;

• Resource unavailability: the fault injection module forces
resource unavailability when the component uses an API
for allocating or accessing a resource;

We configure error codes and exceptions according to error
codes and exceptions found in AOSP for the target service
function. Moreover, we apply data corruptions according to

corruption patterns reported by previous studies [8], [37]. The
corruptions include: for categorical types (such as “msgType”),
we replace the original value with another possible value for
the type; for numerical types (such as integers and floats), we
replace the original value with boundary or undefined values
(such as zero, off-by-one value, off-by-offset value, negative
value, max/min value, randomly-selected values); for strings
(such as camera parameters), we return NULL objects, replace
substrings, or truncate the string; for bitmaps and raw data and
metadata (such as the data of a camera image), we perform bit-
flipping; for structured types (such as camera capture request),
we corrupt individual fields in the structure (such as integer
and categorical fields) according to their type.

Filtering Modules: The filtering modules control when and
how often faults should be injected during a test. When
invoked, a filtering module checks whether a specific condition
(configured by the test engineer) is satisfied. Every time that
the hook function is triggered, the fault injection controller
queries the filtering modules, and if all the conditions checked
by these modules are satisfied, then a fault is injected in the
current invocation of the target component. The fault injection
framework can enable or disable separately each filtering
module; filtering modules can be reused across different faults
in the fault model; more filtering modules can be added by
the test engineer. The filtering criteria include: probability
(i.e., injection in a randomly-selected subset of invocations,
such as 10% for transient faults, and 100% for permanent
faults); file path (i.e., only when a parameter representing
a “file path” contains an user-defined sub-string, such as a
virtual device name); message type (i.e., injection when a
byte stream contains a user-defined pattern, such as a specific
“command” tag sent through a socket); foreground app (i.e.,
injection when the workload is interacting with a specific
app). When configuring probabilities for fault injection, the
probability is typically set higher than the actual probability
of the transient faults that the injections are meant to emulate.
However, a higher probability is needed since fault injection
aims to accelerate the occurrence of faults (injecting the faults
with their actual probability would lead to exceedingly long
experiments). Therefore, we set this probability to 10% for
transient fault injections, such that the injections occur only



7

one or few times during an experiment and are far enough
over time to avoid overlaps; and yet, the probability is high
enough to have at least one injection in all of the experiments
(thus, avoiding the need to repeat some of them).

The possibility of side effects is an important concern in
the design of our fault injection tool. Since the proposed SIR
approach injects faults on service interfaces and resources,
it comes with the added benefit that faults can be intro-
duced by means of function call interposition (i.e., when
a service or resource is accessed by means of a function
call), which can be implemented with very low overhead.
The only moment in which the target component is paused
for a very short period of time (few ms) is when a hook
function is introduced in the target by the hook installer,
using the ptrace debugging mechanism. From then on, the
invocation of the hook function is performed at full CPU
speed, since hardware/software debugging mechanisms are not
involved anymore (for example, the hook function is invoked
by following a modified function pointer, as in the case of
the original function). Moreover, the operations performed
by the hook functions are very limited. The hook function
performs lightweight checks of the parameters of the original
function, in order to determine whether to inject faults, and
immediately returns the control flow to the original function
if this is not the case. To inject faults, the hook function
simply performs modifications to these parameters before or
after that the original function is invoked. Therefore, the hook
function introduces a very low latency to the execution of
the call. To assure that the tool avoids side effects on the
behavior of the system, we performed fault-free tests, by
installing hook functions but without actually injecting the
faults, and measured the additional latency introduced by the
hook functions. In all fault-free tests, the function call latency
introduced by the hook functions was negligible, as it was
always below 1 ms, and we did not observe any failure (e.g.,
no app crashes or stalls).

We refer the interested reader to the PhD thesis of one of
the authors [38] for more technical information about how we
implemented the AndroFIT tool.

B. Test automation
The AndroFIT tool suite includes a program, the experiment

launcher, to automate a fault injection campaign. The main
input of the experiment launcher is a campaign configuration
file that describes all the experiments, along with the desired
number of repetitions of each experiment. Each entry of the
campaign file configures AndroFIT to inject a failure mode
(unavailability, timeliness, ...) on a specific Android service
interface or resource. We also provide in a PhD thesis
[38] information about the automation of the experiments.
Moreover, we designed AndroFIT to also provide a command-
line interface (CLI) to guide the user at configuring the
tool. For example, the tool provides feedback about which
components and which services and resources can be injected
by the tool, and raises an explanatory error message if these
parameters were omitted or were entered incorrectly.

For every experiment, AndroFIT starts by generating a
workload for the device, by using the monkey tool [39] to

emulate user inputs across several apps and Android subsys-
tems (e.g., switching between apps, navigating the forms of an
app, etc.). The workload exercises popular mobile apps [40],
including com.tencent.mm, com.sina.weibo, com.qiyi.video,
com.youku.phone, com.taobao.taobao, com.tencent.mobileqq,
com.baidu.searchbox, com.baidu.BaiduMap, com.UCMobile,
and com.moji.mjweather. The tool first runs the workload
for a warm-up period (30 seconds). Then, while the workload
is still running, the tool performs an injection. AndroFIT also
performs a user-configurable action (trigger) to stimulate the
injected fault. For example, AndroFIT provides triggers for
stimulating the camera (e.g., by opening the stock camera app
and taking a picture), the phone (e.g., by dialing and calling
a mobile phone number), and the sensors (e.g., opening and
using an app to get data from sensors). The workload continues
to execute until the end of the experiment. Finally, the device
is rebooted, in order to have a clean device and the same initial
conditions for the next experiment.

At the end of every experiment, the launcher collects log
files from the device (e.g., using the logcat tool). These logs
are later analyzed to assess whether the injection has been
performed, and what are the consequences of the injection on
the Android OS. The potential test outcomes, and the criteria
used to identify them, are:

• Crash: a system process or an app crashed, and the system
logs a message reporting a “FATAL EXCEPTION”;

• ANR: an app becomes stalled, and the system generates a
log message that reports an ANR condition (i.e., Applica-
tion Not Responding);

• Fatal: the Android OS experiences a critical error, and the
system generates log messages with a high-severity level,
i.e., tagged either with assert (“A”) or fatal (“F”);

• No failure: the Android OS does not exhibit any of the
effects listed above.

We remark that other test outcomes are also possible under
some of the injections (e.g., the ones corrupting data), such as
incorrect results and GUI glitches, but these cases are beyond
the scope of the experimentation.

V. EXPERIMENTAL EVALUATION

We apply the fault injection methodology on actual An-
droid devices, and present the results of their dependability
evaluation. This evaluation serves both for demonstrating the
practical application of the methodology, and for pointing out
reliability issues found in commercial versions of the Android
OS. We performed fault injection experiments on three devices
from major Android vendors: the Huawei P8, the Samsung
S6 Edge, and the HTC M9 One. The experiments ran on the
actual devices, by getting root permissions and by installing
the AndroFIT tool on the device. We updated the Android OS
on the devices to the latest version available from the vendor,
thus running Android 6 on the Huawei P8, and Android 7 on
the Samsung S6 Edge and on the HTC M9 One.

In a first round of experiments, we injected faults in
components across the following three vertical subsystems of
the Android OS:



8

• Phone: Faults were injected in the RILD process, by target-
ing the socket interface between the RILD and the Android
framework, and in the system call interface between the
RILD and the device driver for the phone and modem.

• Camera: Faults were injected in the MediaServer process,
by targeting the Camera Service and the Camera HAL, and
in the system call interface between the MediaServer and
the device driver for the camera.

• Sensors: Faults were injected in the Sensors Service, in the
Sensors HAL, and in the system call interface of the device
drivers for the sensors.
Moreover, in a second round of experiments, we injected

faults in the following basic components of the Android OS:
• System Server: A privileged process that runs the main

services of the Android OS. Faults were injected in the
Activity Manager, which is the service that handles the life-
cycle of Android apps (e.g., pausing, stopping, switching,
etc.), and the Package Manager, which is the service that
handles information about resources and security permis-
sions of Android apps.

• Surface Flinger: A privileged process that receives window
layers (“surfaces”) from multiple sources (such as apps,
the notification bar, the system user interface, etc.), and
combines and displays them on the screen. Faults were
injected both in the Surface Flinger service and process.

• Native libraries: We targeted two native libraries used by
system processes in Android. We targeted Bionic, which
implements the standard C library, and SQLite, which em-
beds a SQL DBMS. We injected in APIs for accessing the
filesystem on the internal device storage (e.g., by truncating
and corrupting the contents of I/O reads), and in APIs for
performing SQL queries (e.g., by truncating and corrupting
the results of queries).

A. Overview of experimental results

The plots in Figure 5 shows the aggregated results for
fault injection across the target subsystems. The bars repre-
sent the distribution of failures, where the sub-bars are the
four possible outcomes of the experiment (crash, fatal error,
ANR, no failure). The same type and amount of faults were
injected on every device, with three repetitions per fault. We
performed statistical tests in order to assess whether the failure
distributions are statistically significant and not due to chance.
For each device and for each injected subsystem, we separate
the data for the three repetitions of the fault injections on
that device and subsystem. We used the Fisher’s exact test
to assess the null hypothesis that the proportions of failures
across the three repetitions are independent, i.e., repeating the
same fault injection produces repeatable results with statistical
significance. In all cases, we could never reject the null
hypothesis with a 95% confidence level (all p-values greater
than 0.05, omitted for the sake of brevity), as the proportions
of failures were very similar across the repetitions. Thus, the
failure distributions cannot be considered as result of chance.

For fault injection in the phone, camera, and sensors sub-
systems (Figures 5a, 5b, and 5c), we performed respectively
309, 111, and 108 fault injection experiments. The numbers

of fault injections depend on the set of service interfaces
and resources that are provided by the injected subsystems,
and that are actually exercised by the system under the
workload. Thus, the numbers are different across subsystems
since they are quite diverse in terms of service interfaces and
resources. For example, to use the Camera subsystem, the
mobile apps exercise a relatively smaller service interface of
the CameraService API.

In the cases of the phone and camera subsystems, the
Huawei device experienced the highest number of failures.
Instead, with respect to faults in the sensors subsystem, the
amount of failures was comparable across devices, where the
Huawei device was the most robust one. These differences
point out that vendor customizations can have an influence
on the robustness of the Android OS against faults, thus
emphasizing the importance of fault injection for testing these
customizations. In the phone subsystem, most of the failures
were “fatal errors”, with cases of RILD process crashes for the
Samsung and Huawei devices. In the camera subsystem, most
of the failures were process crashes, and in particular, crashes
of the camera stock application. In few cases, the camera
system reported fatal errors. For the sensors subsystem, there
were few ANR failures in the Huawei device not happened in
the other devices, due to differences in the stock apps.

For fault injection on the System Server, we performed
129 experiments (Figure 5d), and we observed 71 failures
for Samsung, 118 failures for Huawei, and 80 failures for
HTC. The number of failures has been very high for all of
the three devices. These failures (in particular, ANRs) freezed
the system UI and other apps (including stock apps, such as
the Camera), which did not respond to the inputs of the users.
In particular, these freezes have been caused by injected delays
on key methods of the Activity Manager and Package Manager
(such as “bind service”, “resolve intent”, ...) which are called
during the initialization of apps (such as the Camera) and
when the System UI performs special actions (such as clicking
on the button for “show all activities”). Notably, the failure
rate for the Huawei device has been significantly higher, since
these methods are used more in this system. For example, the
Camera app was especially vulnerable for Huawei, while the
Camera app of the other devices avoided the problem and was
still able to start quickly, since it has less dependencies on the
methods of the Activity/Package Manager.

For fault injection on the Surface Flinger, we performed
45 experiments (Figure 5e), and we observed 32 failures for
Samsung, 10 failures for Huawei, and 10 failures for HTC.
Among the three vendors, the Samsung device had a much
higher number failures. The variability is due to the fact
that the vendors heavily customize the window manager, in
order to show to the user visible differences between their
devices and the competition. In the case of Samsung, the
customizations exposed to more frequent app freezes when
the Surface Flinger was slowed and returned errors. However,
there were also cases in which the Huawei device exhibited a
non-robust behavior in the case of Surface Flinger faults.

For fault injection on the two native libraries (Bionic and
SQLite), we performed 75 experiments (Figure 5f), and we
observed 36 failures for Samsung, 12 failures for Huawei,



9

0%

20%

40%

60%

80%

100%

Samsung S6
Edge

Huawei P8 HTC M9

CRASH ANR FATAL OK

(a) Phone faults.

0%

20%

40%

60%

80%

100%

Samsung S6
Edge

Huawei P8 HTC M9

CRASH ANR FATAL OK

(b) Camera faults.

0%

20%

40%

60%

80%

100%

Samsung S6
Edge

Huawei P8 HTC M9

CRASH ANR FATAL OK

(c) Sensors faults.

0%

20%

40%

60%

80%

100%

Samsung S6
Edge

Huawei P8 HTC M9

CRASH ANR FATAL OK

(d) System Server faults.

0%

20%

40%

60%

80%

100%

Samsung S6
Edge

Huawei P8 HTC M9

CRASH ANR FATAL OK

(e) Surface Flinger faults.

0%

20%

40%

60%

80%

100%

Samsung S6
Edge

Huawei P8 HTC M9

CRASH ANR FATAL OK

(f) Native library faults.

Fig. 5. Distribution of failures across different devices and different fault injection targets.

and 20 failures for HTC. In this case, the Samsung device has
been the one that failed more frequently, but many failures
also occurred in the other devices. In most of these failures,
native processes such as the System Server failed because
of unhandled exceptions and errors that were raised during
filesystem I/O and during SQL queries.

We performed a close analysis of the experiments, in order
to reproduce and to understand the causes of failures. In
the following subsections, we present representative failures
across the injected components.

B. Failures in the Camera subsystem

In the Camera subsystem, two relevant types of failures
occurred during the experiments. The first type of failures
was related to the Huawei Camera stock application, and
caused by the injection of faults in the Camera Service.
These experiments forced the Camera Service (such as, the
takePicture method) to return an error to the caller. The effects
of fault injection are showed in Figure 6. The error code
returned by the method generates a run-time exception. This
exception is not handled by the Camera stock application,
thus the Camera application is aborted by the Android Run-
Time. In this scenario, a black screen is showed to the user,
followed by a pop-up message that reports the process abort.
This message does not provide any meaningful information to
the user, and thus may give a bad perception of reliability.

The second, more subtle, type of failure was caused by the
injection of faults between the device driver and the Camera
HAL in the Huawei device. In particular, faults were injected

Camera Service com.huawei.Camera

1. Inject an erroneous 
return code from the 
method takePicture

2. The error generates a runtime exception 
in the stock camera app

3. The exception is not 
handled and the camera 

application crashes

Fig. 6. Failure of the Camera subsystem (faults in the Camera Service).

when the MediaServer process attempted to read from the
/dev/video virtual device file, by forcing the operation
to return an error code, such as ENOMEM and ENODEV.
This scenario is showed in Figure 7. The injection led the
MediaServer to fail with a crash. The MediaServer was not
able to handle a corner case triggered by the fault injection:
in the system logs, we found a fatal error message “method
not yet implemented” logged by the Camera HAL in the
MediaServer. This error denotes that the vendor did not include
an implementation of a method required by the Camera HAL
API specification of the Android OS. This error was followed
by the crash of the Media Server. In turn, the unavailability
of the Media Server caused further exceptions towards the
Huawei Camera stock application, which also crashed. The
other devices handled the same faults in a more graceful
way. In the HTC device, the Camera stock application catches
the exception from the Camera Service. After the crash of
the Media Server, both the Media Server and the Camera



10

application are quickly restarted, without showing any error
to the user. Thus, it is able to mask the fault to the user, and
to provide a better perception of device reliability.

com.huawei.Camera

1. Inject an erroneous return code 
from reads on the virtual device file

2. The Mediaserver reports a fatal error 
“method not yet implemented”

3. The Mediaserver
process crashes

Mediaserver/dev/video*

4. The stock camera 
app crashes

Fig. 7. Failure of the Camera subsystem (faults in the Camera driver).

Improving reliability. Fault injections pointed out that An-
droid vendor customizations (such as the Camera HAL and
stock app) are prone to missing or incomplete error handlers.
In these scenarios, noticeable failure effects (black screens,
cryptic error messages) are experienced by the end-user. Thus,
it is advisable for vendors to mitigate these behaviors, such
as by adding the missing exception handlers in the Camera
stock application. This is confirmed by the analysis of the HTC
device, in which the stock app is able to catch the exception,
and to mask the fault through a soft restart of the Camera
subsystem. Moreover, vendors should perform regression tests
with fault injection to check exception handling.

C. Fault injection in the Phone subsystem

This section describes an interesting scenario that involves
the Phone subsystem, and in particular the RILD process,
the Telephony Registry service, and the Huawei Phone stock
application. In this scenario (see Figure 8), faults are injected
between the RILD and the baseband processor. The AndroFIT
tool intercepts the AT messages flowing from the baseband
processor to the RILD, and corrupts them by dropping the
event codes and their parameters. These corruptions cause an
incorrect internal state of the RILD, and cascade effects on
phone services, such as isms, phone_huawei, etc., leading to
crashes. In turn, the Telephony Registry service crashes. Even
if the phone services are automatically restarted, the device is
not able anymore to manage events for the phone subsystem.

This failure impacts on the end-user, which is unable to
perform phone calls. Even worse, the user is not informed
about the problem, and the phone application becomes not
responsive: when the phone stock application sends commands
on behalf of the user, the commands are simply ignored by the
phone subsystem, without showing any information regarding
the unavailability of the phone subsystem.
Improving reliability. This failure scenario involves several
components, and points our several opportunities for improv-
ing reliability. The first, most important effect of the fault is
the incorrect internal state of the RILD that causes the crash of
phone services. Thus, it would be important for the RILD to
recognize violations of the AT protocol, and gracefully handle
them by adopting defensive programming practices, such as by
checking at every step that the messages exchanged with the
baseband processor follow the expected protocol. Moreover,
the phone services should also be programmed defensively, by
recognizing out-of-order events, and avoiding to crash in the

baseband 
processor RILD Phone Services Telephony 

R
egistry

com
.vendor.phone

Service 
Manager

1. Drop AT 
messages

2. Crash of the 
process that hosts 

phone services

3. The Telephony Registry looks for the 
Subscription Service (one of the unavailable phone 

services), but the Service Manager returns an 
exception because the service is dead.

4. The Telephony Registry 
does not properly handle the 

exception and crashes

5. Even if the phone UI is 
still responsive, the phone 
is not working (e.g., cannot 

start a phone call)

Fig. 8. Failure of the Phone subsystem (faults in the modem/phone).

case of these errors. Another opportunity of improvement is
in the Huawei Phone stock application. It would be advisable
to have mechanisms to detect that the phone subsystem is not
responsive, for example by using a timeout when waiting for a
response. Moreover, the application could trigger a soft restart
to mask the error state and to retry the failed operation. The
phone app should also provide some feedback to the user in
these cases, since the user would have the perception of the
lack of control over the device, and could get frustrated by the
unsuccessful attempts to repeat the operation. Thus, in the case
that these recovery mechanisms are not effective, the phone
app should at least inform the user about the problem.

D. Fault injection in the Sensors subsystem

The Sensor subsystem exhibited the following severe failure
behavior, that impacted not only on the Sensors Service, but
also on other subsystems of the Android OS. The failure
scenario (see Figure 9) is caused by faults injected when the
Sensors Service accesses the sensor devices through virtual
device files (e.g., /dev/sensor_hub), such as returning
ENOMEM on I/O system calls.

The injections caused the crash of the Sensors Service.
Since the Sensors Service executes within a thread of the
System Server, the System Server process is also affected
by the crash. In turn, this causes the termination of other
Android services that execute inside the System Server. Most
notably, the failure of the System Server affects the Package
Manager. The Package Manager is a key service of the
Android framework, since every access to privileged resources
(such as files and hardware) has to be permitted by this service.
Thus, the failure of the Package Manager causes cascading
failures of the apps that require special permissions (e.g.,
Maps, Contacts, etc.).
Improving reliability. This failure scenario is an example
of failure propagation across different parts of the Android
OS. In this case, the main weakness is in the co-existence
of several services inside the System Server process. Thus,
a fault in any service can potentially impact on all the other
services. However, it is not simple to fix this problem since it
is rooted in the design of the Android OS. Thus, for improving
reliability, it is even more important to handle failures in these
services, in order to prevent propagated failures of the whole
System Server. In particular, the Sensors Service should check



11

/dev/sensor_hub Apps
YouTube, M

aps, 
Contacts…

System Server

2. The Sensor Service 
does not handle the error

3. The System Server process, which 
hosts the Sensor Service as thread, 
crashes with all its hosted services 

(Activity Manger, Package Manager…) 4. Stock apps crash when invoking 
services in the System Server

1. Inject an erroneous 
return code from ioctls on 

the virtual device file

Sensor Service

Fig. 9. Failure of the System Server (faults in sensors’ drivers).

the successful outcome of I/O operations on the devices, and
should gracefully handle any error to avoid crashes.

E. Fault injection in the System Server

The AndroFIT tool tampered with invocations of the ser-
vices offered by the System Server. These injections affected
the consumers of these services, such as the System UI
process, which handles the main elements (e.g., the notification
bar, the main screen, etc.) of the user interface (UI), and starts
apps, by invoking the Activity Manager and the Package Man-
ager. One of these failure scenarios resulted in an unresponsive
device, in which the user interface was stalled. These stalls
are clearly noticed by the end-users, and negatively affect
their perception of reliability. This failure occurred during
the injection of a timeliness fault in the stop_activity method
of the Activity Manager service. The timeliness fault delays
the execution of the stop_activity method by several seconds.
This kind of fault occur when the device is overloaded (for
example, due to a CPU hog app [41], [42]), or because of a
performance bug in the System Server (e.g., due to software
aging [40], [43]). When this timeliness fault is injected, the
System UI process becomes not responsive (see Figure 10a).
If the user tries to leave the current activity (by tapping on
the button in the bottom part the UI), the System UI invokes
the stop_activity method, but it does not care whether the
operation has been delayed or whether the current activity
is still open. As a result, even if the user taps on the “quit
activity” button several times, the System UI remains stuck. To
avoid such undesirable behavior, the System UI should avoid
getting stuck on the invocation, or enforce a timeout to detect
the stall. The Android OS may attempt a recovery action, such
as to force the termination of the activity by other means; or
the system should inform the user that the operation is taking
more time than expected. The injection also causes a restart
of the System Server. If the user presses the “show activities”
button, the Activity Manager will crash, and bringing down
the whole System Server process.

Another failure scenario of stuck user interface involved
both the Activity Manager and the Huawei Camera stock
application. The AndroFIT tool injected a timeliness fault on
the invocation of the bind_service method of the Activity
Manager. The bind_service method allows apps to setup long-
running, background operations, and it is used by the Huawei
Camera stock application to run a service when it is started for
the first time. However, the call to bind_service can represent

a bottleneck for the launch time of the Camera app. In our
experiments, injecting a delay on bind_service causes the
Camera application to become stuck with a black screen (see
Figure 10b). This behavior can be perceived as a severe failure
by the users, since the launch time of basic apps is a key factor
for the quality of experience [2], [3]. This fault also caused a
stall of the device UI, since even pressing the “quit activity”
button does not allow the user to leave the Camera application
and to perform other operations. Therefore, it is advisable to
timely handle such stalls, as discussed for the previous failure.

Yet another case of stuck user interface occurred when
injecting a timeliness fault (again, a delay of several seconds),
on the resolve_intent method offered by the Package Manager.
This method is used by the system to manage broadcast
requests for handling a file or event. In this case, the failure
happened when the user presses the “show activities” button
on the bottom part of the UI (see Figure 10c). When the
resolve_intent is injected with a delay, the whole System UI
becomes unresponsive. The System UI does not show the list
of current activities, and does not provide any feedback to the
user. Even retrying to press the button does not solve the stall.
Thus, it would be important to handle these UI stalls in order
to avoid a poor user experience.
Improving reliability. Since the System Server is a critical
component, its faults often caused a stuck user interface. The
stalls were caused by the fragile behavior of the System UI,
which waits for a response for an indefinite amount of time,
without enforcing a timeout. This is due to the fact that the
System UI strictly relies on the responsiveness of the System
Server. To prevent stalls, it is desirable, when possible, to
have asynchronous interactions with the System Server: that
is, the System UI should not block waiting for a response (a
synchronous interaction), but it should be able to continue its
execution, and to check whether the requested operation has
actually been completed. However, asynchronous interactions
are a more complex programming approach, and need to be
carefully designed and tested. Thus, it is recommended to
repeat the same tests with timeliness faults to check that the
new interactions are actually tolerant to delays.

The Huawei Camera stock application is also affected by
similar problems, since it can get stuck when it is started and
the System Server is slow to respond. Since the quickness
of the Camera application start is critical for the perceived
responsiveness, it is important to optimize this use case, and
to make it more robust. Again, these optimizations should be
checked with the injection of timeliness faults, in order to
confirm that performance bottlenecks are avoided.

F. Fault injection in native libraries

Fault injection in the Bionic and SQLite native libraries
pointed out potential crash failures of the System Server
process. In the case of the Bionic library, we injected faults
when the Package Manager used this library to read from
storage APK files, in order to retrieve information on resources
and permissions of the apps. The AndroFIT tool injected
faults in I/O functions of the Bionic library (e.g., read), by
introducing corruptions in the contents of data buffers that are



12

The System UI does not 
react to tapping on the “quit 

activity” button

(a) stop_activity in the Activity
Manager is delayed or stalled.

The stock camera app hangs, and 
the System UI does not react to 

tapping on the “quit activity” button

(b) bind_service in Activity Manager is de-
layed or stalled.

The System UI is stuck, and 
does not react to tapping on 
the “show activities” button

(c) resolve_intent in the Package
Manager is delayed or stalled.

Fig. 10. Impact on UI responsiveness caused by fault injection in the System Server.

filled by these functions (e.g., by randomly changing few bytes
of the data). The Package Manager crashed in the middle of
the getPackageInfo method, which raises an exception when
it cannot retrieve and parse the data from a given application.
The exception causes a crash of the whole System Server
process in which the Package Manager service runs.

In the case of SQLite, we injected faults when the System
Server operated on its internal database. We injected faults
in several SQLite operations, including the opening of the
database, the preparation of SQL queries, and the retrieval
of SQL query results, by forcing these operations to return
errors, to stall, to truncate data, etc.. For example, we ob-
served crashes of the System Server process when its Lock-
SettingsService (i.e., the service that manages the lockscreen
pattern or password, and related settings) stored and retrieved
information about the device and the user. We found a crash
failure of this service, and of the System Server as a whole, due
to unhandled exceptions. We injected an unavailability fault
in the sqlite_step operation of the SQLite library (i.e., when
retrieving the tuples generated by an SQL query) by forcing an
error code (SQLITE_ERROR). In turn, the JNI wrapper around
the SQLite library throws an unhandled exception.

Improving reliability. The Package Manager needs to isolate
the effects of corrupted APK files, by only affecting the
application for which metadata could not be retrieved. Thus,
the app should be aborted, or should not be started at all,
without affecting the System Server and other applications.
This would require to carefully check that the contents read
from the APK are not corrupted, by performing checks that
the data are reasonable (for example, by checking that strings
have invalid characters or are too long, or checking that
integer variables should have values within a range, etc.).
These defensive checks should be then tested by means of
fault injection in the contents of the APK files.

In the case of SQL queries, the System Server and the
stock apps should catch any exception that might occur, and
they should avoid the crash by masking the exception. In the
specific case of the lock settings, the device should inform

the user that lockscreen information could not be retrieved
due to database errors. The device could offer the user an
alternative way to unlock the device (for example, asking for
a different PIN or password). Another approach could be use
store and reuse a previous version of the database in the case of
problems. In the case that none of these alternatives is feasible,
the device should not block the device but it should let in
the user, since the database error does not allow to correctly
enforce the protection. Most importantly, the system should
not crash in the case of database errors.

G. Fault injection in Surface Flinger

We observed UI failures when injecting faults on the Binder
service API of the Surface Flinger. In particular, we inject
faults (delays, service refused, data corruptions) on APIs for
creating a new connection to the Surface Flinger (createCon-
nection, createDisplayEventConnection), and to update meta-
data about surfaces that are produced (setTransactionState).
These APIs are used by system processes and services, includ-
ing the Window Manager, the System UI, and the Launcher,
thus they can have a severe impact on the UI.

When the Surface Flinger is invoked by the RenderThread
task inside one of these components, the UI freezes for
several seconds, and the process experiences a crash. Then, the
Launcher and SystemUI processes are automatically restarted,
but the problem still persists; this leads to repeated restarts of
the processes (up to 25 times in a row in our experiments). In-
stead, the Android OS does not perform any recovery action on
the actual root cause of the problem (i.e., the Surface Flinger,
in which we injected a fault). The device was recovered only
by physically forcing a reboot of the device.

The injected faults also impacted on the shared memory
buffers that are used to drive the graphics hardware through
HAL APIs. Examples of high-severity error messages include:
“queueBuffer: error queuing buffer to SurfaceTexture”, “de-
queueBuffer: can’t dequeue multiple buffers without setting the
buffer count”, and “Channel is unrecoverably broken and will
be disposed” in the InputDispatcher. These errors were often



13

followed by the forced termination of proprietary services
(e.g., com.huawei.systemmanager.rainbow.service).
Improving reliability. Fault injection in the Surface Flinger
revealed that the Android OS is sensitive to faults in this
process, since several other processes may stall or crash. The
impact of the faults also involve system processes such as
the Window Manager, the Launcher, and the System UI. The
recovery mechanisms in the Android OS were not sufficient
to address these faults, since they acted on the system pro-
cesses were the fault propagated, rather than the root cause.
Therefore, the Surface Flinger is neglected by fault recovery.
Instead, the Android OS should also address the Surface
Flinger, by restarting it or by freeing resources in order to
allow the Surface Flinger to recover from the fault. Moreover,
the Android OS needs exception handlers that are able to
correctly handle faults in this component.

H. Discussion

We looked in retrospective at which injected components
propagated failures across the Android OS, and which types
of injections caused these failures. In Table I, we list the types
of injections performed by the tool (unavailability, timeliness,
corruption, resource management) and, for each type, we
denote with marks which Android subsystems were vulnerable
to the type (i.e., more than 20% of the injections caused a
failure of system). According to the experimental results, we
can draw the following lessons learned.

Table I
OVERVIEW OF COMPONENTS AND FAULT TYPES THAT CAUSED FAILURES.

C
am

er
a

S
er

vi
ce

C
am

er
a

pr
oc

es
s,

 D
riv

er

P
ho

ne
R

IL
D

 s
oc

ke
t

P
ho

ne
A

T 
ch

an
ne

l, 
D

riv
er

S
en

so
rs

S
er

vi
ce

S
en

so
rs

pr
oc

es
s,

 D
riv

er

S
ys

te
m

 S
er

ve
r

A
ct

iv
ity

 M
an

ag
er

S
ys

te
m

 S
er

ve
r

P
ac

ka
ge

 M
an

ag
er

S
ur

fa
ce

 F
lin

ge
r

B
io

ni
c

S
Q

Li
te

Unavailability X X X X X X X X

Timeliness X X X X X X

Corruption X X X X X

Resource mgmt. X X X X X

The unavailability faults (that is, exceptions and error codes
returned by APIs, such as Binder calls, library calls and
system calls) were the ones that found issues in the highest
number of Android subsystems. In these vulnerabilities, the
Android OS lacked exceptions or errors handlers, thus the
exception/error was able to spread and cause the failure of
Android services and applications. Since so many Android
subsystems were vulnerable to these faults, it is recommended
to always include this fault type in fault injection test plans.
Another advantage of this fault type is that it can provide clear
and easy suggestions for improving reliability: they point out
the specific exceptions/errors that are not tolerated, thus the
developers can mitigate them by implementing the missing
exception/error handlers. This is especially important in the
stock applications, as they must provide user-friendly feedback
in the case of faults, in order to give a good perception of the
reliability of the device. For example, we found cases in which
the Huawei stock camera app did not manage the exceptions
generated from the Camera Service.

The timeliness faults (that is, delays and stalls of API
calls) were another frequent cause of failures of the Android
OS. In particular, when the delay/stall occurs in four Android
services (the Camera Service, the Sensors Service, the Package
Manager and the Activity Manager), these services cause the
failure of stock apps and of the System UI. This behavior
happens when the application invokes the service in a syn-
chronous way (that is, the application stops until the service is
provided). Unfortunately, the synchronous approach is a cause
of performance bottlenecks for the application, and it can
cause failures if the API is delayed or stalled. The experiments
show that timeliness faults have a severe impact when
injected on the Binder APIs of Android services, since
stock applications are often vulnerable to this type of faults.
Moreover, the delays/stalls of UI applications must be avoided
since are clearly noticed by the user, and would cause a poor
quality of experience. In order to make the apps more robust
against these faults, they should either adopt an asynchronous
approach to call the service (by allowing the app to continue
to be responsive even if the call is delayed/stalled); or the
apps should enforce a timeout to detect the long execution
time of the service, and retrying the operation, or aborting the
operation with a user-friendly notification.

The corruption faults were effective against specific com-
ponents (the RILD socket and AT channel, the Surface Flinger
and the Bionic library) that handled structured data, causing
the crash of key services: AT channel corruptions (e.g., a
correct AT command is dropped or replaced with a wrong one)
crashed the RILD; Surface Flinger corruptions (e.g., wrong
transaction state of the streamed surfaces) crashed the Syste-
mUI; filesystem I/O corruptions (e.g., APK metadata) through
Bionic crashed the Package Manager. These results point out
that the corruption of protocols (such as the AT protocol) and
formats (such as the APK format, and the transaction format
in surface streams) can expose the Android OS to failures.
Indeed, it is difficult for developers to build robust proto-
col/format parsers that could manage any invalid data in the
protocol/format. Therefore, we recommend that corruptions
should be injected into protocols (such as the AT protocol)
and formats (such as APK metadata) that are complex and
tricky to parse/handle robustly. We found that even a simple
approach (such as injecting random noise in these protocols/-
format) can be effective to highlight vulnerabilities. Instead,
we found that other components (such as the Camera Service,
Sensors Service, Activity Manager, etc.) are quite insensitive
to corruptions, since these services do not expose complex
protocols/formats. In these cases, the injection corrupted the
input/output parameters of the services (for example: in the
Camera Service, parameters such as whitebalance=auto are re-
placed with incorrect values, and numeric values are corrupted
with 0, negative, MAX, or random values; in the Activity
Manager, the methods return Intents with an incorrect Action
field, such as ACTION_BATTERY_CHANGED replaced by
ACTION_POWER_CONNECTED, or a truncated Data URI).
In other cases, such as SQLite, the corruptions caused the
SQL query results to be truncated. These injections can
affect individual applications by corrupting their output (for
example, the Camera application can return distorted images,



14

or a background app service may not be loaded); but these
injections do not affect the stability of the Android OS and
stock apps (neither fatal exceptions nor ANRs occurred).

The resource management faults (such as, the exhaustion
of memory, the inability to open files or create threads,
etc.) were effective to find vulnerabilities in processes and
components in the native layer. Since these parts are written in
C/C++, they do not benefit from robust and automated resource
management (as it would be the cause for the Java language),
and thus they are often vulnerable to resource-related prob-
lems. Thus, we advise to inject resource management faults
for testing the robustness of components and processes
in the native layer. Examples of this are the RILD process
and the Media Server (which runs the Camera Service), as we
found that these processes were affected by failures in the case
of resource unavailability.

VI. LIMITATIONS AND FUTURE DIRECTIONS

The problem of emulating software faults is a very difficult
one, and the proposed approach is not a definitive solution to
this problem. Indeed, one important open challenge is that the
enumeration of failure modes can be still incomplete, since the
system can also exhibit more complex failure behaviors, which
are not limited to an individual service call and which span
across a sequence of service calls. If these complex behaviors
are included in the fault model space, then the enumeration
can become exceedingly large due to combinatorial explosion.
On the one hand, this makes the search space too large to be
exhaustively covered. On the other hand, the SIR approach
provides an upper bound (even if large) to the search space, as
the number of service interfaces and resources is finite, while
the space of "faulty programs" can be infinite. Thus, focusing
on service interfaces and resources helps test engineers by
allowing them to sample the failure space according to their
testing budget (e.g., the amount of time that they can spend
on performing fault injection tests). For example, one possible
sampling policy could be to cover in depth single-service
failures, and to sample multiple-service failures (from 2- up to
k-way combinations) with gradually lower sampling density.

In general, selecting an efficient, yet realistic, fault model
to inject is the main challenge in the field of software fault
injection. For example, in the case of value failures, in which
one or more output data of the system can take incorrect
values from the data domain, it is difficult to select faulty
values from the domain. Moreover, it is difficult to anticipate
where in the software the failures can occur, such as which
parts of the software can be subject to a timeliness failure
(e.g., non-terminating loops, an incorrect transition in a state
machine). In the SIR approach, the failure modes are derived
from qualitative guidelines, which based on evidence from
previous studies.

In our ongoing work, we have been studying empirical
evidence for a more systematic selection of the fault model, by
analyzing the effects of injected bugs on software interfaces
[17]. For example, the empirical data showed pointed out
which value failures are the most common ones (e.g., boundary
values such as NULL pointers, and values differing from

the correct ones by a small offset); that the failures are
concentrated in one or few service calls, expect in the case of
API meant to be called in loops; and other empirical findings
about the extent of data corruptions, the occurrence of failure
signals such as API error codes, etc.

Future work is needed to link these empirical findings
with an automated fault injection tool, in order to assure the
realism of the injected faults, and to reduce the manual work
needed to create a fault model. For example, as suggested by
the reviewer, the SIR approach could leverage static analysis
to identify service interfaces that are prone to the failure
modes, by looking at the complexity of method implemen-
tations behind the service interfaces, such as the cyclomatic
complexity of methods, the depth of the method call graph,
the number and type of dependencies on external services.
This information can be adopted to perform more efficient
and realistic injections, by avoiding to inject in trivial parts of
the system that are unlikely to experience failures.

Finally, we remark that a complete assessment of mobile
devices should also encompass security vulnerabilities, since
an insecure system with an attack surface exposed to threats
cannot be considered reliable. These security vulnerabilities
are not addressed by the proposed approach, as it focuses on
assessing the impact of accidental, non-malicious faults on the
mobile user experience.

VII. RELATED WORK

We discuss studies on robustness testing of mobile systems,
including fuzz testing, GUI testing, and fault injection.
Fuzz Testing. Fuzzing is a technique that generates large
volumes of random data to test complex software interfaces. In
the context of mobile devices, Miller et al. [44] presented the
zzuf fuzzing tool for iOS apps, which intercepts and randomly
mutates multimedia input files. The tool was effective for test-
ing media players, image viewers, and web browsers, because
of the quantity and complexity of inputs for these programs.
Lee et al. [45] designed the Mobile Vulnerability Discovery
Pipeline (MVDP), an approach that generates random, invalid
multimedia input files to crash Android and iOS apps. They
developed heuristics to increase the efficiency of fuzzing, and
strategies for scaling large numbers of fuzz tests on farms of
smartphones. In addition to multimedia data, Android fuzzers
have been adopted to attack network and IPC interfaces.
Mulliner et al. [46] found severe vulnerabilities in the SMS
protocol. Droidfuzzer [47] and Intent Fuzzer [48] targeted
Android activities that accept data through Android Intents.
Chizpurfle [8] and BinderCracker [49] performed fuzz testing
on Android OS services. We remark that all these fuzzing
solutions are meant to test input validation of individual
components (apps and services). This work is complementary
to fuzz testing, as it evaluates how the mobile OS as a whole
behaves after that an individual component fails.
App Testing. Most of the research on mobile testing focuses
on individual mobile apps, by generating input UI events and
data. The Monkey [39] is a well-known UI exerciser tool
from the Android project, which randomly generates user
events such as clicks, touches, or gestures. Dynodroid [50]



15

extends Monkey by extracting system events from the apps,
and instrumenting the Android framework to guide UI event
generation. EvoDroid [51] uses an evolutionary algorithm,
enhanced by a static analysis of the apps to identify where
to apply crossover and mutation of the test sequences. T+
[52] records UI events under normal application usage, and
re-arranges these events to generate new test cases. Adamsen
et al. [53] and Zhang and Elbaum [54] amplified existing GUI
test suites, by introducing exceptions to expose test cases to
adverse conditions, i.e., unexpected events that may interfere
with the execution of the test. The tests are executed in parallel
with multiple Android emulator instances, and the Android
framework is instrumented to control the execution of a test
and to perform event injections. Caiipa [55] follows a similar
approach, by providing a cloud service for testing Windows
mobile apps. The apps are stressed with random GUI events
under several “contexts”, i.e., unexpected conditions (e.g.,
network connectivity and availability of sensors), distributing
the tests among both emulators and actual devices.
Fault Injection. The previous approaches test individual com-
ponents with respect to external inputs, events or conditions;
instead, fault injection evaluates a system with respect to faults
that originate from components inside the system. G-SWFIT
[16] is a technique that emulates software faults in off-the-shelf
components, by mutating their binary code. This approach has
been adopted for benchmarking the dependability of systems,
such as different releases of the Windows OS with respect
to faulty device drivers [56] and different web servers with
respect to faults in the underlying OS [57]. PAIN [58] applied
this approach to the Android OS, by injecting software faults
into its device drivers, and by parallelizing tests to scale them.
However, PAIN was limited to faults in the OS kernel, and did
not consider the general case of faulty software components
in the wider architecture of the Android OS. The Android OS
includes dozens of components, which provide abstractions
and services in several areas such as the connectivity (e.g.,
Bluetooth, WiFi, phone), multimedia (e.g., camera, audio),
sensors (e.g., GPS), etc.. Our work expands the scope of the
analysis to the whole Android OS, and leverages a lightweight
fault modeling approach to define faults for these components.

VIII. CONCLUSION

In this work, we proposed an approach for designing and
executing fault injection experiments on the Android OS. We
applied the approach to systematically define a large set of
faults across the components on the Android system. Then,
we implemented these faults into an automated fault injection
tool. Finally, we performed fault injection experiments on
three commercial Android devices. We found reliability issues
across all of these devices: failures were due both to weak
spots in the general Android architecture (such as, cascading
failures of services running in the same process), and to
customizations of the Android OS by the vendors (such as,
the System UI, vendor HALs, and stock apps).

ACKNOWLEDGMENTS

This work has been partially supported by UniNA and
Compagnia di San Paolo in the frame of Programme STAR,

and by Huawei Technologies Co., Ltd.

REFERENCES

[1] Capgemini, Micro Focus, and Sogeti, “World quality report,” 2017.
[2] A. S. Tanenbaum and H. Bos, Modern Operating Systems. Prentice

Hall Press, 2014, ch. 10.8.
[3] Android, “Keeping your app responsive,” accessed February

2019. [Online]. Available: https://developer.android.com/training/
articles/perf-anr.html

[4] Statista, “Mobile OS market share 2018,” accessed February
2019. [Online]. Available: https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/

[5] Android, “Android Open Source Project,” accessed February 2019.
[Online]. Available: https://source.android.com/

[6] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor
customizations on Android security,” in ACM CCS, 2013.

[7] R. Gallo, P. Hongo, R. Dahab, L. C. Navarro, H. Kawakami, K. Galvão,
G. Junqueira, and L. Ribeiro, “Security and system architecture: Com-
parison of Android customizations,” in ACM WiSec, 2015.

[8] A. K. Iannillo, R. Natella, D. Cotroneo, and C. Nita-Rotaru, “Chizpurfle:
A gray-box android fuzzer for vendor service customizations,” in IEEE
ISSRE, 2017.

[9] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing Failures
in Mobile OSes: A Case Study with Android and Symbian,” in IEEE
ISSRE, 2010.

[10] F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. S. Trivedi, “An empirical
investigation of fault triggers in Android operating system,” in IEEE
PRDC, 2017.

[11] V. Guana, F. Rocha, A. Hindle, and E. Stroulia, “Do the stars align?:
Multidimensional analysis of Android’s layered architecture,” in IEEE
MSR, 2012.

[12] M. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,”
IEEE Computer, vol. 30, no. 4, pp. 75–82, 1997.

[13] J. M. Voas and G. McGraw, Software fault injection: Inoculating
programs against errors. John Wiley & Sons, Inc., 1997.

[14] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Computing Surveys
(CSUR), vol. 48, no. 3, 2016.

[15] J. Christmansson and R. Chillarege, “Generation of an Error Set that
Emulates Software Faults based on Field Data,” in FTCS, 1996.

[16] J. Durães and H. Madeira, “Emulation of Software faults: A Field Data
Study and a Practical Approach,” IEEE TSE, 2006.

[17] R. Natella, S. Winter, D. Cotroneo, and N. Suri, “Analyzing the effects
of bugs on software interfaces,” IEEE TSE (in press), 2018.

[18] H. Gunawi, T. Do, P. Joshi, P. Alvaro, J. Hellerstein, A. Arpaci-Dusseau,
R. Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE and DESTINI: A
Framework for Cloud Recovery Testing,” in USENIX NSDI, 2011.

[19] K. Yaghmour, Embedded Android: Porting, Extending, and Customizing.
O’Reilly Media, Inc., 2013.

[20] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault
injection experiments using fiat,” IEEE TC, 1990.

[21] F. Cristian, “Understanding fault-tolerant distributed systems,” Comm.
ACM, 1991.

[22] D. P. Siewiorek, J. J. Hudak, B.-H. Suh, and Z. Segal, “Development of
a benchmark to measure system robustness,” in FTCS, 1993.

[23] A. Mukherjee and D. P. Siewiorek, “Measuring software dependability
by robustness benchmarking,” IEEE TSE, 1997.

[24] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic Concepts
and Taxonomy of Dependable and Secure Computing,” IEEE TDSC,
2004.

[25] E. van der Kouwe and A. S. Tanenbaum, “HSFI: Accurate fault injection
scalable to large code bases,” in IEEE/IFIP DSN, 2016.

[26] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental
analysis of binary-level software fault injection in complex software,”
in IEEE EDCC, 2012.

[27] D. Cotroneo, A. Lanzaro, and R. Natella, “Faultprog: Testing the
accuracy of binary-level software fault injection,” IEEE TDSC, 2018.

[28] T. Tsai, M. Hsueh, H. Zhao, Z. Kalbarczyk, and R. Iyer, “Stress-based
and path-based fault injection,” IEEE TC, 1999.

[29] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau, “Analysis
of the Effects of Real and Injected Software Faults: Linux as a Case
Study,” in IEEE PRDC, 2002.

[30] R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins, and
H. Madeira, “Injection of Faults at Component Interfaces and Inside
the Component Code: Are They Equivalent?” in IEEE EDCC, 2006.

https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/training/articles/perf-anr.html
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://source.android.com/


16

[31] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri, “An
Empirical Study of Injected versus Actual Interface Errors,” in ACM
ISSTA, 2014.

[32] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman, “Predicting
How Badly "Good" Software Can Behave,” IEEE Soft., 1997.

[33] P. Marinescu and G. Candea, “LFI: A practical and general library-level
fault injector,” in IEEE/IFIP DSN, 2009.

[34] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in ACM SOSP, 2001.

[35] A. Ganapathi, V. Ganapathi, and D. Patterson, “Windows XP kernel
crash analysis,” in USENIX LISA, 2006.

[36] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in Linux: Ten years later,” in ACM ASPLOS, 2011.

[37] J. DeVale, P. Koopman, and D. Guttendorf, “The Ballista software
robustness testing service,” in Testing Computer Software Conf., 1999.

[38] A. K. Iannillo, “Dependability Assessment of Android OS,” Ph.D.
dissertation, Università degli Studi di Napoli Federico II, http://www.
fedoa.unina.it/12240/, Mar 2018.

[39] Android, “UI/Application exerciser Monkey,” https://developer.android.
com/studio/test/monkey.html, online; accessed February 2019.

[40] D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono,
“Software aging analysis of the Android mobile OS,” in IEEE ISSRE,
2016.

[41] A. Armando, A. Merlo, M. Migliardi, and L. Verderame, “Would you
mind forking this process? a denial of service attack on Android (and
some countermeasures),” in IFIP SEC, 2012.

[42] H. Huang, S. Zhu, K. Chen, and P. Liu, “From system services freezing
to system server shutdown in Android: All you need is a loop in an
app,” in ACM CCS, 2015.

[43] Y. Qiao, Z. Zheng, Y. Fang, F. Qin, K. S. Trivedi, and K.-Y. Cai, “Two-
level rejuvenation for Android smartphones and its optimization,” IEEE
TR, 2018.

[44] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.-P.
Weinmann, iOS Hacker’s Handbook. John Wiley & Sons, 2012.

[45] W. H. Lee, M. S. Ramanujam, and S. Krishnan, “On designing an
efficient distributed black-box fuzzing system for mobile devices,” in
ACM AsiaCCS, 2015.

[46] C. Mulliner and C. Miller, “Fuzzing the Phone in your Phone,” Black
Hat USA, June, 2009.

[47] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
Android apps with intent-filter tag,” in MoMM, 2013.

[48] R. Sasnauskas and J. Regehr, “Intent fuzzer: Crafting intents of death,”
in ACM WODA+PERTEA, 2014.

[49] H. Feng and K. G. Shin, “BinderCracker: Assessing the Robustness of
Android System Services,” arXiv preprint arXiv:1604.06964, 2016.

[50] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in ACM FSE, 2013.

[51] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evolu-
tionary testing of Android apps,” in ACM FSE, 2014.

[52] M. Linares-Vásquez, “Enabling testing of Android apps,” in IEEE/ACM
ICSE, 2015.

[53] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic Execution of
Android Test Suites in Adverse Conditions,” in ACM ISSTA, 2015.

[54] P. Zhang and S. Elbaum, “Amplifying tests to validate exception
handling code: An extended study in the mobile application domain,”
ACM TOSEM, 2014.

[55] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra et al., “Caiipa: Automated
large-scale mobile app testing through contextual fuzzing,” in ACM
MobiCom, 2014.

[56] J. Durães and H. Madeira, “Characterization of Operating Systems
Behavior in the Presence of Faulty Drivers through Software Fault
Emulation,” in IEEE PRDC, 2002.

[57] ——, “Generic Faultloads based on Software Faults for Dependability
Benchmarking,” in IEEE/IFIP DSN, 2004.

[58] S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “No PAIN,
no gain?: The utility of PArallel fault INjections,” in IEEE/ACM ICSE,
2015.

http://www.fedoa.unina.it/12240/
http://www.fedoa.unina.it/12240/
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html

	Introduction
	Background on the Android OS and overview of the fault injection methodology
	Fault modeling in the Android OS
	The Android OS fault model
	An example from the phone subsystem

	The AndroFIT fault injection tool
	AndroFIT design
	Test automation

	Experimental evaluation
	Overview of experimental results
	Failures in the Camera subsystem
	Fault injection in the Phone subsystem
	Fault injection in the Sensors subsystem
	Fault injection in the System Server
	Fault injection in native libraries
	Fault injection in Surface Flinger
	Discussion

	Limitations and future directions
	Related work
	Conclusion
	References

