
Future Generation Computer Systems 99 (2019) 164–176

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Overload control for virtual network functions under CPU contention
Domenico Cotroneo, Roberto Natella, Stefano Rosiello ∗

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università degli Studi di Napoli Federico II, Via Claudio
21, 80125, Naples, Italy

h i g h l i g h t s

• Resource contention is a common cause of overload in virtualized infrastructures.
• CPU contention causes side effects on the QoS of time-critical applications.
• Guest OS CPU metrics are often misinterpreted when dealing with CPU contention.
• NFV Load throttling solutions can misbehave in the case of physical CPU contention.
• Avoiding idle CPU time preemption helps to protect systems from contention effects.

a r t i c l e i n f o

Article history:
Received 18 April 2018
Received in revised form 21 February 2019
Accepted 3 April 2019
Available online 25 April 2019

Keywords:
Overload control
Resource over-commitment
CPU contention
Traffic throttling
Network function virtualization
IP Multimedia Subsystem

a b s t r a c t

In this paper, we analyze the problem of overloads caused by physical CPU contention in cloud
infrastructures, from the perspective of time-critical applications (such as Virtual Network Functions)
running at guest level. We show that guest-level overload control solutions to counteract traffic spikes
(e.g., traffic throttling) are counterproductive against overloads caused by CPU contention. We then
propose a general guest-level solution to protect applications from overloads also in the case of CPU
contention. We reproduced the phenomena on a IP Multimedia Subsystem (IMS) testbed based on
OpenStack on top of KVM. The results show that the approach can dynamically adapt the service
throughput to the actual system capacity in both cases of traffic spikes and CPU contention, by
guaranteeing at the same time the IMS latency requirements.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Overload conditions are a major cause of cloud service fail-
ures [1]. These conditions occur when the incoming traffic ex-
ceeds the available capacity (e.g., by tens, or even hundreds of
times). Overloads are not only due to exceptional traffic spikes
(e.g., due to mass events): an important, and often underesti-
mated, cause of overload conditions is the resource contention in-
side the cloud infrastructure, whose effect is to decrease the avail-
able capacity for serving the incoming traffic. The risk of resource
contention arises due to over-commitment of cloud computing
infrastructures, e.g., the provider incorrectly allocates resources
to too many users due to bad capacity planning or operator
mistakes [2,3]. Moreover, resource contention can also be caused
by faults in the infrastructure, e.g., a background service may
consume too much resources because of a software bug, a failed
update, or configuration problem [4,5].

To mitigate overload conditions, time-critical applications in-
clude overload control mechanisms at the guest-level (i.e., inside

∗ Corresponding author.
E-mail addresses: cotroneo@unina.it (D. Cotroneo), roberto.natella@unina.it

(R. Natella), stefano.rosiello@unina.it (S. Rosiello).

VMs), such as real-time rate adaptation [6], graceful performance
degradation through brown-out [7] and traffic shaping [8,9] to re-
ject the application-level traffic in excess. Unfortunately, physical
CPU contention at the infrastructure-level has severe side effects
on these existing overload control algorithms, which are designed
with only traffic spikes in mind. These algorithms collect resource
utilization metrics at run-time, in order to tune the amount of
traffic that can be accepted by the service [9–11]. To these al-
gorithms, traffic spikes and physical CPU contention both appear
as a saturation of the virtual CPU, but these conditions need to
be managed differently. As an example, when CPU contention
occurs, the virtual CPU of the VM becomes saturated since the
hypervisor schedules less virtual CPU time, in order to share the
physical CPU among several competing VMs and host processes.
Such condition can be misinterpreted by the application as a
traffic spike. If the application discards part of the incoming traffic
to compensate for CPU saturation, the hypervisor can preempt
more virtual CPU time form the VM (i.e., the CPU bandwidth that
has just been freed by discarding traffic) in favor of the competing
VMs, leading again to a saturated virtual CPU. This sequence of
events triggers a vicious cycle that degrades the quality of service
(QoS).

https://doi.org/10.1016/j.future.2019.04.007
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.04.007
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.04.007&domain=pdf
mailto:cotroneo@unina.it
mailto:roberto.natella@unina.it
mailto:stefano.rosiello@unina.it
https://doi.org/10.1016/j.future.2019.04.007


D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176 165

In this paper, we analyze the problem of overloads that are
caused by physical CPU contention, and address the limitations
of traditional traffic throttling at handling these conditions. We
study this problem in the context of virtual network functions
(VNFs), i.e., network appliances implemented in software, and
deployed on industry-standard COTS hardware and cloud com-
puting technology, which are becoming very popular due to the
increasing industry interest in the Network Function Virtualization
(NFV) paradigm. Virtual network functions are a class of cloud
applications with very strict performance and high-availability
requirements, where the overload problem assumes a critical
importance. The contributions of this paper include:

• We present a critical discussion of the problem of over-
load control from the perspective of time-critical applica-
tions deployed on virtualization technology. In particular,
we analyze the issue of detecting physical CPU contention
using guest-level CPU utilization metrics, and how this issue
impacts on overload control algorithms.

• We propose a solution to enhance overload control algo-
rithms, by making them able to handle overload condi-
tions caused both by traffic spikes, and by physical CPU
contention.

• We present a experimental study of overload control al-
gorithms with respect to both traffic spikes and physical
CPU contention, in the context of an NFV-oriented IMS case
study. The results demonstrate that existing overload con-
trol algorithms are vulnerable to physical CPU contention,
which can cause severe latency degradation. Moreover, we
show that the proposed approach is robust against physical
CPU contention, as it can assure that the IMS application
can guarantee low latency and high throughput at the same
time.

The key point of the proposed solution is that it is designed
to be deployed with the application at the guest-level (i.e., in-
side a VM). This aspect is especially relevant in the case of
NFV Infrastructures-as-a-Service (NFVIaaS), where a time-critical
VNF has little visibility and control on the underlying physical
resources (e.g., on scheduling priorities at the physical CPU level).
To the best of our knowledge, no previous work has addressed
the problem of physical CPU contention from the guest-level
perspective. Moreover, the proposed solution is complementary
to recovery mechanisms at the infrastructure-level, by mitigating
the overload during the period while the infrastructure recovers
the available capacity (e.g., through elasticity and migration),
which can take several minutes [12,13].

In the following, we introduce the problem of physical CPU
contention in Section 2. We present the proposed overload con-
trol strategy in Section 3, and the experimental evaluation in
Section 4. Section 5 discusses related work. Section 6 concludes
the paper.

2. Overview of CPU overloads and CPU utilization metrics

In this section, we expose the problem of overload conditions,
how to interpret CPU utilization metrics, and the pitfalls for
overload control strategies when using these metrics.

Ideally, the input traffic for a service should not exceed its en-
gineered capacity, that is, the maximum amount of input traffic
that can be served while achieving SLAs. SLAs typically require
a low probability of failures (such as, traffic loss or processing
errors) and low latency (such as, the time to process or respond
to an individual traffic unit). These requirements are especially
demanding in the case of the telecom domain [14,15], where the
engineered capacity is carefully planned at design time, by allo-
cating computing resources according both to cost considerations,

and to the expected reference workload: for example, according
to the expected rate of busy-hour call attempts (BHCA) in the case
of a VoIP service.

In the context of IaaS, the designers of VNFs need to plan in
advance the flavor and the expected amount of VMs; for example,
a common rule-of-thumb is to plan for VMs such that each VM
consumes at most 90%, or some other threshold (the engineered
level), of the available virtual CPUs under the reference workload,
leaving a small amount of residual capacity as a factor of safety [1,
16]. Overload conditions saturate the capacity of virtual CPUs; in
these cases, the VNFs should throttle the input traffic (i.e., rate-
limit by dropping or rejecting requests) in order to assure that the
traffic processed by the VNFs is within the engineered capacity
and can meet the SLAs. This strategy is further discussed in
Section 3.

Physical resource contention is a special case of overload con-
dition, in which the available capacity of the VNFs is reduced due
to competition. However, the behavior of the system is different
than the case of traffic spikes. To illustrate the problem, we
consider thorough the paper a generic example (in Fig. 1) of a
VNF with a 1-GHz virtual CPU, deployed on a 2-GHz physical CPU.
Therefore, the CPU quota of the VM is 50% of the physical CPU.
In this example, we assume that the engineered capacity of the
VNF uses 75% of the virtual CPU under the reference workload.
From inside the VM (Fig. 1, CASE 1), the OS measures the virtual
CPU utilization by counting the virtual CPU cycles that have been
spent busy at executing applications or the OS kernel, and idle at
waiting for I/O or without any workload (i.e., vCPU utilization =

busy/busy+idle). When the input traffic overloads the VNF (Fig. 1,
CASE 2), the virtual CPU utilization raises to 100% to serve all
of the traffic, and hits the CPU quota at 1 GHz enforced by the
hypervisor.

In addition to these metrics, we also consider the CPU steal
time metric, which is also influenced by overload conditions, but
can be mistakenly considered as an indicator of physical CPU
contention. We use the name ‘‘CPU steal’’ in reference to the
metric available in Linux and in the KVM and IBM z/VM hyper-
visors [17–19]; an equivalent metric is also available in other
hypervisors such as VMware ESXi, Xen and Microsoft Hyper-
V, respectively under the name ‘‘CPU Stolen Time’’ [20,21] and
‘‘CPU Wait Time Per Dispatch’’ [22]. This metric is provided by
hypervisors to VMs, e.g., through hypervisor calls. In all these
systems, this metric is technically defined as the time that a virtual
CPU is ready to execute, but it is waiting to execute on the physical
CPU. In other terms, the metric represents the time spent by
the virtual CPU on the hypervisor’s scheduling queue. The term
‘‘steal’’ refers to CPU cycles that a VM spends waiting because
either the hypervisor or other VMs are using the physical CPU
(for example, the hypervisor is using CPU cycles to emulate an
I/O device). However, in most situations no CPU cycle is actually
‘‘stolen’’ from the VM, as the hypervisor still assures the CPU
quota for the VM, and that the VM is eventually scheduled; it
would be better understood as an ‘‘involuntary wait’’ time. For
example, in the CASE 2 of Fig. 1, the VM is put on hold after that it
consumes its virtual CPU quota; thus, the rest of the physical CPU
time is accounted as ‘‘steal time’’ from the perspective of the VM,
since it is waiting on the scheduling queue. Even in the case of
low workload, it is still possible that a moderate share of CPU time
is accounted as stolen, e.g., when two VMs are sporadically ready
to execute at the same time. Thus, steal time is not a sufficient
condition for an overload condition.

The third scenario involves physical CPU contention (Fig. 1,
CASE 3). In this case, we are assuming that 3 VMs with equal
priority are scheduled on the same physical CPU (e.g., because of
overcommitment, bug or misconfiguration of the infrastructure).
The 3 VMs all have a CPU quota set to 1 GHz, and an engineered



166 D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176

Fig. 1. CPU utilization metrics under three scenarios.

capacity that uses 75% of the virtual CPU (as in the previous two
scenarios). Since the total CPU demand (0.75 · 3 GHz) exceeds
the capacity of the physical CPU (2 GHz), the hypervisor equally
divides the CPU bandwidth among the VMs, where each virtual
CPU actually gets a slice (fair share) of 0.66 GHz (i.e., 33% of the
physical CPU time). Since the VNF is ready to execute even after
consuming this slice (as the workload exceeds the virtual CPU
capacity), the rest of the physical CPU time (66%) is accounted
as steal time for the VM.

Both in CASE 2 and CASE 3 of Fig. 1, the VNF is in an overload
condition. However, if the VNF is deployed on IaaS, it cannot
easily distinguish between the two cases, since the VNF cannot
inspect or control the underlying infrastructure. From the per-
spective of the VNF, only looking for high virtual CPU consump-
tion or for high CPU steal time does not suffice to discriminate
between a traffic spike or physical resource contention. The only
difference between the two cases is that the actual CPU share of
the VM (0.66 GHz) is lower than the original CPU quota (1 GHz).
Therefore, to address both these cases, the proposed overload
control approach throttles the workload by adapting to the CPU
share (either the quota or the fair share) that is actually available
to the VNF.

3. Overload control strategy

In this section we discuss the problem of overload control in
the context of NFV services. In detail, in Section 3.1 we present
a well known feedback-loop based overload control in order to
discuss how this kind of approaches can cause the problem of the
vicious cycle (Section 3.2) during physical cpu contention. Finally,
in Section 3.3 we propose an enhancement to the feedback-
loop based overload control along with a technique to avoid the
vicious cycle.

To recover from overload conditions, the long term solution
would be to meet the high demand by scaling up the computing
resources, or to relieve physical resource contention by shutting
down other services that have a lower priority or that are hogging
the resources.

However, these recovery actions can take several minutes,
even in an optimistic case. During this transient period, VNFs

Fig. 2. Network performance under overload conditions.

are still exposed to the risk of outages. This problem is exem-
plified in Fig. 2. Typically, the capacity of a VNF is designed to
support up to a reference load (point C1), in terms of requests
per seconds completed with an acceptable quality of service.
When a mass event or a cascade failure occurs, the network load
exceeds the reference load. If the network does not have enough
resources to process all of the incoming flows, then the individual
requests will not get enough computing resources to meet SLA
requirements. For example, even if many requests are processed
at the same time (the interval between the points C1 and C2
in Fig. 2), the latency of the responses can become exceedingly
long. Beyond a given point (point C2 in the Fig. 2), if the over-
load condition is not managed, the rate of successfully-processed
traffic can significantly degrade because of too much resource
competition [11,23]. Handling too much traffic also increases the
likelihood of software failures such as failed resource allocations,
timeouts, and race conditions [24,25]. Therefore, long-term re-
covery actions should be combined with short-term solutions for
throttling the traffic, in order to allow only the traffic that can
be processed with the currently available capacity entering the
system [8–10,26]. Ideally, using overload control, the network
should maintain a steady throughput (for example, no lower
than 90% of the engineered capacity (T*), the continuous curve
in Fig. 2) even under an overload condition.



D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176 167

Fig. 3. Chain of events caused by physical CPU contention.

3.1. Basic feedback control-based overload control

In the case of traffic spikes in VNFs (the CASE 2 in Fig. 1), the
throttling algorithm should reject part of the traffic, in order to re-
duce the virtual CPU utilization to the engineered capacity (i.e., to
return to the CASE 1 in Fig. 1). For example, increase/decrease
algorithms are a popular solution to tune the amount of traffic to
be accepted (e.g., the window size for packet flow control) [27–
29] by decreasing the traffic when the network is overloaded
(e.g., by a constant or multiplicative factor), or by increasing the
traffic otherwise. This approach has been recently applied in the
context of NFV [30], using a heuristic criterion to tune the traffic
that a VNF can serve (capacity):

capacity =
processed_traffic

current_vcpu_usage
· reference_vcpu_usage (1)

where the first factor estimates the cost per traffic unit (in terms
of virtual CPU cycles), which is multiplied by the reference virtual
CPU budget (i.e., the engineered level) to get the total amount
of traffic that can be correctly served. When the virtual CPU
utilization exceeds the engineered level, the heuristic drops a
percentage of the incoming traffic (drop rate):

drop_rate = 100 ·

(
1 −

capacity
incoming_traffic

)
(2)

in which the higher the gap between capacity and the incoming
traffic, the higher the drop rate. The drop rate is periodically
updated every few seconds, and is capped between 0% and 100%.
In the case of a traffic spike, the virtual CPU utilization increases,
thus the heuristic lowers the capacity and increases the drop
rate; as result, the virtual CPU utilization settles again around the
engineered level.

3.2. The control loop vicious cycle

The throttling heuristic presented in the previous section, may
not work correctly in the case of physical CPU contention. We
consider again the example of Section 2, where the physical CPU
contention leads to the following chain of events (see also the
Fig. 3):

1. Due to the contention, the hypervisor allocates less phys-
ical CPU time to the VM (0.66 GHz, as in the CASE 3 in
Fig. 1). As a result, the current workload saturates the
VNF, and the virtual CPU utilization becomes 100% (i.e., the
ratio busy/busy+idle), which is higher than the reference CPU
utilization (e.g., 75% in the example).

2. The heuristic increases the drop rate to reduce the load.
The virtual CPU utilization then settles around 75%. It is
important to note that the 75% of the virtual CPU is equal
to 0.66 · 75% = 0.5 GHz of physical CPU. The residual 25%
of the virtual CPU (i.e., 0.66 · 25% = 0.166 GHz of physical
CPU) becomes idle.

3. Due to the physical CPU contention, the hypervisor oppor-
tunistically schedules these idle CPU cycles for the demand
of other VMs or processes on the host machine. Thus, the
virtual CPU is not anymore idle, and virtual CPU utilization
becomes again 100%.

4. The heuristic further increases the drop rate, to reduce
again the virtual CPU utilization down to 75% (as in the
previous step 2). The virtual CPU now consumes 0.66 ·75% ·

75% = 0.375 GHz of physical CPU.
5. The hypervisor preempts again the idle CPU time. The

heuristic enters a vicious cycle where the virtual CPU uti-
lization is reduced more and more.

The vicious cycle is caused by the work-conserving behavior
of hypervisor schedulers (i.e., they ensure that the CPU is never
idle if there is at least one VM ready for execution) [31–33].
The VNF yields to the hypervisor part of its virtual CPU time, by
dropping part of the incoming traffic. In the case of physical CPU
contention, in which several VMs or processes on the host ma-
chine are demanding more CPU time than the available physical
CPU, the hypervisor scheduler uses the freed CPU cycles to meet
these demands. Then, the virtual CPU shrinks again and causes
the vicious cycle. In general, the feedback control loop approach
(not limited to the heuristics of Eqs. (1) and (2), but any other
control rule based on virtual CPU utilization) can be vulnerable
to physical CPU contention, due to the distortion of virtual CPU
utilization metrics.



168 D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176

Fig. 4. CPU utilization metrics under physical contention, with virtual CPU
placeholder.

3.3. Enhanced feedback control-based overload control

To address the problem of overload control under physical
CPU contention, we extend the feedback control loop approach
with an additional mechanism to break the vicious cycle. The
design goal of the approach is to assure that the VNF gets no
less than its fair share of the physical CPU even under contention
(e.g., 0.66 GHz in the previous example); and, at the same time,
that the virtual CPU utilization inside the VNF settles at the
engineered level (e.g., 75% of the virtual CPU in the example).
This condition is showed in Fig. 4: the available virtual CPU under
physical contention reduces to 0.66 GHz; since this virtual CPU is
not sufficient to reach the original engineered level (0.75 GHz),
we still apply the feedback control loop to reduce the virtual CPU
utilization down to 75% of the available virtual CPU (i.e., 0.5 GHz
of physical CPU). This is the same condition of the step 3 of the
vicious cycle; we break the cycle at this point, using the following
approach.

We introduce a mechanism into the VNF to avoid the pre-
emption of idle virtual CPU cycles under physical CPU contention.
This effect can be obtained in different ways depending on the
guest OS used in the VNF. The most generic approach is to add a
placeholder process (one process per virtual CPU of the VM) that
actively consumes virtual CPU cycles to avoid preemption by the
hypervisor; it executes a CPU-bound task for the sake of consum-
ing virtual CPU cycles. The placeholder process should execute at
minimal priority on the guest OS of the VNF; moreover, it should
be configured as a batch task in order not to take away any virtual
CPU cycle from the VNF software (i.e., the placeholder only uses
the virtual CPU when the VNF is not executing). For example, this
effect can be obtained on Linux by setting the SCHED_BATCH or
SCHED_IDLE scheduler class for the task [34], and on Windows
by setting an idle trigger [35]. Yet another approach is to config-
ure or to modify the idle loop of the guest OS [36]. As a result,
the placeholder takes the place of the idle time of the virtual
CPU, as in Fig. 4: at any given time, the virtual CPU is either

executing the VNF or the placeholder process, and the virtual CPU
consumes the residual physical CPU cycles granted by the hyper-
visor scheduler. This behavior breaks the vicious cycle, since the
hypervisor cannot preempt the virtual CPU cycles that are freed
by the feedback control loop. Moreover, settling the virtual CPU
utilization at the engineered level provides a ‘‘margin of safety’’
(e.g., to compensate for small randomworkload fluctuations) as in
the case of the original engineered level, since the VNF software
can preempt the placeholder process at anytime.

We enable the placeholder process on the condition that the
CPU steal time spans all the physical CPU not used by the VM.
This condition occurs when the VNF consumes its available virtual
CPU, either because of a traffic spike that saturates the virtual CPU
quota (CASE 2 in Fig. 1), or because of physical CPU contention
that reduces the available virtual CPU (CASE 3 in Fig. 1). We apply
the same solution regardless of which one of these two cases is
causing the saturation of the virtual CPU. The solution still applies
the feedback control loop, but excluding the CPU consumption of
the placeholder process from the virtual CPU utilization metric,
that is:

vCPU utilization =
busyall − busyplaceholder

busyall + idle
. (3)

For example, in Fig. 4, the virtual CPU utilization is 75% if
the utilization of the placeholder is not included. The virtual CPU
utilization metric (i.e., the dependent variable controlled by the
feedback loop) is thus not influenced by the presence of the
placeholder process (which only opportunistically consumes the
idle virtual CPU cycles). Therefore, in the case of traffic spikes,
the proposed feedback control loop still works as in previous
work [30]. In the case of physical CPU contention, the placeholder
avoids the interaction between the feedback control loop (that
frees the virtual CPU) and the hypervisor (that preempts the freed
virtual CPU), thus allowing the feedback control loop to work
correctly in this additional case.

Since CPU contention is a relatively rare event, we designed
the placeholder process not to execute when there cannot be
physical CPU contention. Since CPU steal time is a necessary
condition (even if not sufficient, as discussed in Section 2) for
physical CPU contention, the placeholder process remains idle
if there is no accounted CPU steal time (CASE 1 in Fig. 1). The
placeholder process becomes active (i.e., it consumes virtual CPU
cycles) once it detects that the CPU steal time has peaked (which
denotes that the virtual CPU is trying to exceed a limit), and
runs for a fixed amount of time Tactive. Once Tactive has elapsed,
the placeholder process returns in the idle state. Then, the place-
holder process inspects again the CPU steal time to check whether
the VNF is not anymore saturating its virtual CPU. If there is still
either a traffic spike or CPU contention, the placeholder process
continues to be active, repeating the check later. The Tactive should
be chosen according to the expected duration of the recovery
actions, such as for scaling out, hot-fixing a bug, or migrating
the services to another host machine. Eventually, the virtual CPU
executes again on a non-overloaded physical CPU.

4. Experimental analysis

We performed experiments on an NFV IMS system to repro-
duce the problem of physical CPU contention, and to evaluate
the effectiveness of overload control solutions, including both the
basic and the enhanced feedback control-based approaches.

We executed experiments on a testbed based on the Clear-
water open-source IMS system [37]. Clearwater is a complete,
commercial-grade implementation of the IMS core network, in-
cluding components (P-CSCF, S-CSCF, etc.) for SIP signaling, user
authentication and authorization, charging, and other IMS func-
tions. The architecture of the IMS is showed in Fig. 5. The IMS



D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176 169

Fig. 5. Architecture of the Clearwater NFV IMS.

components are intended to run in separate VMs and deployed on
cloud computing infrastructures, and to support load balancing
and horizontal scalability.

Our experimental testbed runs these components on three
Dell PowerEdge servers, equipped with two 8-core 2.6 GHz Intel
Xeon CPUs, connected by two Gigabit Ethernet networks, and
attached to a Fiber Channel storage area network. The physical
machines are managed using OpenStack (version Juno) and the
KVM hypervisor (based on the Linux kernel version 3.10). Each
Clearwater service is replicated in two VMs, configured with 1
virtual CPU and 4 GB of RAM; each VM runs one VNF instance,
and Ubuntu Linux 14.04 as guest OS. We use the SIPp workload
generator [38] to exercise the IMS with register and call-setup
requests. The IMS workload reproduces the typical message flows
between subscribers, according to the SIP protocol. These flows
are also adopted to test the Clearwater IMS, and the complete
scenario used in our tests is available online [39].

Therefore, our workload reproduces a stressful traffic pro-
file of 5 BHCA (i.e., Busy Hour Call Attempt) per user and 60
BHRA (i.e., Busy Hour Registration Attempt) per user. We regulate
the workload intensity by varying the number of subscribers in
order to reach the engineered level of the system. The engi-
neered capacity of the experimental testbed is 40,000 subscribers,
which can perform on average 660 registration requests and 55
call requests per second without SLA violations. The engineered
level for the virtual CPU utilization is 75% under this reference
workload.

We reproduce physical CPU contention by pinning an addi-
tional VM running a CPU-bound workload on the same physical
CPU core running VMs of the IMS. CPU pinning and CPU schedul-
ing affinities are often adopted as best-practices to optimize
latency-sensitive applications [40], since they can optimize mem-
ory access in NUMA architectures and reduce the hypervisor
scheduling latency. However, due to poor load balancing caused
by CPU over-subscription, these practices also represent a po-
tential cause of physical CPU contention. Moreover, manually
setting CPU affinities can increase the risk of contention problems
due to misconfiguration by the system administrators of the
infrastructure [41]. Thus, this CPU contention scenario can be con-
sidered representative of typical issues occurring in time-critical
applications running in virtualized environments.

In the following, we present and discuss three groups of ex-
periments:

1. In the first group (Section 4.1), we consider a basic over-
load control solution, using the feedback control loop and
heuristic that was introduced in Section 3. On this con-
figuration, we reproduce overload conditions both due to

Fig. 6. Performance of the IMS registrations during a 2.5x traffic spike
(450–900 s), using the basic feedback control loop.

traffic spikes and to physical CPU contention, in order
to show that the feedback control loop can degenerate
because of the vicious cycle.

2. In the second group of experiments (Section 4.2), we en-
hance the feedback control loop with the mechanism for
breaking the vicious cycle, and reproduce the same over-
load conditions to evaluate the proposed solution.

3. In the third group (Section 4.3) we evaluate how the per-
formance of overload control varies across different con-
ditions, by considering both the basic and the enhanced
feedback control loop solutions under different contention
patterns.

During the following failure scenarios, we analyze the registra-
tion attempts and the registration throughput which include both
new users and retries of failed attempts. After a failure, a user
starts a back-off period (uniform between 0 and 2 min) before
making a new registration attempt.

4.1. Basic feedback control-based overload control

We deployed the basic feedback overload control in the two
Clearwater VMs running the IMS P-CSCF network function, since
this component is a capacity bottleneck for our deployment con-
figuration. In a first experiment we reproduce a workload surge
which is 2.5 times higher than the engineered capacity level. The
experiment lasts 15 min and it consists of two phases: in the first
phase, we gradually introduce 40,000 subscribers and wait until
the workload reaches the steady state at engineered level; in the
second phase, starting at second 450 s, we introduce in the sys-
tem 100,000 additional subscribers, causing a workload surge and
the overload of P-CSCF components. Fig. 6 shows the registration
request rate and throughput of the IMS during the experiment.
Before the overload phase, the average registration throughput at
steady state is 624 registrations per second; during the overload
phase the average throughput is 634 registrations per second,
with an average CPU utilization of 73.32%. The basic overload
control solution described in Section 3 (Eqs. (1) and (2)) has been
able to successfully protect the IMS system: it avoids service
failures for already-established sessions, by correctly estimating
the capacity of the system and rejecting the requests in excess
with respect to the capacity, which would saturate resources and
cause failures both for the initial and the new subscribers. As a
result, the throughput is constant despite the traffic spike.

In a second experiment, we consider again the basic control
loop approach, and we reproduce an overload condition due to
physical CPU contention. To this purpose, we pin the virtual
CPU of the VMs running the IMS P-CSCF functions to a separate,
reserved physical CPU. Then, we introduce a new VM running
a CPU-bound workload (generated using the cpuburn tool1) and
we pin its virtual CPU to the same physical CPU core of the IMS
P-CSCF, in order to cause the contention. The experiment lasts

1 The tool can be downloaded at https://patrickmn.com/projects/cpuburn/.

https://patrickmn.com/projects/cpuburn/


170 D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176

Fig. 7. Performance of the IMS registrations during CPU contention (300–600 s),
using the basic feedback control loop.

Fig. 8. Virtual CPU utilization during CPU contention (300–600 s), using the
basic feedback control loop.

15 min (900 s) and it is organized in three phases: during the
first 5 min we generate a workload up to the engineered level;
then, we activate the CPU-bound workload in the second VM to
cause physical CPU contention for additional 5 min; finally, in the
last 5 min of the experiment, we simulate the resolution of the
CPU contention (e.g., as an effect of scaling out or migration of
VMs to relieve the contention), by unpinning the virtual CPU of
the CPU-bound VM. Fig. 7 shows the registration request rate and
the throughput of the system during the experiment with CPU
contention.

During the contention in the middle of the experiment, the
throughput is affected by a high variability, which is a symptom
that the basic control loop is unable to stabilize the load at the
actual capacity of the VM. By looking at the virtual CPU usage
during the experiment, showed in Fig. 8, we noticed that as
soon as we inject the CPU contention at min 5, the virtual CPU
utilization raises to 100% since the hypervisor scheduler preempts
physical CPU time from the virtual CPU, causing involuntary waits
of the VM. As a consequence, the basic feedback control loop
starts dropping part of incoming requests to reduce the virtual
CPU utilization to the reference value of 75%. The Clearwater
VM reduces its load and enters the vicious loop, since the CPU-
bound VM takes advantage of the idle CPU time freed by the
overload control mechanism. As a result, the virtual CPU utiliza-
tion gradually drops down to about 20%. We also observed that
the virtual CPU utilization saturates again to 100% after a period
of approximately 10 s. This pattern is repeated periodically until
the physical CPU contention is removed at minute 10, causing the
high variability of CPU utilization. We found that this behavior is a
side effect of the overload control mechanism, which sporadically
resets the drop rate to 0 when the virtual CPU utilization becomes
much lower than the reference value, thus admitting a high
amount of input traffic and saturating again the virtual CPU. This
high variability has a strong impact on the service latency, as
further discussed in the next subsection.

4.2. Enhanced feedback control-based overload control

We deployed the enhanced feedback overload control strategy,
and validated it by reproducing the same scenarios described in
the previous subsection.

Fig. 9. Performance of the IMS registrations during a 2.5x workload spike
(450–900 s), using the enhanced feedback control enabled.

Fig. 10. Performance of the IMS registrations during CPU contention
(300–600 s), using the enhanced feedback control loop.

In the first experiment, after 450 s, we caused a workload
surge 2.5 times higher than the engineered capacity, and we
evaluate the throughput of the IMS. As shown in Fig. 9, in absence
of physical CPU contention, the enhanced approach exhibits the
same performance of the basic approach. Before the overload
phase, the average registration throughput at steady state is
620 registrations per second while; during the overload phase
the average throughput is 645 registrations per second with an
average virtual CPU utilization of 74.55%. Therefore, our extension
to the feedback loop does not cause any negative effect in the case
of traffic spikes.

In the second experiment, we reproduced the scenario with
physical CPU contention, under the same conditions of Sec-
tion 4.1. The time series in Fig. 10 shows the throughput of the
IMS. At 5 min, we enable the CPU-bound VM. The enhanced
heuristic described in Section 3 timely detected a change in the
system capacity. The during the contention the average through-
put is reduced by about 32% and the system is able to complete
380 registration per second, with an average CPU consumption
of 68%. Moreover, the throughput during the contention is more
stable than the case with the basic feedback approach: since the
placeholder process avoids the preemption of CPU time from the
hypervisor, since the reference value of CPU utilization is not
anymore a ‘‘moving target’’, thus avoiding the variations of the
heuristic for capacity estimation (see Fig. 11).

If CPU contention is not properly managed, the system accepts
more requests that it can actually handle with the available CPU.
However, many of the accepted requests are served with a poor
quality of service, and many others fail in the middle of a session
(therefore, the ‘‘goodput’’ of the system is actually lower than
the throughput). A key goal of service providers is to ensure
an appropriate QoS for users that are admitted into the system,
and to gracefully handle users that cannot be admitted (e.g., to
notify an overload status without starting a session that cannot
be assured).

It is worth noting that the throughput only appears to be
higher without our enhanced control. Fig. 12 compares the IMS
throughput under CPU contention, with the basic and the en-
hanced feedback control loop. By looking at the throughput of the
two approaches, the differences of the throughput are not signif-
icant. However, the variance of the enhanced control approach is
slightly lower, for both the registration workload (Fig. 12a) and
call-setup workload (Fig. 12b).



D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176 171

Fig. 11. Virtual CPU utilization during CPU contention (300–600 s), using the
enhanced feedback control enabled.

A more accurate capacity estimation has also a strong positive
impact on the quality of service perceived by the IMS users in
terms of service latency, which is a key performance indicator
considered by SLAs for telecommunication systems. In particular,
SLAs typically mandate latency requirements for the average
(e.g., the median latency) and the worst cases (e.g., the 90th
percentile of latency) [14]. In Fig. 13, we compare the CDFs of
the latency of the successful registrations, respectively under the
basic and the enhanced overload control strategies, during the
contention phase of the experiments. The median latency (i.e., the
average case, represented by the 50th-percentile of the CDF) is up
to 118.6 ms for the basic approach. In the worst case, represented
by the 90th-percentile, the IMS with the basic approach exhibits
latencies up to 369.9 ms. These latency values are close, and
even exceed the SLA objectives typically adopted for IMS systems
(e.g., 150 ms and 250 ms respectively for the 50th and 90th
percentiles) [42,43]. Instead, the proposed approach significantly
improves the quality of service, by achieving a service latency
up to 28.5 ms and 106.2 ms respectively for the 50th and 90th
percentiles.

4.3. Performance evaluation under different contention patterns

In the following, we present another group of experiments, to
assess the performance of the basic and the enhanced feedback
loops in response to different CPU contention patterns. The pur-
pose of this analysis is to identify which scenarios will benefit the
most from the proposed solution. We vary the intensity of the CPU
contention, and the duration of CPU contention periods.

• Intensity. The intensity of contention is determined by the
amount of competing virtual machines that are deployed on
the same physical machine. The intensity of contention can
impact on the variability of CPU utilization by the virtual
machine (e.g., the amplitude of swings in CPU utilization
metrics), with side effects on the overload control loops.
Therefore, we performed additional experiments where we
vary the intensity of contention between 1x (i.e., 50% avail-
able CPU time due to the CPU contention with one additional
VM) and 3x (i.e., 25% available CPU time due to the CPU
contention with three other VMs).

Fig. 13. Cumulative distribution of registration latency, with the basic (blue
line) and the enhanced (red line) feedback control. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

• Duration. The duration of contention is determined by the
overlap over time of CPU-bound activities on several virtual
machines. If contention periods are long (e.g., due to a
configuration error with persistent effects), then the over-
load control algorithm can eventually converge to a stable
condition; instead, if contention periods are short and inter-
mittent (e.g., due to transient high CPU usage by background
tasks in the VMs), the overload control algorithm may ex-
hibit unstable behavior and poor performance. Therefore, in
addition to the previous experiments (where the CPU con-
tention is constant for a relatively long period), we perform
more experiments with short, periodic contention periods,
where the periods last respectively for 5 s and 10 s.

We applied these conditions both on the basic and on the
enhanced feedback loop solutions. Each experiment lasts 15 min
(900 s) and it is organized in three phases: during the first
5 min we generate a workload up to the engineered level; then,
for 5 more minutes, we force physical CPU contention (either
periodically or constantly, depending on the duration as discussed
above), by activating the CPU-bound workload in the additional
VMs (between one and three VMs, depending on the intensity as
discussed above); finally, in the last 5 min of the experiment, we
simulate the resolution of the CPU contention, by unpinning the
virtual CPU of the CPU-bound VMs, as an effect of scaling out or
migration of VMs to relieve the contention.

Fig. 14 summarizes the performance of the IMS (latency and
throughput) during these additional scenarios, with both the
basic (blue boxes) and the enhanced (red boxes) feedback loop
strategies. When the contention period is very short (5 s) there
are no significant differences between the two solutions. This
scenario represents the most unfavorable condition for our en-
hanced solution, since the control feedback is based on a sampling
window of 5 s, and thus the proposed solution is unable to
provide any improvement. The percentage of requests violating
the latency goal of 250 ms is 9.6% for the basic approach and 9.8%
with the other. In both cases, the SLA goal of 90%-percentile is not
violated.

Starting with a period of 10 s up to constant patterns, the en-
hanced feedback loop shows a significant improvement of latency

Fig. 12. IMS Registration (12a) and IMS Call-setup (12b) throughput during CPU contention, with the basic and the enhanced feedback control.



172 D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176

Fig. 14. IMS Throughput (14b) and IMS Latency (14a) under different CPU contention patterns, with the basic and the enhanced feedback control. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

compared to the basic feedback loop. In the case of a periodic
contention of 10 s, only the 0.1% of the requests experiences
latency higher than 250 ms, in contrast to the basic approach in
which the 20.1% of the requests were served with a latency higher
than the requirement, thus violating the SLA goal.

With a constant contention pattern at 1x intensity, the aver-
age available CPU capacity is reduced to 50%, since the CPU is
contended between 2 VMs. As discussed in the previous section,
there are no significant differences in the IMS throughput be-
tween the two approaches, but the proposed approach shows sig-
nificant reduction in latency: by using the enhanced approach the
percentage of requests violating the 90%-percentile requirement
decreases from 17.9% to 0.2%.

This behavior is exacerbated by higher contention intensities
(2x, 3x). In these cases, the basic overload control solution is
unable to accurately estimate the available CPU capacity (Eq. (1)),
due to the wider swings in CPU utilization metrics; therefore, it
degenerates by accepting more requests than the actual capacity
of the IMS system. The result is a significant increase of IMS la-
tency in the basic feedback loop. With a constant CPU contention
at 2x intensity, the available CPU capacity of the VNF is reduced to

33% on average, since the CPU time is contended with 2 additional
VMs. In this case, more than the 42% of the requests violates
the 90%-percentile latency requirement, in contrast to the 8.1%,
when using the enhanced approach. With CPU contention at 3x
intensity, with only 25% of the CPU time is available to the VNF. By
using the enhanced solution, the number of requests violating the
90%-percentile latency requirement drops from 48% to 9%, thus
achieving the SLA requirement.

It is interesting to note that, under the higher intensities of
CPU contention, the average throughput with the basic approach
is higher than the enhanced approach (e.g., 380 req/s versus 270
req/s in the case of 2x intensity). As discussed in Section 3, the
(apparently) better throughput comes at the cost of a poor quality
of service (Fig. 2), since the IMS is processing a volume of requests
which is higher than its capacity. The result is that the IMS takes
a long time to serve many of these requests, thus violating the
latency requirement. Instead, the enhanced solution only lets
in the IMS the subset of requests than can be processed with
adequate quality of service: this is a desirable effect of throttling,
which is intended to drop the traffic in excess to the system.
This result points out that the proposed feedback solution is best



D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176 173

suited for those applications (such as the IMS, and NFV in general)
where latency and throughput are both important SLA goals. If
the proposed solution is not deployed, the throttling mechanism
degenerates and lets in the IMS too much traffic, thus favoring
throughput at the expense of latency.

4.4. Threats to validity

Internal validity threats concern the relation between theory
and observations. As this is an experimental study, there are
measurement errors (such as the randomness of the workload
generator, or perturbations on the network and the hardware).
We repeated each experimentation five times, in order to be
confident that the effect obtained on the throughput and the
latency of the service is not due to other factors out of our
control. Moreover, since we collect measurements from repeated
experiments on the same system, we need to assure the inde-
pendency between consecutive experiments. Therefore, before every
experiment, we restored the same initial condition of the VMs,
by reverting them to a fixed snapshot. After restoring the state
of VMs, in every experiment we performed a warm-up phase in
common with all the experiments. We excluded the performance
measures of this phase from the experimental results.

External validity threats concern the possibility to generalize
our findings. To perform experiments on a representative NFV
system, we consider an IMS system, which is a key use case of
NFV [44], and adopted an NFV IMS implementation (Clearwa-
ter) that is backed up by a commercial vendors and is gaining
popularity across the open-source community. Moreover, we re-
produced typical interactions between end-users and the IMS,
by using the well-known SIPp workload generator and traffic
scenarios from the company that supports the Clearwater project.
In order to get representative results with respect to the potential
CPU contention patterns that can affect cloud infrastructures, we
performed experiments under several different durations and
intensities of contention. Finally, in order to get representative
results with respect to the underlying virtualization technology, we
checked that the work-conserving behavior of the hypervisor
scheduler is comparable across the main open-source and com-
mercial hypervisors, including Xen, VMware ESXi, and Microsoft
Hyper-V [31–33], and the metrics involved in the overload control
solution (such as the CPU utilization and the steal time) are
available for all of them. Thus, we can expect that the findings
are applicable to these virtualization technologies.

Construct validity threats concern the connection between
theory and the experimental evaluation. Therefore, we designed
experiments to assert that the theoretical behavior discussed in the
paper matches the actual behavior of the system. Both the basic
and the enhanced approaches are evaluated with the two kinds
of overload (i.e., traffic spikes and CPU contention). We demon-
strated that the degenerative condition of basic feedback control
loop happens only in the case of CPU contention. Moreover, we
demonstrated that this degenerative condition can be mitigated
by the enhanced approach described in Section 3.

Reliability validity threats concern the possibility of repli-
cating this study. To ease replications, we adopted open-source
software for the workload generator and the software stack.
Moreover, we provided detailed information on the configuration
of the hardware, software, and workload, and we suggest sev-
eral technical suggestions for re-implementing the placeholder
process of the proposed solution.

5. Related work

5.1. CPU Contention in virtualization infrastructures

CPU contention is a typical problem of virtualization infras-
tructures and suffered by guest VMs. Nikounia et al. [45] char-
acterized the performance degradation due to resource over-
commitment in virtualized environments. Their study identified
the CPU resource as the one that impacts the most on service
performance during contention with noisy neighbors VMs, and
found a major case of execution time slowdown in the hypervisor
CPU scheduler. Since this problem is widespread, there have been
many studies on ensuring performance isolation at infrastruc-
ture level, in order to avoid side-effects from CPU contention.
In general, these solutions prevent or mitigate contention by en-
hancing the placement and scheduling of VMs on the physical
infrastructure. Q-Clouds [46] is a representative solution of this
kind, which is a QoS-aware framework aiming to enforce per-
formance isolation by opportunistically provisioning additional
resources to alleviate contention. Caglar et al. [47] proposed HALT,
a performance-interference aware placement strategy based on
on-line monitoring and machine learning. To avoid the side ef-
fects of the contention for time-sensitive services, HALT adopts
a VM migration plan to a different host, based on the learned
workload behavior. More recently, in the context of NFV, Kulkarni
et al. [48] presented NFVnice, a framework to dynamically adjust
the scheduling behavior according to the relative priority of the
running services and the estimated load. This approach uses
cgroups to optimize the scheduling behavior and traffic throttling
at host level to prevent overloads in the guest.

A drawback of these solutions is that they require full control of
the underlying infrastructure, since they are meant for system ad-
ministrators and infrastructure management products. However,
in the case of NFV Infrastructures as a Service (NFVIaaS), the VNFs
do not have control on the underlying infrastructure, where the
infrastructure provider may adopt an over-commitment policy
that increases the risk of physical CPU contention, at the expense
of the VNFs. Another drawback is that, despite the best efforts
of system administrators, performance isolation strategies can-
not completely prevent contention issues at infrastructure level,
due to unexpected maintenance tasks, accidental misconfigura-
tions, or other faults. Thus, services with very high-availability re-
quirements need to include protection mechanisms that mitigate
unexpected overloads until its root cause has been solved.

In practice, system administrators adopt CPU consumption
metrics to troubleshoot CPU contention issues. At guest level,
the steal time metric is a well-known indicator of physical CPU
contention. This indicator is typically exposed by hypervisors to
the guest OSes, as discussed in Section 2. Ayodele et al. [49]
demonstrated the impact of the steal time on cloud applications
performance under physical CPU contention. Moreover, other
studies focus on quantifying the effect of the steal time on CPU
time metrics at process- and thread-level [50,51], provided by
the guest OS. This metric is often adopted through heuristics sets
by system administrators (e.g., using threshold), for example, by
triggering VM migration when the steal time is very high for a
prolonged period [52].

However, such heuristics based on the steal time are unsound,
since a high steal time is not a sufficient condition for a physical
CPU contention. For example, a VM voluntary suspended for I/O
activity can be subject to high wait time, due to the contention
with other VMs that run a CPU-bound workload). In this case,
the guest OS metrics will report a lower CPU utilization and low
steal time. The best practices from VMware also suggest not to
trust CPU consumption metrics provided by the guest OS, since
they can be inaccurate in case of physical CPU contention [53]



174 D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176

due to time accounting issues. Additionally, even in case of CPU-
bound workloads, the steal time can also be inaccurate in case
of hyper-threading enabled at host level [54]. Thus, the percent-
age of steal time is dependent by the workload running in the
guest VM. Moreover, a steal time quota can be the consequence
of CPU quotas and CPU credits imposed by the infrastructure
providers [55].

In this work, we revise the use of CPU consumption metrics
in overload control mechanisms inside VNFs. In particular, we
discussed why using the steal time metric would not be adequate
for self-adaptive overload control solutions, which require to esti-
mate the available CPU capacity in a feedback loop. We proposed
a solution that is robust to the inaccuracy and high variability
of the steal time, by triggering a low-priority CPU-bound task
when the steal time becomes high. If there is no actual physical
CPU contention, the mechanism does not cause any problematic
effect on the quality of service perceived by users, since it has
low priority and it is preempted by the VNF software. Instead, in
the case of an actual condition of physical CPU contention, this
mechanism can break the degenerative condition caused by the
behavior of the hypervisor scheduler, as discussed in Section 2.

5.2. Capacity management and overload control in NFV

Previous research on NFV reliability and performance covered
several areas. The majority of the recent research efforts are on
the problem of allocating computing resources to VNFs, e.g., by
formulating several flavors of optimization problems to place VNFs
across an infrastructure [56–59] and to route traffic [60,61], ac-
cording to different objective functions and problem constraints
(e.g., to take into account resource utilization, performance, re-
liability, etc.). These approaches forecast the user workloads to
plan the allocation of resources, but are not intended for handling
sudden overload conditions that deviate from the expected work-
load. Therefore, these studies are complementary to our work on
overload control.

Another branch of research studies has been focused on de-
tecting and diagnosing performance issues in NFV.
NFV-VITAL [62] is a solution that can be applied pre-deployment,
in order to identify and prevent performance bottlenecks and
bugs: it is a framework to characterize the performance of VNFs
at different scales, by allowing engineers to design performance
evaluation experiments (i.e., by varying the flavor of virtual
machines, the workload rate, etc.) and to conduct and to re-
port on the experiments. However, NFV-VITAL is not meant
to address performance issues after the system has been de-
ployed in operation. Recent frameworks for operational monitor-
ing purposes include anomaly detection systems from Sauvanaud
et al. [63] and Cotroneo et al. [64], which analyze metrics at
guest- and hypervisor- level through machine learning and sta-
tistical techniques to detect performance issues at run-time, and
NFVPerf [65], which inspect the VM-to-VM traffic to infer poten-
tial bottlenecks affecting the performance of a network function.
Once performance issues are detected, this information can be
conveyed to NFV orchestration solutions, such as the UNIFY
framework [66,67] to perform load balancing and elastic scaling
of VNFs. These solutions are useful to pinpoint the reliability and
performance problems, and to reconfigure the VNFs to address
them. However, these solutions can take a significant amount of
time (up to tens of minutes) to recover from overloads. Therefore,
they need to be complemented by mechanisms to protect in
the short-term the VNFs from the traffic in excess, such as the
overload control solutions investigated in this paper.

Traffic throttling is a typical overload control approach used
in many IT and telecom systems. A complete survey of these
throttling solutions is beyond the scope of this paper; other

survey papers, such as the one by Hong et al. [11], present a
detailed overview of such overload control schemes. A represen-
tative example is represented by the adaptive overload control
approach by Welsh et al. [9], which uses a token bucket and a
closed control loop to dynamically tune the traffic according to
the service latency. This approach has also been implemented in
the Clearwater NFV IMS that we analyzed in this paper. Other
throttling algorithms adopted in the context of carrier-grade tele-
com switches have been analyzed by Kasera et al. [8]: the Random
Early Discard (RED [68]) algorithm throttles traffic according to
the request queue size, while the Occupancy algorithm ensures
a target CPU utilization by throttling the traffic according to the
CPU utilization and the rate of accepted calls. Traffic throttling
mechanisms and algorithms have also been recently ported in the
context of NFV systems. In particular, NFV-Throttle [30] provides
deployment strategies for both NFVIaaS and VNFaaS, and adopts
a combination of closed-loop algorithms at different granularity
levels (guest-, host-, and network-level traffic throttling).

A limitation of these existing approaches is that they do not
consider the subtleties of overload conditions caused by physical
CPU contention, which have different implications than overloads
due to workload peaks. Therefore, in this paper, we investigated
the interplay between physical CPU contention and overload con-
trol algorithms, and we proposed a technique for making over-
load control algorithms applicable for the case of physical CPU
contention.

6. Conclusion

In this paper, we analyzed the problem of overload conditions
caused by physical CPU contention. We pointed out that this form
of overload conditions have a different behavior (e.g., in terms of
CPU utilization metrics) than the case of traffic spikes; and that
the overload control solutions for traffic spikes can be ineffective,
or even counterproductive, in the case of physical CPU contention.

Therefore, we extended the existing feedback control-based
approach to also address physical CPU contention. A key require-
ment of this solution has been to support VNFs deployed on IaaS,
where the VNF has little visibility or control of the underlying in-
frastructure. Our solution introduces a mechanism inside the VNF
to occupy the CPU cycles freed by traffic throttling, in order to
protect the feedback control loop from the opportunistic behavior
of the hypervisor that may reclaim the CPU cycles. Moreover, we
discussed CPU utilization metrics available in IaaS infrastructures,
and how these metrics should be interpreted in order to deal with
physical CPU contention. Our experiments on an NFV IMS system
confirmed that the proposed solution can avoid interferences
between resource hogs and the overload control mechanisms.

Acknowledgments

This work has been supported by Huawei Technologies Co.,
Ltd, China.

References

[1] E. Bauer, R. Adams, Reliability and Availability of Cloud Computing, first
ed., Wiley-IEEE Press, 2012.

[2] L. Wang, R.A. Hosn, C. Tang, Remediating overload in over-subscribed
computing environments, in: 5th Intl. Conf. Cloud Computing (CLOUD),
2012.

[3] S.A. Baset, L. Wang, C. Tang, Towards an understanding of oversubscription
in cloud, in: USENIX Wksp. on Hot Topics in Mgmt. of Internet, Cloud, and
Enterprise Netw. and Serv. (Hot-ICE), 2012.

[4] Amazon.com, Inc., Summary of the Amazon EC2 and Amazon RDS Service
Disruption in the US East Region (2011). URL http://aws.amazon.com/
message/65648/.

http://refhub.elsevier.com/S0167-739X(18)30856-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb1
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb2
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb3
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb3
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb3
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb3
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb3
http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/


D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176 175

[5] A. Warren, What Happened to Google Docs on Wednesday (2011).
URL https://googleenterprise.blogspot.com/2011/09/what-happened-
wednesday.html.

[6] X. Wang, X. Fu, X. Liu, Z. Gu, Power-aware cpu utilization control for
distributed real-time systems, in: 2009 15th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2009, pp. 233–242, http://dx.doi.
org/10.1109/RTAS.2009.12.

[7] L. Tomás, C. Klein, J. Tordsson, F. Hernández-Rodríguez, The straw that
broke the camel’s back: Safe cloud overbooking with application brownout,
in: 2014 International Conference on Cloud and Autonomic Computing,
2014, pp. 151–160, http://dx.doi.org/10.1109/ICCAC.2014.10.

[8] S. Kasera, J. Pinheiro, C. Loader, M. Karaul, A. Hari, T. LaPorta, Fast and
robust signaling overload control, in: IEEE Intl. Conf. Network Protocols,
2001.

[9] M. Welsh, D.E. Culler, Adaptive overload control for busy internet servers,
in: USENIX Symp. on Internet Technologies and Systems, 2003.

[10] J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury, Feedback Control of
Computing Systems, John Wiley & Sons, 2004.

[11] Y. Hong, C. Huang, J. Yan, A comparative study of SIP overload control
algorithms, in: Network and Traffic Engineering in Emerging Distributed
Computing Applications, 2012.

[12] G. Galante, L. de Bona, A survey on cloud computing elasticity, in: IEEE
5th Intl. Conf. Utility and Cloud Computing (UCC), 2012.

[13] P.C. Brebner, Is your cloud elastic enough?: Performance modelling the
elasticity of infrastructure as a service (iaas) cloud applications, in: 3rd
ACM/SPEC Intl. Conf. Performance Engineering, 2012.

[14] Quality Excellence for Suppliers of Telecommunications Forum (QuEST
Forum), TL 9000 Quality Management System Measurements Handbook
4.5, Tech. rep. (2010).

[15] R.L. Freeman, Telecommunication System Engineering, Vol. 82, John Wiley
& Sons, 2015.

[16] E. Stahl, A. Corona, F. De Gilio, et al., Performance and Capacity Themes
for Cloud Computing, IBM Redbooks, 2013.

[17] Red Hat Inc., Virtualization deployment and administration guide (2014).
URL https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/7/html/virtualization_deployment_and_administration_guide/index.

[18] C. Ehrhardt, CPU time accounting (2010). URL http://public.dhe.ibm.com/
software/dw/linux390/perf/CPU_time_accounting.pdf.

[19] R. van der Heij, Understanding Linux on z/VM steal time (2014). URL
http://www.velocitysoftware.com/VMSTEAL.PDF.

[20] VMware Inc., Guest and HA Application Monitoring Developers Guide
(2016). URL https://pubs.vmware.com/vsphere-6-0/topic/com.vmware.
ICbase/PDF/vs600_guest_HAappmon_sdk.pdf.

[21] A. Lê-Quôc, M. Fiedler, C. Cabanilla, The top 5 AWS EC2 performance
problems (2013). URL https://www.datadoghq.com/blog/top-5-ways-to-
improve-your-aws-ec2-performance/.

[22] N. Shestakov, Hyper-V performance analysis with Veeam ONE (2016).
URL https://hyperv.veeam.com/blog/how-to-analyse-visualise-hyper-v-
performance/.

[23] V. Hilt, I. Widjaja, Controlling overload in networks of SIP servers, in: IEEE
Intl. Conf. Network Protocols, 2008.

[24] S. Chandra, P.M. Chen, Whither generic recovery from application faults?
a fault study using open-source software, in: IEEE Intl. Conf. Dependable
Systems and Networks, 2000.

[25] M. Grottke, D.S. Kim, R. Mansharamani, M. Nambiar, R. Natella, K.S. Trivedi,
Recovery from software failures caused by mandelbugs, IEEE Trans. Reliab.
65 (1) (2016) 70–87.

[26] C. Shen, H. Schulzrinne, E.M. Nahum, Session initiation protocol (SIP) server
overload control: Design and evaluation, IPTComm 8 (2008) 149–173.

[27] J. Mo, R.J. La, V. Anantharam, J. Walrand, Analysis and comparison of
TCP Reno and Vegas, in: Annual Joint Conference IEEE Computer and
Communications Societies (INFOCOMM), 1999.

[28] K. Ramakrishnan, R. Jain, A binary feedback scheme for congestion avoid-
ance in computer networks with a connectionless network layer, ACM
SIGCOMM Comput. Commun. Rev. 18 (4) (1988) 303–313.

[29] Y. Xia, L. Subramanian, I. Stoica, S. Kalyanaraman, One more bit is enough,
ACM SIGCOMM Comput. Commun. Rev. 35 (4) (2005) 37–48.

[30] D. Cotroneo, R. Natella, S. Rosiello, NFV-Throttle: An overload control
framework for network function virtualization, IEEE Trans. Netw. Serv.
Manag. (2017).

[31] L. Eggert, J.D. Touch, Idletime scheduling with preemption intervals, ACM
SIGOPS Oper. Syst. Rev. 39 (5) (2005) 249–262.

[32] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, A. Fedorova, The Linux
scheduler: A decade of wasted cores, in: 11th ACM European Conference
on Computer Systems, 2016.

[33] Xen Project, Credit scheduler (2017). URL https://wiki.xen.org/wiki/Credit_
Scheduler.

[34] J. Corbet, A safe SCHED_IDLE implementation (2002). URL https://lwn.net/
Articles/4073/.

[35] Windows Dev Center, Task Idle Conditions (2017). URL https://msdn.
microsoft.com/en-us/library/windows/desktop/aa383561(v=vs.85).aspx.

[36] L. Torvalds, et al., Linux kernel parameters (2007). URL https://www.kernel.
org/doc/Documentation/admin-guide/kernel-parameters.txt.

[37] Project Clearwater. URL http://www.projectclearwater.org/.
[38] R. Gayraud, O. Jaques, et al., SIPp: SIP load generator (2010). URL http:

//sipp.sourceforge.net/.
[39] Metaswitch Networks Ltd., Clearwater SIP Stress scenario (2016).

URL https://github.com/Metaswitch/sprout/blob/dev/clearwater-sip-stress.
root/usr/share/clearwater/sip-stress/sip-stress.xml.

[40] J. Heo, L. Singaravelu, Deploying extremely latencysensitive applications in
vsphere 5.5: Performance study, VMware, Inc., Tech. Rep., 2013.

[41] D.M. Davis, Demystifying cpu ready (%rdy) as a performance metric: Dont
trust available cpu, Quest Software, White paper, 2013.

[42] D. Cotroneo, L.D. Simone, A.K. Iannillo, A. Lanzaro, R. Natella, Depend-
ability evaluation and benchmarking of network function virtualization
infrastructures, in: IEEE Intl. Conf. Network Softwarization (NetSoft), 2015.

[43] D. Cotroneo, L. De Simone, R. Natella, NFV-Bench: A dependability bench-
mark for network function virtualization systems, IEEE Trans. Netw. Serv.
Manag. (2017).

[44] ETSI Industry Specification Group, NFV Use Cases, 2014.
[45] S.H. Nikounia, et al., Hypervisor and neighbors noise: Performance

degradation in virtualized environments, IEEE Trans. Serv. Comput. (2015).
[46] R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: managing performance

interference effects for qos-aware clouds, in: Proceedings of the 5th
European Conference on Computer Systems, ACM, 2010, pp. 237–250.

[47] F. Caglar, S. Shekhar, A. Gokhale, A performance interference-aware virtual
machine placement strategy for supporting soft realtime applications in
the cloud, Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN, USA, Tech. Rep. ISIS-13-105, 2013.

[48] S.G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, X. Fu, Nfvnice: Dynamic backpressure and
scheduling for nfv service chains, in: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, ACM, 2017, pp.
71–84.

[49] A.O. Ayodele, J. Rao, T.E. Boult, Performance measurement and interference
profiling in multi-tenant clouds, in: Cloud Computing (CLOUD), 2015 IEEE
8th International Conference on, IEEE, 2015, pp. 941–949.

[50] P. Hofer, F. Hörschläger, H. Mössenböck, Sampling-based steal time
accounting under hardware virtualization, in: Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ACM,
2015, pp. 87–90.

[51] M. Yamamoto, K. Kohta Nakashima, Execution time compensation for
cloud applications by subtracting steal time based on host-level sampling,
in: Companion Publication for ACM/SPEC on International Conference on
Performance Engineering, ACM, 2016, pp. 69–73.

[52] S. Team, Understanding CPU Steal Time - when should you be worried?
(2013). URL http://blog.scoutapp.com/articles/2013/07/25/understanding-
cpu-steal-time-when\discretionary{-}{}{}should-you-be-worried.

[53] VMware, Inc., Timekeeping in VMware virtual machines (2008). URL
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/
techpaper/Timekeeping-In-VirtualMachines.pdf.

[54] G. Casale, C. Ragusa, P. Parpas, A feasibility study of host-level contention
detection by guest virtual machines, in: Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International Conference on, Vol. 2,
IEEE, 2013, pp. 152–157.

[55] P. Leitner, J. Scheuner, Bursting with possibilities–an empirical study of
credit-based bursting cloud instance types, in: Utility and Cloud Computing
(UCC), 2015 IEEE/ACM 8th International Conference on, IEEE, 2015, pp.
227–236.

[56] H. Moens, F. De Turck, VNF-P: A model for efficient placement of
virtualized network functions, in: IEEE Intl. Conf. Network and Service
Management (CNSM), 2014.

[57] S. Clayman, E. Maini, A. Galis, A. Manzalini, N. Mazzocca, The dynamic
placement of virtual network functions, in: IEEE Network Operations and
Management Symp. (NOMS), 2014.

[58] B. Németh, J. Czentye, G. Vaszkun, L. Csikor, B. Sonkoly, Customizable real-
time service graph mapping algorithm in carrier grade networks, in: IEEE
Intl. Conf. Network Function Virtualization and Software Defined Networks
(NFV-SDN), 2015.

[59] F. Carpio, S. Dhahri, A. Jukan, VNF placement with replication for load
balancing in NFV networks, arXiv preprint arXiv:1610.08266, 2016.

[60] B. Addis, D. Belabed, M. Bouet, S. Secci, Virtual network functions place-
ment and routing optimization, in: IEEE Intl. Conf. Cloud Networking
(CloudNet), 2015.

[61] J. Elias, F. Martignon, S. Paris, J. Wang, Efficient orchestration mechanisms
for congestion mitigation in NFV: Models and algorithms, IEEE Trans. Serv.
Comput. (2015).

[62] L. Cao, P. Sharma, S. Fahmy, V. Saxena, NFV-VITAL: A framework for
characterizing the performance of virtual network functions, in: IEEE Intl.
Conf. Network Function Virtualization and Software Defined Networks
(NFV-SDN), 2015.

https://googleenterprise.blogspot.com/2011/09/what-happened-wednesday.html
https://googleenterprise.blogspot.com/2011/09/what-happened-wednesday.html
https://googleenterprise.blogspot.com/2011/09/what-happened-wednesday.html
http://dx.doi.org/10.1109/RTAS.2009.12
http://dx.doi.org/10.1109/RTAS.2009.12
http://dx.doi.org/10.1109/RTAS.2009.12
http://dx.doi.org/10.1109/ICCAC.2014.10
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb8
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb8
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb8
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb8
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb8
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb9
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb9
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb9
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb10
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb10
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb10
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb11
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb11
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb11
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb11
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb11
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb12
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb12
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb12
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb13
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb13
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb13
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb13
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb13
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb15
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb15
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb15
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb16
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb16
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb16
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/index
http://public.dhe.ibm.com/software/dw/linux390/perf/CPU_time_accounting.pdf
http://public.dhe.ibm.com/software/dw/linux390/perf/CPU_time_accounting.pdf
http://public.dhe.ibm.com/software/dw/linux390/perf/CPU_time_accounting.pdf
http://www.velocitysoftware.com/VMSTEAL.PDF
https://pubs.vmware.com/vsphere-6-0/topic/com.vmware.ICbase/PDF/vs600_guest_HAappmon_sdk.pdf
https://pubs.vmware.com/vsphere-6-0/topic/com.vmware.ICbase/PDF/vs600_guest_HAappmon_sdk.pdf
https://pubs.vmware.com/vsphere-6-0/topic/com.vmware.ICbase/PDF/vs600_guest_HAappmon_sdk.pdf
https://www.datadoghq.com/blog/top-5-ways-to-improve-your-aws-ec2-performance/
https://www.datadoghq.com/blog/top-5-ways-to-improve-your-aws-ec2-performance/
https://www.datadoghq.com/blog/top-5-ways-to-improve-your-aws-ec2-performance/
https://hyperv.veeam.com/blog/how-to-analyse-visualise-hyper-v-performance/
https://hyperv.veeam.com/blog/how-to-analyse-visualise-hyper-v-performance/
https://hyperv.veeam.com/blog/how-to-analyse-visualise-hyper-v-performance/
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb23
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb23
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb23
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb24
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb24
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb24
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb24
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb24
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb25
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb25
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb25
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb25
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb25
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb26
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb26
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb26
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb27
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb27
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb27
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb27
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb27
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb28
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb28
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb28
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb28
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb28
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb29
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb29
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb29
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb30
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb30
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb30
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb30
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb30
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb31
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb31
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb31
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb32
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb32
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb32
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb32
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb32
https://wiki.xen.org/wiki/Credit_Scheduler
https://wiki.xen.org/wiki/Credit_Scheduler
https://wiki.xen.org/wiki/Credit_Scheduler
https://lwn.net/Articles/4073/
https://lwn.net/Articles/4073/
https://lwn.net/Articles/4073/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383561(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383561(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383561(v=vs.85).aspx
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
http://www.projectclearwater.org/
http://sipp.sourceforge.net/
http://sipp.sourceforge.net/
http://sipp.sourceforge.net/
https://github.com/Metaswitch/sprout/blob/dev/clearwater-sip-stress.root/usr/share/clearwater/sip-stress/sip-stress.xml
https://github.com/Metaswitch/sprout/blob/dev/clearwater-sip-stress.root/usr/share/clearwater/sip-stress/sip-stress.xml
https://github.com/Metaswitch/sprout/blob/dev/clearwater-sip-stress.root/usr/share/clearwater/sip-stress/sip-stress.xml
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb42
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb42
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb42
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb42
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb42
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb43
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb43
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb43
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb43
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb43
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb45
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb45
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb45
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb46
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb46
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb46
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb46
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb46
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb48
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb49
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb49
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb49
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb49
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb49
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb50
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb50
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb50
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb50
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb50
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb50
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb50
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb51
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb51
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb51
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb51
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb51
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb51
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb51
http://blog.scoutapp.com/articles/2013/07/25/understanding-cpu-steal-time-when\discretionary {-}{}{}should-you-be-worried
http://blog.scoutapp.com/articles/2013/07/25/understanding-cpu-steal-time-when\discretionary {-}{}{}should-you-be-worried
http://blog.scoutapp.com/articles/2013/07/25/understanding-cpu-steal-time-when\discretionary {-}{}{}should-you-be-worried
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb54
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb54
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb54
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb54
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb54
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb54
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb54
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb55
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb55
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb55
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb55
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb55
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb55
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb55
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb56
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb56
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb56
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb56
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb56
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb57
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb57
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb57
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb57
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb57
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb58
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb58
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb58
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb58
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb58
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb58
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb58
http://arxiv.org/abs/1610.08266
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb60
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb60
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb60
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb60
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb60
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb61
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb61
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb61
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb61
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb61
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb62
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb62
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb62
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb62
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb62
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb62
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb62


176 D. Cotroneo, R. Natella and S. Rosiello / Future Generation Computer Systems 99 (2019) 164–176

[63] C. Sauvanaud, K. Lazri, M. Kaaniche, K. Kanoun, Anomaly detection and
root Cause localization in virtual network functions, in: IEEE Intl. Symp.
Software Reliability Engineering, 2016.

[64] D. Cotroneo, R. Natella, S. Rosiello, A fault correlation approach to detect
performance anomalies in virtual network function chains, in: IEEE Intl.
Symp. Software Reliability Engineering, 2017.

[65] P. Naik, D.K. Shaw, NFVPerf: Online performance monitoring and bot-
tleneck detection for NFV, in: IEEE Intl. Conf. Network Softwarization
(NetSoft), 2016.

[66] R. Szabo, M. Kind, F.-J. Westphal, H. Woesner, D. Jocha, A. Csaszar, Elastic
network functions: opportunities and challenges, IEEE Network 29 (3)
(2015) 15–21.

[67] S. Van Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye, M. Pickavet,
P. Demeester, Deploying elastic routing capability in an SDN/NFV-enabled
environment, in: IEEE Intl. Conf. Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2015.

[68] S. Floyd, V. Jacobson, Random early detection gateways for congestion
avoidance, IEEE/ACM Trans. Netw. 1 (4) (1993) 397–413.

Domenico Cotroneo (Ph.D.) is associate professor at
the Federico II University of Naples. His main in-
terests include software fault injection, dependability
assessment, and field measurement techniques. He has
been member of the steering committee and general
chair of the IEEE Intl. Symp. on Software Reliability
Engineering (ISSRE), PC co-chair of the 46th IEEE/IFIP
Intl. Conf. on Dependable Systems and Networks (DSN),
and PC member for several scientific conferences on
dependable computing including SRDS, EDCC, PRDC,
LADC, SafeComp.

Roberto Natella (Ph.D.) is a postdoctoral researcher
at the Federico II University of Naples, Italy, and co-
founder of the Critiware s.r.l. spin-off company. His
research interests include dependability benchmarking,
software fault injection, and software aging and reju-
venation, and their application in operating systems
and virtualization technologies. He has been involved
in projects with Leonardo-Finmeccanica, CRITICAL Soft-
ware, and Huawei Technologies. He contributed, as
author and reviewer, to several leading journals and
conferences on dependable computing and software

engineering, and he has been organizing the workshop on software certification
(WoSoCer) within the IEEE ISSRE conference.

Stefano Rosiello (Ph.D.) is a postdoctoral researcher at
University of Naples Federico II, Italy within the De-
pendable Systems and Software Engineering Research
Team (DESSERT) group. His main research activity
focuses on overload control in carrier-grade network
function virtualization and cloud infrastructures. His
research interests also include experimental reliabil-
ity evaluation, dependability benchmarking and fault
injection testing.

http://refhub.elsevier.com/S0167-739X(18)30856-2/sb63
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb63
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb63
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb63
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb63
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb64
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb64
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb64
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb64
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb64
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb65
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb65
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb65
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb65
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb65
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb66
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb66
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb66
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb66
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb66
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb67
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb67
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb67
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb67
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb67
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb67
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb67
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb68
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb68
http://refhub.elsevier.com/S0167-739X(18)30856-2/sb68

	Overload control for virtual network functions under CPU contention
	Introduction
	Overview of CPU overloads and CPU utilization metrics
	Overload control strategy
	Basic feedback control-based overload control
	The control loop vicious cycle
	Enhanced feedback control-based overload control

	Experimental analysis
	Basic feedback control-based overload control
	Enhanced feedback control-based overload control
	Performance evaluation under different contention patterns
	Threats to validity

	Related work
	CPU Contention in virtualization infrastructures
	Capacity management and overload control in NFV

	Conclusion
	Acknowledgments
	References


