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Abstract—Many research areas in software engineering, such
as mutation testing, automatic repair, fault localization, and fault
injection, rely on empirical knowledge about recurring bug-fixing code
changes. Previous studies in this field focus on what has been changed
due to bug-fixes, such as in terms of code edit actions. However, such
studies did not consider where the bug-fix change was made (i.e., the
context of the change), but knowing about the context can potentially
narrow the search space for many software engineering techniques
(e.g., by focusing mutation only on specific parts of the software).
Furthermore, most previous work on bug-fixing changes focused
on C and Java projects, but there is little empirical evidence about
Python software. Therefore, in this paper we perform a thorough
empirical analysis of bug-fixing changes in three OpenStack projects,
focusing on both the what and the where of the changes. We observed
that all the recurring change patterns are not oblivious with respect
to the surrounding code, but tend to occur in specific code contexts.

Index Terms—Bug-fix pattern; Bug context; Mining Software
Repositories; Cloud Computing; OpenStack

I. INTRODUCTION

Studying bug-fixing changes is an important field of software
engineering research [1]–[16]. It consists in empirically analyzing
the changes made by developers to software in real complex projects,
with the aim to identify (possibly, in automated ways) patterns for
the most common changes, and to create profiles for these changes.
This analysis is useful for many software engineering tasks, such
as software testing (in particular, mutation testing [1], [2]), fault
localization [3], automatic code repair [3], [5], and fault injection
for testing fault-tolerance [12], [13]. Analyzing bug-fixing changes
can be challenging since change patterns can be numerous and
heterogeneous, and they can differ across different application
domains, programming languages, and even software projects.

In this paper, we analyze bug-fixing changes in the context of
the OpenStack cloud computing platform [17]. OpenStack is a
widespread software, as it is adopted in many private and public cloud
infrastructures [18] and forms the basis of more than 30 commercial
products (i.e., distributions and appliances) [19]. One reason that
makes the OpenStack platform a relevant investigation subject is that
it consists in several, diverse systems that focus on different cloud
computing functions (sub-systems like Nova for managing instances,
Neutron for managing virtual networks, and Cinder for managing
volumes). These systems are developed under independent projects
by separate development teams, follow rigorous development and
QA processes, and have nowadays achieved a high degree of maturity
[20]. Another motivation is that OpenStack is among the largest and
most sophisticated software written in Python, which is a popular
programming language that has not been investigated in depth by
previous research on bug-fixing changes.

We first analyze in this study what syntactic changes characterize
bug-fixes in the OpenStack platform. This analysis advances the
existing body of knowledge in the field of bug-fixing changes since
it provides empirical insights on large Python projects. Moreover, this
study explores the variability of bug-fixing changes across different
projects and development teams, and discusses their variability with
respect to other programming languages analyzed by previous studies
(mostly on C and Java). Our approach performs a clustering analysis
of bug-fixing changes, using numerical features from the Abstract
Syntax Tree (AST) of the fixed code.

In addition to syntactic changes, we also study the code context
where bug-fixing changes were made, that is, the source code that
surrounds the change. Most research on code changes neglects the
code context, but this aspect can potentially narrow the search space
for many software engineering tasks. For example, in mutation
testing and in fault injection, mutants are generated by introducing
changes throughout the whole source code (for example, in the case
of “assignment omissions”, by mutating every assignment statement).
However, the number of generated mutants grows very quickly or
too easy to kill [21], with many mutants that are unkillable [22].
Moreover, the size of the search space is a challenging aspect also
for fault localization and for automatic code repair [23]. Therefore,
we analyze the code context surrounding the bug-fixes, to a more
detailed “fingerprint” of the bug-fixing patterns. Our approach
collects additional features to represent the context of every cluster,
and points out statistical deviations that characterize the clusters.

The main findings of the study include:
• Commits that are supposedly bug-fixes also contain many of

changes that are not strictly bug-fixes. In some cases, the changes
are refactorings for supporting the bug-fix (e.g., importing a
package, changing the signature and the invocations of a method,
changing the layout of a data structure). In other cases, the
commits are not limited to bug-fixes, but also include many
changes for improving the internal quality of the software (e.g.,
readability and maintainability of the source code). The high
number of non-bug-fixing changes points out that empirical
research must take into account refactorings when analyzing
bug-fixing changes for testing and repair purposes.

• Bug-fixing patterns exhibit relevant differences across
programming languages, and across projects. While some of the
bug-fixing patterns match the ones found in previous studies on C
and Java software (in particular, the changes that fix the structure
and the checking conditions of the control flow), we found several
specific patterns that are induced by the features of the Python
language, such as dict data structures and the rules for passing
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parameters. Moreover, we found several patterns that are specific
for a project, such as, bugs influenced by API calling conventions.

• The bug-fixing changes tend indeed to occur in specific code
contexts. For example, several change patterns were located
mostly in the largest classes and methods, or were located in loops
or conditional constructs. Moreover, specific traits were found for
the blocks and statements impacted by the change: for example,
input parameters were omitted for methods which at least 2-3
arguments, and several bug-fix patterns involved statement blocks
with large numbers of data containers and function calls.
In summary, the contributions of the paper are:

• An approach for characterizing bug-fixing changes not only with
respect to what a bug-fix changes, but also with respect to where
the change has been made.

• A dataset of bug-fixing changes in three systems of the OpenStack
platform, which represents the largest Python software ever
analyzed by studies on bug-fixing changes to the best of our
knowledge.

• A detailed empirical analysis of recurring patterns in bug-fixing
changes in the three OpenStack projects of the dataset.
In the following of this paper, Section II discusses related work

by exploring the various applications of bug-fix analysis; Section III
presents the proposed methodology for analyzing code changes;
Section IV and Section V analyze respectively what is changed by
bug-fixes, and where the change was made, with a discussion on
findings and implications. Section VI discusses the threats to validity
of this study. Section VII concludes the paper.

II. RELATED WORK

Several studies have been investigating bug characteristics for
various software engineering tasks, by analyzing problem reports,
commits, revisions, and other information. Our intention is to give
a broad view of how researchers have been using bug information
in a different context, and their main findings. In Appendix A, we
summarize the surveyed studies, highlighting the specific purpose,
the programming language used in the software under study, the
dataset (e.g., number of code changes, revisions, commits, bug-fixes),
and a brief description of the findings related to bug-fix patterns.

In most of these studies, the authors analyze code changes by using
an Abstraction Syntax Tree (AST) (i.e., a data structure representation
of entities in the source code and their relations), and a generate edit
actions that reflect the differences between the ASTs before and after
a change of the source code.

Mutation testing. Mutation testing is a fault-based technique for
the creation and the assessment of test suites. Recently, Tufano et
al. [1] developed an AST-based differencing technique for analyzing
bug-fixes and to abstract them. Their approach trains an artificial
neural network with the bug-fixes, and then use the neural network
to introduce new mutants that reflect the learned ones. Brown et al.
[2] introduced the concept of wild-caught-mutants, to address the
issues that mutation operators do not necessarily emulate the types of
changes made to source code by human programmers. Thus, their idea
is to analyze bug-fixes from bug reports to define mutation operators
that more closely reflect faults occurred in a specific project. For
example, the authors found new mutation operators like missing call to
a one-argument function whose return type is equal to its argument’s
type, direct access of field, and specific literal replacements.

Automatic program repair. Automatic program repair is a branch
of research on lowering the costs of bug-fixing. The general approach
is to locate and mutate a faulty source location with a set of change
operators, using search-based techniques, until the program passes a

test suite. The quality of the test suite and of the program under fixing
are preconditions for generating patches with a reasonable chance
of success. Zhong et al. [3] performed an empirical study on fixes
of real bugs in open-source projects in order to reuse change patterns
for automatic repairing and understand to what extent bugs are
localized. Similarly, Koyuncy et al. [5] implemented repair strategies
based on fix patterns or templates. They provide a tool for mining
semantically-relevant patterns in a scalable, accurate and actionable
way, by using a clustering strategy.

Refactoring. Bug characterization studies analyzed whether an
issue marked as a bug is actually a bug. As a matter of fact, in a
recent study Herzig et al. [24] found that a high number of non-bug
issue reports are misclassified as bugs, such as refactorings, requests
for new features, documentation, and test cases. In particular, previous
studies on refactoring use source code changes history to detect and
study refactoring changes. The approach by Silva et al. [15] consists in
2 phases: (i) parse and analyze the history of source code changes to
obtain a high level abstraction (i.e., a multiset of tokens); (ii) perform
a relationship analysis, i.e., the procedure to find similarities between
source code abstractions before and after the changes. The method
was able to find 12 well-known refactoring templates (as defined by
Prete et al. [25]) with a Precision of 1.00 and a Recall of 0.88. Hora
et al. [16] analyzed refactorings due to so-called untracked changes,
e.g., a method rename or move. That change can be misinterpreted
as the disappearance of a method and the appearance of a brand new
one, splitting its history, and could have a negative impact on the
accuracy of mining software repository techniques if not properly
handled. In our work, we observe that refactoring-related changes
after often mixed with bug-fixing changes, and we discriminate
between these two categories to focus on bug-fixing ones.

Fault injection. Fault injection is a technique for experimental eval-
uation of fault tolerance mechanisms, such as for quantifying their cov-
erage and latency [26]. One research branch in this area has been focus-
ing on the injection of software faults using code mutations, to emulate
the most common bug patterns [27]. To ensure the representativeness
of the injected bugs with respect to actual bugs, these approaches
have been relying on the analysis of bug-fixing patterns. For example,
previous studies [12], [13] manually analyzed bug fixes in C and Java
projects, with respect to an extended version of the Orthogonal Defect
Classification (ODC) schema [28], by including in the classification
the specific kind of omitted or wrong construct (assignment, control
flow checking, etc.), and an early notion of “context” (e.g., number
of statements inside an IF block, presence of an assignment before a
function call, etc.). These studies identified consistent patterns across
these languages, such as missing function calls and missing IF blocks;
moreover, they found that one recurring bug patterns (i.e., Assignment)
are common across projects and cover 21.4% of the total bugs, but
the remaining share of bugs follows project specific patterns. Our
study of bug-fixing patterns can be leveraged for injecting bugs into
Python software and enriches the classification of bugs with broader
and quantitative information about the context of bugs.

Bug characterization. Numerous other studies have been inves-
tigating bug-fixing patterns, beyond the specific tasks above. Pan et
al. [9] found that the most common categories of bug-fix patterns
in Java projects are Method Call (21.9-33.1%) and If-Related (19.7-
33.9%). In particular, within the Method Call category, most of the bug
fixes to method calls are changes to the actual parameter expressions
(14.9–25.5%), and within If-Related category the change in if condi-
tional is the more frequent (5.6–18.6%). They also provided evidence
of similarities of bug-fix patterns across different projects (i.e., Pearson
similarity measures exceed 0.85 with p-value less than 0.001), and
pointed out that developers can introduce the same kind of bugs
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independently from the specific program domain. Osman et al. [8]
presented another analysis of Java projects, and found that 53% of the
fixes involve only one line of code, and that 73% of fixes consist in less
than 4 lines of code. Moreover, they found that 40% of bug-fixes are re-
current patterns. The most frequent fix pattern (48%) involves the addi-
tion of null checks on Java object references. Other fix patterns involve
missing method invocations and wrong names for objects, methods,
or parameters. Other studies [10], [11], pointed out similar findings.

Only a minority of studies focused on the Python language. Lin et al.
[6] analyzed 10 Python projects. They developed a tool for analyzing
Python source code, and classifying changes according to edit actions
on ASTs. They analyzed the distribution of edit actions across 8 gross
categories, including Class edits, Function edits, Statement edits, etc..
In most of the projects, they found that Function and Statement edits
are the most common change types, whereas Loop Structure edits
are the least common ones. Furthermore, the authors found that the
majority of bug-fix edit actions are Conditional Expression Update
and If Insert. Musavi et al. [7] conducted an empirical study to
understand API failures in OpenStack, by analyzing the code change
history. The authors manually evaluate the bug reports and bug fixes
of API failures during 2014, and classified them into 7 categories.
More than half (56%) causes of API failures are “small programming
faults”, which were fixed with simple edits such as inverting logical
conditions, correcting variable names, or adding exception handling.

The main points of difference between our work and these studies
can be summarized as follows:

• Most of the previous studies focused on software projects written in
Java, for which there exist more various and mature tools for analyz-
ing source code characteristics. Instead, our work concentrated on
the less-explored, but much relevant Python language. We provided
new insights about recurrent fix patterns found in large projects writ-
ten in Python. Compared to the few previous studies on Python, we
performed a more fine-grained analysis of bug-fixing patterns, not
limited to distributions of changes with respect to fixed categories
(e.g., type of edit actions or small-vs-large programming faults)
but using clustering to discover patterns in an unsupervised way.

• Recent research on bug patterns did not focus on the context in
which code changes were made. Almost all previous studies have
discovered that some bug patterns are more frequent than others,
but do not give enough information about “where” in the code
the bug occurred. Therefore, our analysis provides more detailed
insights on the context of bug-fixes.

III. METHODOLOGY

The proposed approach consists of the following phases, which
are summarized in Fig. 1. First, we harvest data from the OpenStack
public repository (subsection III-A), by collecting code changes.
Then, we extract hunks (see TABLE I about the terminology
used by the OpenStack project) for the source files involved in
the change (subsection III-B), generate features from these hunks
(subsection III-C), and we perform clustering of these hunk according
to their features (subsection III-D). The clusters will represent
recurring patterns for bug-fixes. Once the clusters are defined, we
investigate the code context surrounding the hunks, by means of an
inter-cluster analysis on an additional set features (subsection III-E).
The resulting dataset, which include the code-change and the context
features extracted from Openstack public repository, the results of
both bug-fix clustering and the context analysis, is publicly available
online at https://figshare.com/s/7ae9d7dade9e8df62683.
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Fig. 1: The proposed approach.

TABLE I: Definitions.

Name Definition Description

Change
A set of patches
with comments and
code review rating

When developers want to fix a new bug or add
new functionality, they push a commit with a
new id (Change-Id) and Gerrit create a change.

Revision A newer version of
the change

A change has an initial version and possible
multiple following versions. When developers
want to modify their change, they push a new
commit with the same Change-Id of the initial
commit, and Gerrit creates a new revision to
the change by adding the new set of patches
and allowing new comments and rating.

Merged
Change

A change which
has been accepted
by reviewers

When a change is accepted by reviewers,
Gerrit cherry-pick the last revision’s patches
into the repository’s master branch and mark
the change as merged.

Hunk
A group of consec-
utive lines that were
modified by a patch

A hunk includes both the lines of the source
code before the change and the lines of the
source code after the change.

A. Data collection
The source of data that we analyze in this study comes from Gerrit,

the code review system used by the OpenStack project [29], which
is openly accessible. We query the repository to collect the latest
revisions of each merged changes and the list of files modified by
the revision’s commit. Then, we filter the query results to focus on
bug-related changes. We analyze the description of the change, and
we only retain the changes that include at least one of the following
keywords: bug, fix, fault, fail, patch. A similar approach has been
already adopted in other studies [7], [30], [31]. Revisions of changes
that do not contain any of these keywords are discarded. We also
discard those files that only contain test cases because they represent
unnecessary information for our analysis, as we are only interested
in the specific patches needed to fix the bugs.

Our analysis focuses on the data related to the OpenStack Nova,
Neutron, and Cinder sub-projects, respectively the compute, network,
and storage managers of the OpenStack platform. Furthermore, we
focus on the last four versions of OpenStack, i.e., Ocata, Pike, Queens,
Rocket releases. In total, we collected 22,418 unique revisions,
which touch 45,428 files. The time span of the revisions is from
February 2017 to May 2018.

B. Hunks Extraction
We iteratively analyze the collected files to extract hunks. First

of all, the data from Gerrit contain only the git references to the
actual files and they are retrieved automatically during this step of the
analysis. Furthermore, they are converted to an Abstract Syntax Tree
(AST) for convenience of manipulation and analysis of source code.

For each file, we parse the two versions (before and after the fix)
of the source code to their respective ASTs. Then, we join the two
trees to create an enhanced AST (AST of differences). In such a tree,
a node can be labeled as minus node, i.e., a node removed to fix
the bug, or plus node, i.e., a node added to fix the bug. The nodes

3

https://figshare.com/s/7ae9d7dade9e8df62683


...

...
class Foo():

def foo_fun():
+    if a == 3:
+        x = 0
- x = 1
...
...

*

* *

* *

+

+

*

+

Bug-fix
(modified source-code 

in “patch” format)

AST Tree (includes nodes for new and removed code)

-

CONTEXT 
NODES

PLUS NODES

MINUS NODES

Module

ClassDef

FunctionDef

If

Compare Assign Assign

Fig. 2: Example of enhanced AST.

that are not labeled represent the parts of the source file that were
not modified by the change. The plus and minus nodes are grouped
in hunks, such that nodes in the same hunk are within three lines
of the source code, as bug-fixing changes tend to focus on localized
portions of source code [7], [8].

Since the hunk includes a subset of nodes, it represents a sub-tree
of the enhanced AST. The hunk can be a single node (e.g., when
the bug-fix just changes the name of a variable) or a whole sub-tree
(e.g., the bug-fix changes an if block that contains several statements).
A hunk is also characterized by all the ancestors of its plus and minus
nodes. These ancestors are unlabeled nodes, which we define as
context nodes. These nodes tell us which are the source code that
envelops the change. For example, context nodes give information
whether the changed lines are inside constructs like if, for, with, while,
function definition, class definition, or a combination of them.

Fig. 2 shows an example of an enhanced AST tree for a change.
Specifically, the enhanced AST tree represents a change made within
a function named foo fun defined inside the class Foo, by
adding an if construct whose body has been replaced the initialization
of a variable (i.e., x = 0).

We designed and developed a tool for fully automate this step of
the analysis, namely PySA (Python Source-code Analyzer) (publicly
available at https://github.com/dessertlab/PySA2). PySA is able to: (i)
create a AST of differences from two versions of a file and (ii) extract
the hunks from an AST of differences. We remark that we do not
consider other existing AST differencing tools (e.g., ChangeDistiller
[32], GumTree [33]) because they are either designed to work with
Java or C source code, or they are not publicly available. Furthermore,
such tools do not provide any information about the context, which
is fundamental for our analysis.

In total, we extracted 16,081 unique hunks, where 5,890 are
from Nova, 4,261 from Neutron, and 5,930 from Cinder.

C. Code-Change Features Extraction
From each hunk, we generate a feature vector that describes the

hunk as a flat series of numerical attributes. The feature vector still
takes into account the relationship between statements (e.g., whether
a statement is inside another block of code) by using weights. The
features are built by traversing the AST sub-tree for the hunk and
inspecting the attributes of its nodes.

The Python Abstract Grammar consists of 89 AST node types
(e.g., an If node, a Call node, etc.). Moreover, an AST node can
take over one of the 96 AST roles, depending on the type of AST
node. For example, a Python expression (represented by the Expr
AST node type) can appear inside an If block, thus taking the role
If-Body; or, a Python expression can appear as an input parameter
of a method call, thus taking the role Call-Args.

We define a feature vector in which each element specifies (i)
whether a node was added (i.e., plus nodes) or removed (i.e., minus
nodes) within the fix, and (ii) counts how many times a node belongs

to a specific type or role. In particular, the feature vector consists
of two parts:
• Node type features: For each AST node type (e.g., Assign, Call,

etc.), we have a feature that keeps track of how many times that
node type appears in the bug-fix. In total, there are 178 node type
features, defined as <add|rem> <node type>;

• Role type features: For each AST node type, we have
96 potential role types, which specifies the relationship
between a AST node and its parent. Thus, these features
keep track how many times an AST node type has a specific
role. In total, there are 17,088 role type features, defined as
<add|rem> <role> <node type>.
Starting from the enhanced AST, we check the type and role of

each node, then we increase accordingly the corresponding element in
the feature vector. Each type/role element is increased for every occur-
rence of that type/role in the AST. Specifically, the element is increased
by a weighted value, which takes into account the depth in which the
type/role appears in the AST tree. This allows us to preserve part of the
information about the structure of the code in the hunk. In particular,
the node type feature Ftype for a node type type is increased by:

F type+=wtype×r−level (1)
for each node of that type in the hunk, where:
• wtype is a weight that represents the relative importance between

AST node types;
• r is the relative importance between a node and its parent;
• level is the distance of the node from the root of the hunk AST

tree.
In our approach, we give the same importance to all node types.

In particular, we set wtype=1015 because 15 is the maximum height
a hunk AST tree have in our datasets. Thus, we force the feature
to be integers. We set r=10, so that nodes at different depths are
differentiated by different orders of magnitude of the counter.

In a similar way, the role type feature Frole for a node role role
is increased by:

F role+=wrole×r−level×c (2)
for each node of that role type in the hunk, where:
• wrole is a weight that represents the relative importance between

AST role types;
• r is the relative importance between a node and its parent;
• level is the distance of the node from the root of the hunk AST

tree;
• c is the relative importance between the node type and role type

features.
In our approach, we give the same importance to all role types.

Again, we set wrole =1015 because 15 is the maximum height a
hunk AST tree have in our datasets. Thus, we force the feature to
be integers. Again, we set r=10. Furthermore, we set c=10−1 so
that the features related to roles have a lower weight compared to
node types. This choice is made in order to give greater importance
to the outer code in a block of bug-fix statements.

Fig. 3 shows an example of a feature vector. The initial if node
(represented by the type add If ) is increased by a score with the
highest weight (+1000), and the corresponding role (add If-Body If )
is also increased (+100). The inner if node increases the type feature
add If with a lower weight than the previous if node (+100) since
it is a nested node. In this way, we give greater importance to the fact
that the bug-fix is changing the outer if, and we give less emphasis
to the contents of the if (e.g., the content may be another if, or other
kind of Python statements).
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We extended PySA to automatically compute the features from
the hunks. The resulting dataset consists of 5,890 (Nova), 4,261
(Neutron), and 5,930 (Cinder) hunks (dataset rows); and 948 (Nova),
996 (Neutron), and 1,019 (Cinder) features (dataset columns). We are
only considering features for programming constructs that actually
occurred in the source code changes of our dataset (as features for
unused constructs result in a series of zero values).

We extracted a set of additional features for representing also the
code surrounding the bug-fix: outer and inner context features.

Outer context features are extracted from the list of context nodes
of the hunk, which includes all the ancestors of the plus and minus
nodes (cfr. subsection III-B). There are two kinds of outer features:

• Features of the including scoped node. These features are
related to, and computed from, the hunk’s closest ancestor
node with FunctionDef, ClassDef, or Module as type.
The module, class, or function definition opens a new local
scope in the language definition. These context features describe
the including scoped node in terms of size (i.e.,, number of
children). In total, there are 6 numeric features defined as
ctx <block type> size, where block type can be any
of ClassDef, FunctionDef args, FunctionDef body, or Module,
plus the boolean feature ctx FunctionDef private (a
feature that indicates whether the function is intended for private
use only, i.e., its name begins with an underscore).

• Features of the closest ancestor. These features reflect
the type of AST node that is closest to the hunk. The
possible ancestors are nodes for iteration (For and While),
selection (If), assignment statements (Assign), definitions
(ClassDef, FunctionDef, and Module), exception handling
nodes (TryExcept and TryFinally), and other kinds of
expression statements, including Attribute, BinOp, BoolOp,
Call, Return, Subscript. There are 15 boolean features
defined as ctx including <node type>, which are
all 0s except for the type of the statement that includes the
bug-fix. Furthermore, we have a numeric feature, defined as
ctx including node size, which indicates the number of
children of the ancestor node.

Inner context features are extracted from the AST nodes below
the hunk, in order to provide information on the types of elements
(function calls, assignments, arithmetic operations, etc.) that appear
in bug-fixed code (e.g., the block of statements that is surrounded by
a new if ). In total, there are 370 features for the inner context, defined
as ctx inner <add|rem> <node type> count, and
ctx inner <add|rem> <role> count, where node type
is one of the 89 AST node types in the Python language grammar,
and role is one of the 98 AST roles in the grammar. In total, we
computed 232 context features across Nova, Neutron, and Cinder.

D. Hunks Clusterization
In this section, we describe all the choices made for categorizing

the hunks found after the Hunks Extraction and Feature Extraction
phases. Our main objective is to find categories that reflect what
has been changed by bug-fixes. We adopt clustering to discover
categories with respect to the programming constructs and entities
that appear in the hunks (represented by the features discussed in
the previous subsection).

In particular, we applied a hierarchical clustering algorithm, in order
to scale to such large datasets, which consists of thousands of samples.
We configured the clustering algorithm to use the Euclidean distance
and single linkage. To validate the quality of this configuration, we
computed the cophenetic correlation coefficient [34], which is
a measure of how faithfully a dendrogram preserves the pairwise
distances between the original unmodeled data point. Hierarchical
clustering is an iterative process, in which the closest pair of clusters
are merged into one cluster, which replaces the previous pair. Then,
the distance matrix is updated by removing the rows/columns of the
deleted pair and adding a new row/column for the merged cluster. In
some degenerate cases, the new distances in the new row/column may
not faithfully be representative of the distances of the previous pair of
clusters. The cophenetic coefficient computes the correlation between
the new and the previous distances in order to detect such cases.
The closer to 1 is the cophenetic coefficient, the more the clustering
algorithm preserves correctly the distances between clusters.

The resulting cophenetic coefficients for the datasets are 0.87
(Nova), 0.86 (Neutron), and 0.9 (Cinder), which are leading to consider
the configuration good enough for obtaining accurate clustering.

To determine the natural divisions of the dataset into clusters, we
further analyzed the inconsistency coefficient [35] of the dendro-
gram links. These coefficients compare the height of the link with the
average height of other links at the same level of the hierarchy. A large
coefficient denotes that two “diverse” clusters were forcefully merged
by the hierarchical clustering algorithms. Thus, the links with a higher
inconsistency coefficient are good candidates for identifying a division
of the data into clusters. Clusters are formed when a node and all of
its sub-nodes have an inconsistency value less than a cut-off threshold
c. All leaves at or below the node are grouped into the same cluster.

To identify the cut-off threshold c, we first analyze the distribution
of the inconsistency coefficients across all links in the dendrogram.
We obtain such distribution by using the automatic binning algo-
rithm provided by Matlab [36]. The binning algorithm divides the
distribution among bins of fixed size. The algorithm chooses the bin
width by adopting a mix of heuristics and well-known algorithms,
such as Scott and Freedman-Diaconis rules. Our aim is to have a
clusterization such that the clusters are not too specialized but they
catch the coarse-grained pattern in the code change. The binning
algorithm provides us with intervals (bins) that discretize the values
of inconsistency, giving us a hint on how many nodes we preserve if
cutting at a certain inconsistency. Then, since we want to consider only
the greatest differences, we chose c as the lower edge of the last bin.
Thus, only the highest inconsistency values are preserved, aggregating
the other nodes of the dendrogram in large clusters. In our dataset, we
obtain c=1.15 both for Nova and Cinder, and c=1.1 for Neutron.
Since we want to focus on recurring bug patterns, we only consider
the largest clusters, by considering the ones with a number of elements
greater than a threshold on the cluster distribution (respectively 15,
10, and 15 elements for Nova, Neutron, and Cinder). We obtained 46
clusters for Nova, 22 clusters for Neutron, and 43 clusters for Cinder.

Finally, every cluster has been manually analyzed by two authors
(or more, in the case of disagreement) to assess whether the cluster
actually represents a bug-fix. For every cluster, we manually inspect
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a sample of n changes in the clusters (in our empirical analysis, we
consider n=5), and divide the clusters into three categories:
• BUG-FIX changes, which represent fixes to bugs. We classify

a cluster for that category if a majority of changes in the sample
actually fixes the behavior of the software, according to the
description of the bug and to the nature of the change.

• FIX-INDUCED changes, which represent code changes that
are required to support a bug-fixing change, but do not represent
themselves the actual bug-fix. For example, if the bug-fixing
code uses a new input parameter to a method, the signature of
the method and the call sites to the method must be also changed
as a consequence of the bug-fix.

• REFACTORING, in which code changes were made for
purposes that do not modify the behavior of the software (e.g.,
better readability or modularization).
Finally, once the manual analysis confirms that a cluster represents

a bug-fixing change, we attribute a label and a brief description of the
cluster, and we consider the cluster for the next analysis of the context.

E. Context Features Analysis

The objective of this analysis is to investigate the hypothesis
that bug-fixing changes tend to occur in specific code contexts.
In particular, we want to study what are the context features that
are representative of a bug-fix change pattern in order to answer
the following research question: Is the context relevant in the
characterization of bug-fix changes?

To answer this question, we compare the mean of each context
feature within a bug-fix cluster with the mean of a control group,
represented by the whole dataset (including both changes due to bugs,
and other changes). To achieve this, we tested the null hypothesis
that there is no difference between the bug fix pattern group and the
control group, by means of the Dunn’s statistical test [37]. We used
the Dunn’s test as it is robust with respect to groups of uneven size
and it is a non-parametric test [38]. Then, we selected all the context
features that have a mean statistically different from the control group
with a confidence level of 95%. If, as a result of this process, we find
that there is at least one relevant context feature for every cluster, then
we can answer affirmatively to the research question.

Moreover, we quantitatively analyzed the context features which
resulted relevant by means of summary indicators, i.e., the average,
the coefficient of variation (which is defined as the ratio of the
standard deviation to the mean), and the distribution quantiles, in
order to gain insights on the context conditions that are common to
the majority of the bugs included in each bug pattern.

IV. ANALYSIS OF what IS CHANGED BY A BUG-FIX

In this section, we analyze the bug-fixing patterns obtained by
means of clustering. We first consider the classification of the clusters
between bug-fixes and non-bug-fixes (i.e., FIX-INDUCED and
REFACTORING). Fig. 4 shows the distribution of the clusters found
for the Nova, Neutron, and Cinder projects. The portion of BUG-FIX
clusters across the three projects is similar. We found a high number of
patterns that were either FIX-INDUCED or REFACTORING changes,
with differences across the projects. These changes were included
in the same commits for bug-fixes, in which developers took code
reviews of bug-fixes as opportunities for also improving the internal
quality (e.g., readability and maintainability) of the source code. Thus,
both the bug-fixes and the refactoring changes end up in the same com-
mit and get merged in the same revision. Since these non-bug-fixes pat-
terns come in a high number, we needed to identify and remove them
from our analysis in order to focus on bugs. Therefore, we caution
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other researchers interested in bug-fixing changes to carefully discrimi-
nate between bug- and refactoring- related changes, in order to provide
more meaningful results for software testing and repair purposes.

We focus our analysis on better understanding the BUG-FIX
clusters. TABLE II provides the detailed list of clusters, along with
a brief description. We also present (Fig. 5) the BUG-FIX clusters
by dividing them into 8 categories, according to the syntactic changes
introduced by the bug-fix. Almost half of the bug clusters are related
to function calls (e.g., adding new function calls, or new arguments
to a function call); the other clusters involve changes to the control
flow, data structure initialization, exception handling, etc..

In the following, we first describe more in detail these categories
with representative examples of recurrent patterns. Then, we
summarize the main findings at the end of this section.
Adding arguments to function calls. Several clusters from Nova
(e.g., nova 131, nova 128, nova 1097), Neutron (e.g., neu-
tron 119), and Cinder (e.g., cinder 115) are related to fixes that
add a new parameter of a function call. In these cases, the developers
accidentally forgot to add a variable or an expression as parameter
of a function call. An example of this kind of bug-fix is showed in
Listing 1, in which the developer adds a variable as input parameter:

- instance_domains = self._host. list_instance_domains ()
+ instance_domains = self

._host. list_instance_domains ( only_running =False)

Listing 1: Add simple variable as parameter of a function call.
Change No.: 468269. URL: https://review.openstack.org/c/
468269/6/nova/virt/libvirt/driver.py, line 7174

Another example (Listing 2) shows a bug-fix in which the
developer added a more elaborated expression (an attribute of an
object) as parameter of a function call.
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TABLE II: Bug-fix patterns clusters in Nova, Neutron, and Cinder.

Cluster ID Size Category Description

Nova

nova 228 148 Variable initialization Add variable initialized to a constant
value

nova 131 61 Adding arguments Add one variable as keyword parameter
to function call

nova 128 45 Adding arguments Add object attribute as keyword
parameter to function call

nova 132 26 Adding function call Remove variable as keyword parameter
from function call

nova 474 22 If-related Surround expression with If
nova 1099 21 Adding function call Remove object attribute variable
nova 1097 19 Adding arguments Add one variable as keywords parameters

to multiple function calls
nova 597 16 If-related Surround instructions with If
nova 629 16 If-related Add boolean operator in condition
nova 197 15 If-related Add If and its body

Neutron

neutron 119 61 Adding arguments Add boolean as keyword parameter in
function call

neutron 13 45 Adding function call Add function call with 1 parameter
neutron 14 17 Adding function call Add function call with no parameters
neutron 132 15 Data structure Add new (key, value) to a dictionary
neutron 23 14 Adding function call Add function call with 2 parameters
neutron 20 10 If-related Add If with return statement in body

Cinder

cinder 115 48 Adding arguments Add variable as keyword parameter to
function call

cinder 621 40 Data structure Add new (key, value) to a dictionary
cinder 438 35 If-related Add assign and add If with its body
cinder 583 28 Exception handling Surround function call with Try-Except

block
cinder 627 24 If-related Replace boolean expression with function

call in If condition
cinder 14 20 Adding function call Add function call
cinder 542 20 Move function call Move function call with in a new position
cinder 1168 18 Replace arguments Modify constant string parameter in

function call

- r = self.post('/ allocations
', payload , version= POST_ALLOCATIONS_API_VERSION )

+ r = self.post('/ allocations
', payload , version= POST_ALLOCATIONS_API_VERSION
, global_request_id =context.global_id)

Listing 2: Add an attribute of an object as parameter of a function
call. Change No.: 526823. URL: https://review.openstack.org/
c/526823/18/nova/scheduler/client/report.py, line 1624

These examples emphasize that the omissions occurred in functions
with optional parameters (such as, optional objects representing a
“context” for the method and for the resource), and with boolean
flags for enabling special behaviors in the function. This relaxed
parameter passing is syntactically valid in the Python language, and
is extensively used in all OpenStack projects.
Variable initialization. The highest number of recurring bug-fixes
belong to the cluster nova 228, which includes fixes that add the
initialization of a variable, e.g., using a boolean, a null object, or a
constant string. For example, Listing 3 shows that the developer forgot
to add the attribute RUN ON REBUILT to the class DiskFilter.
In this case, the bug description points out that the change fixed an
issue that occurred when a new image was provided and the instance
had to be rebuilt, but Nova omitted to validate the existing pool of
hosts excluding them from being scheduled.

class DiskFilter (filters. BaseHostFilter ):
""" Disk Filter with over subscription flag."""
+ RUN_ON_REBUILD = False

Listing 3: Add global variable to the class definition. Change
No.: 523212. URL: https://review.openstack.org/c/523212/2/
nova/scheduler/filters/disk filter.py, line 31

In general, variable initialization has been a recurring bug pattern
in previous studies on C and Java [12]. In our analysis, we found
that these issues were recurring specifically for the Neutron project,
where developers often adopted global and class-level variables for
controlling the configuration of the Neutron server.
If-related fixes. These changes fix the code by modify the control
flow, such as: by surrounding an existing statement, or block of
statements, with an if construct; by adding a new statement or block
of statements together with an if construct; and by adding a new
boolean condition to an existing one. We found clusters of this kind of
changes among Nova (nova 474, nova 597, nova 629, and
nova 197), Neutron (neutron 20), and Cinder (cinder 438,
cinder 627). These bug-fixes handle corner cases in the user inputs
and configuration, such as in the examples of Listing 4 and Listing 5.

+ if not CONF
. workarounds . disable_group_policy_check_upcall :
_do_validation (context , instance , group_hint )

Listing 4: Surround single statement with if construct. Change
No.: 442736. URL: https://review.openstack.org/c/442736/27/
nova/compute/manager.py, line 1307

- if spec_obj.image else None
+ if spec_obj

.image and 'id' in spec_obj.image else None

Listing 5: Add new condition to an existing one. Change No.
543595. URL: https://review.openstack.org/c/543595/1/nova/
scheduler/filters/isolated hosts filter.py, line 64

Adding function calls. The clusters neutron 13, neutron 14,
neutron 23, and cinder 14 include fixes that add function
calls. In these bugs, developers missed a function call, which caused
omissions in the workflow of resource management. These issues
mostly affected Neutron and Cinder, due to the nature of APIs in
these projects. These projects have APIs for propagating across nodes
a global view of the state of the data center (such as, the topology
of virtual networks), which should be called whereas the state of
resources is updated (such as, a network node is added or removed).
However, these API calls can be easily omitted since they do not
return data that are used afterward; for example, in Listing 6, a
function call was missing after the update of a subnet.

if cidr == default_ipv6_lla :
+ cidrs.discard(cidr)

continue

Listing 6: Add a function call. Change No.: 491409. URL:
https://review.openstack.org/c/491409/11/neutron/agent/
linux/interface.py, line 125

Data structure-related fixes. The clusters neutron 132 and
cinder 621 include fixes that add a new pair (key,value) to
a Python dictionary (i.e., the Python data type for associative arrays),
in order to fix the layout of the data structure. The OpenStack projects
make extensive use of complex data structures to represent the several
attributes of virtual resources, such as instances, images, and so on.
For example, Listing 7 shows a bug-fix that adds a new entry in a
dictionary that represents an ARP table in a Neutron component.

arp_table = {'ip_address ': ip_address ,
'mac_address ': mac_address ,
'subnet_id ': subnet ,

+ 'nud_state ': nud_state}

Listing 7: Add new key value to a dictionary. Change No.:
554729. URL: https://review.openstack.org/c/554729/3/neutron/
db/l3 dvr db.py, line 918
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Exception handling fixes. The bug-fixes in the cluster
cinder 583 address missing exceptions, by adding try-
except blocks around existing code. Listing 8 shows an example of
bug-fix that addresses the case of an exception raised by NetApp
(one of the several backend drivers supported by Cinder) when the
callers try to delete a volume that does not exist.

+ try:
self. zapi_client . destroy_lun (metadata['Path '])

+ except netapp_api . NaApiError as e:
+ if e.code == netapp_api . EOBJECTNOTFOUND :
+

LOG.warning(_LW (" Failure deleting LUN %( name)s."
" %( message)s"), {'name ': lun_name , 'message ': e})

+ else:
+ error_message

= (_('A NetApp Api Error occurred: %s ') % e)
+ raise

exception. NetAppDriverException ( error_message )

Listing 8: Surround function call with Try-Except block. Change
No.: 491962. URL: https://review.openstack.org/c/491962/1/
cinder/volume/drivers/netapp/dataontap/block base.py, line 284

Replace string arguments in function call. The cluster cin-
der 1168 includes bug-fixes that modify a string argument in a
function call. Listing 9 shows an example in which the string parameter
is used to represent a path in the filesystem. These issues were recur-
rent due to the frequent use of external Linux commands in OpenStack.
For example, Cinder uses administration utilities for handling storage
volumes (e.g., tgtadm for SCSI, ietadm for iSCSI, etc.), and
basic Linux commands for handling files (e.g., touch, tee, etc.).

- (out , err) =
self. gpfs_execute (' mmlsconfig ', 'clusterId ', '-Y ')

+ (out , err) = self. gpfs_execute
(self.GPFS_PATH + 'mmlsconfig ', 'clusterId ', '-Y ')

Listing 9: Incorrect string parameter. Change No.: 491962. URL:
https://review.opendev.org/c/465961/2/cinder/volume/drivers/
ibm/gpfs.py, line 211

Deleting code bug-fixes. The clusters nova 132 and
nova 1099 include bug-fixes that remove surplus code.
For example, in Listing 10, the fix removed a parameter in excess
(retry on request) from an API call since that argument
become deprecated after an update of the class wrap db retry
(where retry on request is always enabled). In general, surplus code
occurred because of regressions, such as, APIs that are deprecated or
that adopt new calling conventions, or changes in third-party software
that is included in the project, or incorrect new code that is reversed
to a previously-working version.

@require_context
- @oslo_db_api . wrap_db_retry ( max_retries

=5, retry_on_deadlock =True , retry_on_request =True)
+ @oslo_db_api . wrap_db_retry

( max_retries =5, retry_on_deadlock =True)

Listing 10: Remove keyword parameter from function call.
Change No. 501073. URL: https://review.openstack.org/c/
501073/1/nova/db/sqlalchemy/api.py, line 64

From our analysis of the clusters, we make the following obser-
vations on the general trends that we observed in bug-fixing changes.

Observation 1. A minority of bug-fix patterns matches
the ones found in previous studies on Java and C software.

In particular, this group of bug-fix patterns includes the ones in
the If-related category, which is one of the larges category found
in our analysis (18% in Fig. 5). These patterns are consistent with

other studies on bug analysis [4], [6], [8]–[13], which found recurring
issues that were fixed in the control flow (e.g.,the checking and
algorithm categories in the ODC classification). These patterns were
also consistently found across all of the Python projects. There were
other bug-fix patterns that were similar to the ones found in previous
studies, which include bug-fix that added a function call and the
replace arguments in a function call (e.g., the interface category in
the ODC classification). However, these patterns were not consistent
across the projects, as they were only found in Neutron and Cinder,
as discussed in the Observation 3.

Observation 2. Several patterns are related to the data
structures and rules of the Python language, and are
common across projects.

There were bug-fix patterns dependent on the Python language
used for the projects. In particular, the bug-fixes involving data struc-
tures affected Python dicts, which are a common way to represent
data in this language. Therefore, it is reasonable to expect that a
noticeable share of bug-fixes affect these constructs, such as in their
layout or in the contents of the data structures. Moreover, the adding
arguments bug-fix patterns (32% in Fig. 5) seem also favored by the
rules of the Python language. Differing from C and Java, the Python
language makes easier for developer to have optional parameters
in function calls, where a default value is assumed by the function
if no parameter is passed at the call site. Therefore, while previous
studies [12], [13] found bugs in C and Java software where wrong
parameters were passed (e.g., using a wrong variable or an incomplete
arithmetic expression), in our analysis the parameters were mostly
missing. These bugs were recurrent across the OpenStack projects.

Observation 3. Most bug-fix patterns are project-
specific, as they are induced by API conventions, by the
QA and testing process of the project, and the programming
idioms used by developers.

We found several bug-fix patterns that were specific to only some
of the OpenStack projects. One of the causes was the design of
APIs in the Neutron and Cinder projects, which developers had to
call throughout many different places of the codebase in order to
keep updated the global state view; these calls were often omitted,
and were later added by bug-fixing changes. In the case of the
Cinder project, bugs with wrong string parameters were related to
invocations of external Linux commands, as these utility programs
are often used for system administration purposes. Another cause
of project-specific patterns were regressions in Nova, which were
fixed by deleting surplus code, going back to a working version of
the code. The occurrence of regressions can be related to the testing
and QA process of the projects since a less effective process can lead
to more regressions that are later addressed by bug-fixing changes.
Finally, project-specific patterns were related to the programming
idioms adopted in the project. For example, in the Nova project, many
bug-fixes initialize a variable with a constant since such variables
are often used in the projects for global or class-level configurations.

These observations provide information on which bug-fixing
patterns apply to Python software. While some of these patterns are
consistent across programming languages and projects, other ones
are either influenced by the language or by the nature of the project.
When pursuing tasks based on code mutations, such as automated
program repair or fault injection, this finding motivates the calibration
of code change patterns according to the specific project at hand. In
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the following section, we focus on the context in which these code
changes should be performed.

V. ANALYSIS OF where BUG-FIX CHANGES ARE MADE

In this analysis, we consider the features about the code
surrounding the bug-fixing change. Since we have a large number of
context features, we simplify the presentation of results, by grouping
context features in 17 categories with descriptive names. The first
two sets of categories constitute the outer context, while the last set
of category forms the inner context. In particular, we considered:
• 3 categories to group the feature of the including scoped node:

Class Size, Function Size, Module Size (cfr. subsection III-C);
• 8 categories to group the features representing the closest ancestor

that includes the bug-fix: Closest Definition, Closest Exception,
Closest Iteration, Closest Selection, Closest Access, Closest Call,
Closest Assign, and Closest Size (subsection III-C);

• 6 categories to group the inner context features: Assign Operators,
Control Flow, Data Containers, Functions, Globals and Special
Operators (i.e., Python operators such as print, raise,
return, with, etc.).
TABLE IIIa, TABLE IIIb, and TABLE IIIc show an overview on

what context exists for a bug-fix cluster. Each table presents the clus-
ter ID on the columns (see section IV for detailed descriptions of
the clusters), and the 17 context feature categories on the rows. In the
table cells, the checkmark symbol (!) points out that a given context
feature is statistically relevant for the cluster according to the Dunn test
(i.e., the bug-fixes in the cluster show a significant deviation of the met-
ric compared to the norm of the other changes; see subsection III-E).

Every cluster exhibits several context features with relevant
deviations. Consequently, the context in which a bug-fix was made
should not be overlooked, as it provides characterizing information
for the bug-fix pattern. Moreover, all of the feature categories for both
the outer context and inner context exhibit a statistically-significant
relevance for at least one project. Therefore, the answer to the
research question in section III-E is positive: the context is relevant
in the characterization of bug-fix changes.

For example, by focusing on the outer context features, we can
notice that almost in all clusters for Nova and Cinder, the context
of a bug is characterized by the Function Size. This feature includes
the number of function arguments, the size of the function body, and
whether the function definition is marked as private. This implies
that testing and repair algorithms should seek for functions with large
functions in order to apply these code change patterns.

Figure 6 shows a visual example for two clusters where the
Function Size is respectively relevant, and not relevant, for the cluster.
The three box plots show the variation of the Function Size feature
across the whole dataset (first box), the nova 629 bug-fix pattern
(second box) and the nova 1097 bug-fix pattern (third box). There
are no relevant differences between the bug-fix pattern nova 1097
and the control group (all), while the cluster nova 629 has a mean
which is significantly greater than the control group. Therefore, we
consider the Function Size feature as statistically relevant to describe
the context of the bug fix pattern nova 629, as confirmed in the
Table IIIa by means of the Dunn test results.

Across the OpenStack projects, some context feature classes are
more frequent than others. For example, the inner context feature
category Function describes 6 out of 11 bug patterns in Nova, 6 out of
8 bug patterns in Neutron, and 7 out of 8 bug patterns in Cinder. The
metrics in the Function category include the number of arguments
and keywords were added/removed in a function call, or newly added
function calls, and how many function calls appeared in a block
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Fig. 6: Comparison of the Function Size context feature in two
clusters against the control group (i.e., the all group).
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Fig. 7: Distribution of the number of arguments for the Closest call
context feature.

inside the bug-fix (e.g., a block of statements that was surrounded
by a new if ). Regardless of the bug-fix pattern (e.g., If-related, Data
structure, etc.), in the majority of the cases, the context of bug-fix is
characterized by the presence of function calls. Another important
category of inner context features is Data Containers. These features
keep track of the presence of special Python data structures (e.g.,
dicts, lists, tuples) within the statements that were changed by
a bug-fix. For example, the context feature for dicts counts how
many keys and values appeared in expressions that were added or
removed by the bug-fix. Therefore, these bug-fixing patterns tend to
occur in the context of complex expressions and data-structure layouts.

Similarly, the Closest Call and the Closest Attribute categories
are relevant context features for all of the clusters of the type Adding
arguments (Table II), where the bug-fix adds parameters to a function
call. These categories bring useful information to characterize the
change patterns in these clusters. In particular, the Closest Call
category includes features for counting the number of arguments in
the fixed function call (beyond the argument that is added by the
bug-fix). A closer analysis of this feature tells us that the Adding
arguments bug-fix applies mostly to function calls that already have
some parameters. Figure 7 shows the distribution of the number of
arguments of the function call fixed by the changes. On average, the
number of arguments settles between 2-3 for the bug-fixing patterns;
only in a few cases the fixed function call had 1 or no parameters.
This observation improves the characterization of bug-fixing changes
that add parameters: it points out that these bug-fixing changes do not
uniformly apply to all function calls, and that new parameters tend to
be added on function calls that already take several input parameters.

Finally, we can notice differences across the Nova, Neutron, and
Cinder projects. For example, if we focus on the features on the scoped
nodes that include the change (i.e., module size, class size, and func-
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TABLE III: Context features class and BUG-FIX clusters for Nova, Cinder and Neutron.

(a) Nova

Features Bug Cluster (Nova Project)
128 131 132 197 228 238 474 597 629 1097 1099

Module Size ! ! ! ! ! ! ! ! !

Class Size ! ! ! ! !

Function Size ! ! ! ! ! ! ! ! !

Closest Definition !

Closest Exception ! !

Closest Iteration ! !

Closest Selection ! !

Closest Attribute ! ! ! ! ! !

Closest Call ! ! ! ! !

Closest Assign ! !

Closest Size ! ! !

Assign Operators ! ! ! ! !

Control Flow ! ! !

Data Containers ! ! ! ! ! ! ! ! !

Function ! ! ! ! ! !

Globals ! !

Special Operators

(b) Neutron

Features Bug Cluster (Neutron Project)
13 14 20 23 74 119 132 209

Module Size !

Class Size !

Function Size ! ! !

Closest Definition ! ! ! !

Closest Exception

Closest Iteration ! ! !

Closest Selection !

Closest Attribute !

Closest Call !

Closest Assign ! !

Closest Size !

Assign Operators ! ! ! !

Control Flow !

Data Containers ! ! !

Function ! ! ! ! ! !

Globals !

Special Operators

(c) Cinder

Features Bug Cluster (Cinder Project)
14 115 438 542 583 621 627 1168

Module Size ! ! ! ! ! !

Class Size ! ! ! ! !

Function Size ! ! ! ! ! ! !

Closest Definition ! ! !

Closest Exception
Closest Iteration

Closest Selection ! ! !

Closest Attribute ! ! !

Closest Call ! ! !

Closest Assign

Closest Size ! ! !

Assign Operators ! ! ! ! ! !

Control Flow ! ! !

Data Containers ! ! ! ! !

Function ! ! ! ! ! ! !

Globals ! !

Special Operators !

tion size), the results show some similarities between Nova and Cinder,
and differences between them and the Neutron project. In the Neutron
project, it seems that the size of modules, classes and functions, and
the number of their arguments, is less relevant than for the Nova and
Cinder projects. This result points out that the context for applying
code changes needs to be calibrated with respect to the specific project.

VI. THREATS TO VALIDITY
We here review the main potential threats that can affect the

validity of results, and how we mitigated them.
Construct validity refers to the relationship between the theory

and the observation. A threat is that OpenStack revisions include code
changes not related to bug-fixes (e.g., new features, documentation,
refactoring, etc.). To avoid this threat we selected only revisions having
a description with specific keywords (e.g., fix, see section III). Since
this text is filled out by humans, it is possible to wrongly include in
the analysis also non bug-fix changes (e.g., the expression “fix code
programming style” refers to refactoring changes but includes the term
fix). To avoid these cases, we classified and excluded these changes
by manual inspection during the post-hoc analysis of the clusters.

Internal validity relates to any confounding factor that could
influence the results of the study. In this work, internal validity threats
can be due to the manual classification step of the bug-fix clusters.
A first threat is that we inspect a sample of items in each cluster (i.e.,
we select five elements) to decide if the cluster is a bug-fix pattern or
if it is another kind of code change (e.g., refactoring, bug-fix induced,
etc.). To mitigate this threat, we select the group of bug-fix to inspect
randomly to avoid any correlation with time. A second threat is due
to the manual classification that could potentially bias the results.
To reduce the risk of this threat, each bug-fix pattern is independently
classified by three authors, and combined through majority voting.

External validity relates to the possibility of generalizing the
results of the study. This study focused on the three major OpenStack
projects (i.e., Nova, Neutron, and Cinder). Even if our methodology
is applicable to other projects, the bug-fixing patterns we found do
not necessarily apply to other projects. However, the three projects
we consider are large and diverse enough to get interesting insights
on the similarity of bug-fixing patterns across different projects and
across different languages (e.g., Python versus C and Java), and on
the relevance of the context features. The diversity of the projects
was reflected by differences in terms of project-specific patterns, due
to the programming idioms, API conventions, and QA process of

the projects, and in terms of the different context features that are
relevant for the bug-fix patterns. This diversity allowed us to draw
observations on the variability of patterns and on the relevance of
context features in three large Python projects.

Reliability validity relates to the possibility of replicating this
study. To ease replication of this study, we published the whole
dataset with all of the features (code change and context), along
with the PySA tool. Moreover, in section III we provided detailed
information on the methodological steps, algorithms and software
involved, and choice of parameters.

VII. CONCLUSION

In this paper, we propose an approach for analyzing bug-fixing
changes, not limiting to what has been changed, but also considering
where the change was made. We analyze bug-fixing changes by using
a clustering approach on a set of features on the code change, in order
to identify recurrent patterns. Furthermore, we investigate the context
of the bug-fix by analyzing an additional set of features derived from
the code that surrounds the code change.

We applied the methodology to analyze bug-fixing changes in
the OpenStack cloud computing platform, which is one of the most
complex and widespread Python project, as it is the basis for several
commercial products and services. We found that in some cases
the bug-fix patterns are consistent with previous studies made on
Java and C software, but in many other cases the bug-fix patterns
are influenced by the Python language. Additionally, some recurrent
patterns are strictly related to the nature of the specific project. The
analysis of where the change occurred pointed out that bug-fixes are
in all cases located in specific source-code contexts.

The results of this study are valuable for several software
engineering tasks that rely on knowledge of recurrent characteristics
of software bugs. For example, mutation and fault injection testing
will benefit in terms of decreasing the search space for mutants
and the number of potential locations for injecting faults. A future
direction for this work is to leverage these results by incorporating
them into software engineering techniques and tools, such as in the
context of fault injection and mutation testing.
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APPENDIX A
RESEARCH STUDIES IN THE AREA OF BUG-FIXING CHANGES.

Reference Purpose Language Number of projects Dataset Findings

Tufano et al. [1] Mutation Testing Java

GitHub
projects between March
2011 and October 2017

on GitHub Archive)

10,056,052
bug-fixing commits

The generated mutants perfectly correspond to the original buggy code in 9% to 45%
of cases (depending on the model). Furthermore, the specialized models are able
to inject different types of mutants. Mostly, the type of mutants is related to deletion
of method calls, on deletion and replacement of an argument in a method call, on
if-else blocks and its logical conditions, deleting and replacing variable assignments.

Brown et al. [2] Mutation Testing C The top 50 project
repositories in GitHub

∼600,000
commits containing
∼20 million individual

diff blocks spanning
850 million lines of text.

The authors provide an approach to automatically harvesting mutation
operators—wild-caught mutants and compare the capabilities of the harvested muta-
tion operators to those of existing studies. The proposed approach produces novel mu-
tation operators, in turn creating defects that are about as difficult to kill as those aris-
ing from existing synthetic mutation operators. For example, the authors found new
mutation operators like the missing call to a one-argument function whose return type
is equal to its argument’s type, direct access of field, and specific literal replacements.

Zhong et al. [3] Automatic
Program Repair Java

5 projects (Aries,
Cassandra, Derby,

Lucene/Solr, Mahout)

9,000
real-world bug fixes

The authors found the most frequent actions related to the bug-fix, focusing on the
AST node type of JDT library. According to that, the top 3 actions (addition, deletion,
and modification) belong to JavaDOC, ExpressionStatement, MethodDeclaration,
and ReturnStatement. However, there is an open discussion whether changes on
documentation should be considered as bug-fixes or not. Furthermore, the authors
found that in most cases a bug-fix consists of multiple edit actions, thus fault
localization tools could found only 1 bug precisely.

Soto et al. [4] Automatic
Program Repair Java

554,864 Java projects
from 2015 September

Github repository
offered by Boa

4,590,679
bug fixing commits

The most common pattern observed is ABC (add or remove a branch condition);
and the least common pattern is AOB (adding an array out of bound checker). If we
conservatively assume that these patterns never appear together, they cover 14.78%
of buggy files.

Koyuncu et al. [5] Automatic
Program Repair Java 50 large and popular

open-source projects 8,009 patches

The top 5 clusters found are: (i) Method reference modification, (ii) Variable
declaration statement modification, (iii) String value modification in method call,
(iv) Method call parameter modification, (v) Constant modification in declaration
statement. Furthermore, in the 80% of the cases FixMiner generates patches that
are correct to be used in APR task. The closest related works [39], [40], achieve
respectively 26% and 70% of correctness.

Lin et al. [6] Bug characterization Python

10 python projects
(Django, Tornado,
Pandas, Pylearn2,

Numpy, Scipy, Sympy,
Nltk, Beets, Mopidy)

132,294 commits

In most projects studied, Function Change and Statement Change are the most
common change types. Loop Structure Change is the most uncommon change type.
The distributions of change type frequency share similar trends across studied projects.
There are no significant differences among the distributions of change type frequency
across studied domains. In the studied projects, if structure related change types
are more related to bug-fix, especially Conditional Expression Update and If Insert.

Musavi et al. [7] Bug characterization Python

Openstack
project (the Nova,

Swift, Heat, Neutron
and Keystone projects)

221,671 commits from
2010-05 to 2015-02

The authors found that in the 56% cases the cause of API failures is due to Small
programming faults, i.e., trivial programming mistake (e.g., the developer changes
the default value of a variable to another value). The next most common type of
fault (14%) is major programming faults. Configuration faults (14%).

Osman et al. [8] Bug characterization Java 717 Java projects
190,821 code changes

corresponding to
94,534 bug-fix commits

In the 53% of case, bug-fixes involve only one line of code. Specifically for bug
characteristics: (i) More than 48% of bugs are about missing NULL checks; (ii) Other
most frequent bug are Missing Invocation Method and Wrong Parameters/Method.

Pan et al. [9] Bug characterization Java

7 Java projects
(ArgoUML, Columba,
Eclipse, JEdit, Scarab,

Lucene, and MegaMek)

20,270 number of
revisions, within 6,978

number of commits

In that study, the authors found 27 bug fix patterns, which include If-related (IF),
Method Call (MC), Loop (LP), Assignment (AS), Switch (SW), Try (TY), Method
Declaration (MD), Sequence (SQ), and Class Field (CF). The most common
categories of bug fix patterns are Method Call (MC, 21.9–33.1%) and If-Related (IF,
19.7–33.9%). The most common individual patterns are MC-DAP (method call with
different actual parameter values) at 14.9–25.5%, IF-CC (change in if conditional)
at 5.6–18.6%, and AS-CE (change of assignment expression) at 6.0–14.2%.

Martinez et al. [10] Bug characterization Java 6 projects 33,365
revisions, 6,233 commits

For instance, adding new methods (MD-ADD) and changing a condition expression
(IF-CC) are the most frequent patterns while adding a try statement (TY-ARTC)
is a low frequency action for fixing bugs.

Fluri et al. [11] Bug characterization Java

3 projects
(jEdit, JFreeChart, and
Webframework (a com-
mercial Java framework
for web applications))

30,930 revisions
with 229,604 changes

The authors found 2 top clusters for if-statement and throw statement inserts for
JEDit e JFreeChart projects. About WebFramework project, the top clusters are about
Constructor invocation changes, Return type based method renaming, Introducing pre-
fixed parameter names, Introducing single exit, Change existing exception handling.
The authors do not provide any quantitative information for the patterns found.

Duraes et al. [12] Fault Injection C

12 projects (CDEX, Vim,
FreeCiv, pdf2h, GAIM,

Joe, ZSNES, Bash,
Linux Kernel, Firebird,
MingW, ScummVM)

668 bugs

According to the ODC classification, the authors found that: (i) Algorithm class are
the dominant faults (40.1%). In particular, the 2 most frequent are about Missing IF
construct plus statements (30%) and Missing Function Call (26%); (ii) Assignment
faults have approximately the same weight as Checking faults (21.4% and 25%);
(iii) Interface and Function faults are the less frequent ones (7.3% and 6.1%).

Basso et al. [13] Fault Injection Java
6 projects (Azureus

Vuze, FreeMind, JEdit,
Phex, Struts, Tomcat)

574 bugs
According to ODC classification, the 2 most frequent fault type are Missing
Functionality and Missing if construct plus statements (30%). The third most frequent
(10.5%) is Missing Function Call fault.

Neamtiu et al. [14] Refactoring C
5 projects (Apache,

OpenSSH, Vsftpd, Bind,
and the Linux kernel)

N/A

The authors found that: (i) the function and global variable additions are far more
frequent than deletions; (ii) the rates of addition and deletion vary from program
to program; (iii) the function bodies change quite frequently over time, but function
prototypes change only rarely; (iv) the type definitions (like struct and union
declarations) change infrequently, and often in simple ways.

Silva et al.[15] Refactoring Java 7 projects N/A
The authors propose a tool for detecting 12 well-known refactoring types [25].
The proposed approach achieved the best result among the evaluated tools in the
state-of-the-art, with a Precision of 1.00 and Recall of 0.88.

Hora et al. [16] Refactoring Java 15 large projects in Java

The commits
range from 1,025

(Android Image Loader)
to 39,389 (Kotlin)

The most frequent untracked changes happen at the method level and are due
to Rename Method (26%), Extract Method (23%), and Move Method (22%). In
contrast, the least frequent ones are due to Extract Superclass (<1%), Extract
Interface (1%), and Push Down Method (1%). The ratio of untracked changes ranges
from 10% to 21% for methods, and from 2% to 15% for classes. Thus, the threat
is more frequent at the method level.
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