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Abstract

Modern distributed systems are designed to manage overload conditions, by throttling the traffic in excess
that cannot be served through overload control techniques. However, the adoption of large-scale NoSQL
datastores make systems vulnerable to unbalanced overloads, where specific datastore nodes are overloaded
because of hot-spot resources and hogs.

In this paper, we propose DRACO, a novel overload control solution that is aware of data dependencies
between the application and the datastore tiers. DRACO performs selective admission control of application
requests, by only dropping the ones that map to resources on overloaded datastore nodes, while achieving
high resource utilization on non-overloaded datastore nodes. We evaluate DRACO on two case studies with
high availability and performance requirements, a virtualized IP Multimedia Subsystem and a distributed
fileserver. Results show that the solution can achieve high performance and resource utilization even under
extreme overload conditions, up to 100x the engineered capacity.

Keywords: Overload control; Traffic throttling; Hot-spot resources; Cluster systems; Network Function
Virtualization

1. Introduction

Cloud computing is increasingly being adopted
for running high-availability services in critical do-
mains, such as telecom (e.g., the emerging Net-
work Function Virtualization paradigm), health-5

care, transportation, and more [1, 2, 3]. Capac-
ity management is a key problem for these services,
since they face high and variable volumes of traf-
fic, and are challenged by overload conditions, e.g.,
in the case of major sports events, the launch of10

a new popular feature, and other mass events [4].
An overloaded system attempts to serve more traf-
fic than its resources would allow, causing high re-
source contention and the violation of availability
and latency goals. Moreover, applications under15

overload become prone to software failures due to
race conditions, resource exhaustion, memory man-
agement bugs, and timeouts. Cloud elasticity alone
does not suffice to achieve high availability (i.e.,
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five-nines or more) required by critical domains [4],20

since scaling-out can take up to several minutes to
allocate new VMs [5, 6], and can require coordi-
nation across several datacenters [7, 8]. Therefore,
overload control is a common best practice to pre-
vent failures, by limiting (throttling) the incoming25

user requests admitted to the system [4, 9, 10]. Ide-
ally, overload control admits only a subset of user
requests to utilize all of the system’s engineered ca-
pacity, and drops the exceeding requests to prevent
resource contention.30

However, overload control is still a challenging
problem in multi-tier systems with large-scale data-
stores. Modern services reach a massive scale, by
organizing the application tier into hundreds of
replicas deployed over multiple datacenter regions,35

e.g., using the Amazon AWS infrastructure as in
the Netflix popular streaming platform [11]; and by
keeping the state of the application, such as session
information, multimedia resources, and other data
in a separate datastore tier. This approach is en-40

abled by the emerging NoSQL datastores, such as
Memcached [12], which can balance the load across
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many nodes, through consistent hashing [13, 14].
For example, these solutions allow Netflix to scale
production systems through tens of thousands of45

datastore instances, serving about 30 million re-
quests per second [15, 16, 17].

The downside of this architecture is that it intro-
duces data dependencies between the application
and the datastore tiers. Data requests cannot be50

uniformly balanced across the datastore tier, but
must be served by the specific nodes that hold the
requested data. These dependencies are problem-
atic for overload control purposes, since they make
the system vulnerable to unbalanced overloads, i.e.,55

overloads that affect specific nodes in the datas-
tore tier [18, 19, 20]. A typical cause of unbalanced
overloads are hot-spots [21, 22, 23, 24], i.e., mul-
timedia resources that suddenly become popular.
Since data requests have to be directed to those60

specific storage nodes that manage the hot-spot re-
source (e.g., based on a consistent hashing scheme),
the overloaded caching nodes become a bottleneck
for the entire system. Other causes of unbalanced
overloads are over-commitment (e.g., the same host65

is shared by multiple tenants, which face a high
load at the same time), and design and configu-
ration bugs [18, 19, 20]. As discussed in the next
section, existing throttling solutions are unaware of
data dependencies, and cannot efficiently deal with70

unbalanced overload conditions.
In this paper, we propose DRACO (Distributed

Resource-aware Admission COntrol), a novel data-
dependency aware overload control solution, which
can efficiently address unbalanced overload condi-75

tions that arise in the datastore tier. DRACO per-
forms selective admission control, by tuning the
amount and type of admitted traffic according to
data dependencies among the tiers, and to the cur-
rent capacity of individual nodes. The solution is80

designed to be deployed in front of the application
tier, in order to avoid side effects on the application,
and it is tailored for large-scale NoSQL datastores,
in order to fit the architecture of modern multi-tier
systems.85

We experimentally evaluate DRACO on two case
studies: a virtualized IP Multimedia Subsystem,
which requires carrier-grade levels of performance
and availability [25], and a Distributed Fileserver,
which is very sensitive to overloads caused by hot-90

spot resources. We present an experimental eval-
uation on very high and unbalanced overload con-
ditions, by generating service requests up to 100
times the maximum capacity that the system can

manage. With our solution, the system is able to95

use more than 90% of its engineered capacity, with-
out any latency violations for the admitted users,
and no software failures due to resource exhaus-
tion. Moreover, the solution is able to only drop
the traffic in excess that uses the overloaded datas-100

tore nodes, thus enabling the full utilization of other
datastore nodes.

In the following, Sec. 2 introduces overload con-
trol issues in multi-tier systems, and defines require-
ments for our solution. Sec. 3 presents the design of105

DRACO . Sec. 4 and 5 present the two case studies
and experimental results. Sec. 6 discusses the over-
head and scalability of DRACO . Sec. 7 discusses
related work. Sec. 8 concludes the paper.

2. Unbalanced overloads in datastores110

Large scale, multi-tier systems adopt load balanc-
ing schemes both on applications and on datastore
tiers (Figure 1). On the application side, service
requests are typically load-balanced by selecting an
application node (a replica) from a pool of IP ad-115

dresses, using DNS in a round-robin fashion. Then,
application nodes generate one or more data re-
quests towards the datastore tier. Service requests
can be served by any application node without re-
strictions, since such nodes are stateless and inde-120

pendent from each other. Data requests, instead,
cannot be processed by an arbitrary datastore node,
since data resources are partitioned across datas-
tore nodes, and the data required by the user is lo-
cated only on one datastore node, or on a small sub-125

set (in the case of data replication). The location
of data resources is typically identified using con-
sistent hashing [13], which computes a lightweight,
deterministic function that maps a resource key in
the service request to datastore nodes. The depen-130

dencies to datastore nodes are based on the content
of service requests from the clients and, thus, they
are not known a-priori.

An overload condition occurs when a system
has insufficient resources to serve the incoming re-135

quests, due to a bottleneck in one of its components.
In particular, unbalanced overload conditions in the
datastore nodes are quite challenging. One typical
problem is represented by hot-spots: when users ac-
cess specific resources much more frequently than140

others (for example, multimedia content or appli-
cation that suddenly becomes popular on the web),
the load on a subset of nodes will be higher. When
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Figure 1: Overview of multi-tier systems.

datastore nodes are overloaded, the application ser-
vices also become prone to failures. A symptom of145

a hot-spot is a highly skewed distribution of data
requests to the nodes. For example, in Figure 1,
the datastore node M3 holds a hot-spot resource
while the load on other nodes is within their ca-
pacity; in turn, the service request at application150

node S2 (and any other service request that needs
M3 ’s data) will experience a slow-down. Data con-
sistency is also put at risk: if S2 is writing data
on both M1 and M3, only the data in M1 may be
actually stored.155

It should be noted that even in the ideal case
where the datastore load is uniformly balanced,
unbalanced overloads can still affect the datastore
nodes. Indeed, they may have different configura-
tions; they can be deployed on machines with differ-160

ent characteristics; or, the physical machines can be
shared among different tenants. As a consequence,
datastore nodes can exhibit different capacity. This
means that unbalanced overloads can affect specific
nodes in the datastore tier.165

The definitive solution to unbalanced overloads is
to redistribute and replicate data across datastore
nodes, and to scale-out the nodes. However, since
these solutions still leave the system vulnerable to
overloads in the short-term, system designers also170

adopt overload control solutions. Despite that vir-
tual machines and containers can be automatically
and quickly provisioned, scale-out actions can still
take up to several minutes, due to initialization and
warm-up of application software [5, 6]. For exam-175

ple, this is an issue for stateful components, such
as legacy, monolithic software still running in tele-
com and other critical infrastructures [26, 27], and
for datastore technology, where the new replica first
needs to load the data in-memory [28, 18]. While180

scale-out is taking place, the system is still prone to

service failures (e.g., timed-out requests), which is
an issue for high-availability services such as NFV
[29].

To mitigate the unbalanced overloads in the short185

term, the system needs to throttle the volume of
data requests towards overloaded datastore nodes.
NoSQL datastores allow system designers to throt-
tle the incoming data requests between the appli-
cation and the datastore tiers [30, 31]. Unfortu-190

nately, throttling data requests is often not accept-
able for developers, since the application tier would
experience side effects, such as exceptions and data
unavailability errors, which would increase the risk
of application failures. For example, this can vio-195

late data consistency (e.g., by breaking transactions
that span over several datastore nodes), or it can
trigger complex and wasteful roll-backs of transac-
tions.

Therefore, the only viable option is to throttle200

service requests at the application tier, before they
enter into the system [32, 25, 33, 34, 35]. How-
ever, existing throttling solutions do not take into
account data dependencies, and are still not suit-
able for addressing unbalanced overload conditions.205

They cause a load decrease across all nodes in the
datastore tier, including the ones (a majority) that
still have resources available for serving requests,
leading to unnecessary waste of resources and ser-
vice unavailability. For example, in Figure 1, if ser-210

vice requests from S2 and S4 are both rejected, the
system’s resources would be under-utilized, since
M4 would not be serving requests from S4 despite
it has still available capacity.

In summary, overload control needs to meet the215

following requirements to efficiently mitigate unbal-
anced overloads:

1. Account for the actual capacity of nodes

3
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at run-time. Overload control should dy-
namically take into account the current (unbal-220

anced) available capacity of datastore nodes, to
handle hot-spots and transient capacity varia-
tions caused by hogs.

2. Integrity of application service requests.
Overload control should throttle service re-225

quests in excess before they enter the appli-
cation tier (i.e., not in the middle of service
request processing); throttling in the datas-
tore tier (i.e., after service request processing
already started) would cause data consistency230

issues and waste of resources.

3. High utilization of non-overloaded
nodes. Overload control should selectively
reject service requests that use overloaded
datastore nodes, while admitting service235

requests that only use non-overloaded nodes.

3. The proposed solution

The main novel feature of DRACO is the abil-
ity to mitigate unbalanced overload conditions that
arise from a subset of nodes in the datastore tier,240

and at the same time to achieve high utilization of
the non-overloaded parts of the datastore tier. The
driving idea is to take advantage of knowledge of
the application logic, in order to map service re-
quests to the datastore nodes that are needed to245

serve the requests; and to only admit into the sys-
tem a selected subset of them, by rejecting the ones
that would attempt to access overloaded datastore
nodes.

The solution adopts a distributed architecture, in250

order to scale with the size of the tiers; and it is de-
signed to filter traffic at the application tier, that
is, it avoids filtering the traffic at the datastore tier,
which would cause inconsistencies between the ap-
plication and storage tiers, and among the nodes255

of the storage tier. In the following, we introduc-
ing the architecture and components of the solu-
tion (Figure 2). In Sec. 4 and 5, we will implement
and evaluate the solution in the context of two case
studies. Section 6 will discuss the overhead and260

scalability of the proposed solution.
The first component of the solution is the Dis-

tributed Memory block. This component keeps
track of the location of resources across datastore
nodes, and of the available capacity of the nodes.265

The available capacity is an estimate of the num-
ber of data requests that a datastore node can serve,

based on the recent history of data requests previ-
ously served by datastore nodes, and the amount of
physical resources consumed when these requests270

were served. This information is periodically col-
lected by a Capacity Monitoring component de-
ployed in the datastore tier.

The residual capacity gives an indication of how
many data requests are in excess in the storage tier,275

and it is used to identify which service requests
should be rejected at the application tier. The ac-
tual throttling is performed by the Distributed Ad-
mission Control component, which acts as a tunnel
between clients and application nodes. The admis-280

sion decision is done by inspecting the service re-
quest, and by checking if there is enough residual
capacity in both the current application node and
in all of the storage nodes that are needed to pro-
cess the service request.285

3.1. Distributed Memory

The Distributed Memory component includes a
datastore that handles the following two types of
data (Figure 2):

• Node Capacity Status: For every datastore290

node, our solution has a counter representing
the available capacity, in terms of number of
data requests that the node can sustain in the
current time window. This information is up-
dated by the Capacity Monitoring block at the295

beginning of a new time window. The Admis-
sion Control block checks whether a service re-
quest can be served, given the available capac-
ity of datastore nodes. Then, it decrements the
available capacity upon acceptance of a service300

request.

• Data Location Cache: It is the location of
data resources accessed by service requests. It
is added, retrieved, and updated during the
Data Location Discovery phase by the Admis-305

sion Control block.

The Distributed Memory stores the Node Capac-
ity Status in key-value pairs (e.g., indexed by the
hostname or IP address of datastore nodes). The
Data Location Cache stores a key-value pair for310

each service request. The key, which is application-
dependent, represents a specific service request.
The value is an array of integers, with one element
for each datastore node, which represents the num-
ber of data requests to perform on each datastore315

node for the service request.

4

Electronic copy available at: https://ssrn.com/abstract=4100264



S1

S2

S3

S4

M1

M2

M3

Distributed Memory

Node Capacity Status

Data Location Cache

Service request
(accepted)

Service request
(rejected)

Distributed
Capacity

Monitoring

Distributed 
Admission 

Control

Overloaded
datastore node

Data 
requests

Application tier Datastore tier

Figure 2: Overview of DRACO architecture.

We leverage a distributed NoSQL datastore (such
as Memcached) for the Distributed Memory. This
technology allows the solution to handle data from
a large number of nodes in the cluster, and simpli-320

fies the collection and the distribution of monitor-
ing data. The Distributed Memory can be deployed
either on the existing tiers, or in a dedicated tier.
To avoid performance bottlenecks, the Distributed
Memory establishes a fixed pool of persistent con-325

nections with the other nodes in the system. Thus,
the number of connections only grows linearly with
the number of nodes in the cluster (i.e., we do not
introduce any direct communication between ap-
plication and datastore nodes). Moreover, the ca-330

pacity of the Distributed Memory can be scaled-up
by distributing the monitoring data across several
nodes. In Section 6, we discuss in detail the compu-
tational and communication costs of the Distributed
Memory, and its scalability.335

The Distributed Memory block stores the loca-
tion of data resources accessed by past service re-
quests. This caching improves the performance of
the overload control solution, especially in the case
of hot-spot resources, since information on hot-spot340

resources (which are repeatedly accessed in a short
amount of time) is likely in the Data Location
Cache. In some scenarios, the cache may be op-
tional. In particular, when the application can find
the location of data resources without complex pro-345

cessing (e.g., by just applying consistent hashing on
the fields of a service request), the Admission Con-
trol block can perform the same computation and
find the location of the resources. In general, it is

useful to still have a distributed cache if the appli-350

cation needs to access a large number of resources
per service request, and when the computation of
data location is expensive. Otherwise, if service re-
quests involve only a few resources and there are no
hot-spot resources (e.g., as in the case of an IMS355

scenario discussed in Section 4), it can be advan-
tageous to compute the location directly, avoiding
using the cache.

3.2. Distributed Capacity Monitoring

The Distributed Capacity Monitoring component360

is deployed within all datastore nodes, and it is in
charge of dynamically estimating their available ca-
pacity. This block collects information about re-
source utilization from the guest OS or the hyper-
visor of the nodes. We focus the discussion on the365

case where each monitoring block estimates the ca-
pacity of a storage node in terms of its CPU uti-
lization (i.e., in terms of percentage of busy CPU
cycles per unit of time), since the CPU is often the
resource most prone to become a bottleneck [36]. In370

addition to CPU utilization, the proposed solution
can be easily generalized to be applied to memory,
network, and disk bandwidth utilization.

This block periodically estimates the available ca-
pacity, in terms of the number of requests that the375

node can serve in the next time window. The time
window is meant to be short (e.g., in the order of
few seconds), in order to quickly adapt to varia-
tions of the load of the datastore node. In addition
to CPU utilization, the Capacity Monitoring block380

tracks the number of data requests that have been
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served by the storage node in the last time window,
which is recorded by the Admission Control block
when a service request is accepted. The available
capacity is estimated as follows:385

available
capacity

=
# data requests

CPUused%
· CPUreference% . (1)

The first factor estimates the cost of an individual
data request, in terms of CPU cycles, by dividing
the number of data requests in the last time win-
dow with the average CPU utilization during the
same period. This formula is a valid approximation390

of available capacity when CPU used is lower than
CPU reference. However, when this condition does
not hold, it has the effect to progressively reduce
the number of data requests to be accepted by a
factor CPU reference / CPU used until CPU used395

value becomes less than CPU reference. This ap-
proximation is simple but still accurate in our con-
text (modern multi-tier systems based on NoSQL
datastores), since the complexity of an individual
data request is relatively low. For older types of400

storage systems (e.g., based on a traditional SQL
DBMS), the cost would depend on the SQL queries
performed by the application, and it should be esti-
mated using a more complex cost model [37]. Since
we focus this work on modern datastores, we leave405

out of scope the analysis of other cost models. The
second factor in the equation represents the refer-
ence CPU budget, beyond which the datastore node
is considered saturated. This value represents a
“factor of safety” for CPU utilization, within which410

the datastore node is designed to perform well (e.g.,
without performance disruptions), while leaving a
small amount of residual CPU bandwidth to handle
occasional load fluctuations. We base our algorithm
around a reference value, since setting a reference415

is a common practice among system administrators,
e.g., for monitoring and troubleshooting purposes.
The Algorithm 1 executes periodically to update
the capacity budget of the datastore nodes, accord-
ing to the request rate and CPU utilization mea-420

sured during the last period.

3.3. Distributed Admission Control

Figure 3 shows the internal organization of the
Distributed Admission Control. When a service re-
quest is received, a Data Location Discovery proce-425

dure is performed before the request is forwarded to
the application for processing. The discovery pro-
cedure identifies the set of data resources needed by

ALGORITHM 1: Capacity Monitoring

// Executes periodically

begin
// Get CPU utilization and number

// of data requests since

// the previous update

CPUi = get CPU utilization(nodei)
requestsi = get served data requests(nodei)

// Compute available capacity (Eq. (1))

C(i) =
compute capacity(nodei, CPUi, requestsi)

update datastore capacity budget(nodei, C(i))
end

the service request, and the datastore nodes where
these resources are located. The Distributed Ad-430

mission Control uses this list for deciding whether
to admit the request, according to the available ca-
pacity of datastore nodes.

The implementation of this component depends
on the specific application, and it is meant to be435

tailored by the application programmer. The Data
Location Discovery parses service requests by look-
ing for information that uniquely identifies the data
needed by service requests, such as the user identity,
the session identifier, the resources requested by the440

user (e.g., multimedia content), and the type of op-
eration to be performed on the resource. This infor-
mation is then used to query the Distributed Mem-
ory to find the location of resources in the datastore
tier. The main assumption of the proposed solution445

is that service requests hold information to establish
the mapping with datastore nodes. This assump-
tion holds in practice for many applications: since
application nodes are stateless, the service request
message includes all the information needed by the450

application logic to access the datastore. We will
further discuss this aspect in the context of two case
studies (Sec. 5 and 4).

If the service request involves resources that may
have already been accessed in the past, the Data455

Location Discovery block checks if there is an en-
try for that service request in the Distributed Mem-
ory, and retrieves information on the resources from
there. If an entry does not exist yet (for example,
the service request comes from a new user), the460

Data Location Discovery block uses the informa-
tion extracted from the request to find the location
of the required resources in the datastore tier, and
updates the cache.
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Figure 3: The Admission Control process.

For example, the Data Location Discovery block465

can compute the same hash function that is com-
puted by the consistent hashing mechanism (Sec. 2)
to resolve the resource location. In other cases, the
Data Location Discovery block obtains the location
of a resource by retrieving resource metadata. We470

refer to this computation as the location function,
which maps the information from a request (i.e.,
the “key” of an entry in the datastore) with the re-
source location. For instance, in the case of a File
Server, the resource is represented by a file block;475

the key is represented by the combination of the
filename and of the numeric identifier of the block;
and the output of the function is the datastore node
with the block. In the case of a Multimedia Server,
the resource is represented by a record with user in-480

formation; the key is represented by a combination
of the username and the SIP URI; and the output
is the datastore node with the record. Since both
the key extraction from the service request and the
location function are simple operations, their over-485

head is expected to be small.

Alg. 2 details the Distributed Admission Control
process. The process first checks if local applica-
tion node is not overloaded. Then, it gets the loca-
tion array L(1..n) from the Data Location Discovery490

procedure: the i-th component of this array repre-
sents the number of data requests that will be di-
rected to the storage node i. Moreover, the Admis-
sion Control retrieves the available capacity array
C(1..n), where n is the total number of datastore495

nodes: the i-th element of this array represents the
number of data requests that the datastore node

i can accept in the current time window without
saturating its capacity. This node capacity status
is updated on the Distributed Memory by the Ca-500

pacity Monitoring block. The algorithm compares,
for each storage node i, the available capacity of the
node with the number of data requests for the node.
When L(i) > 0, there is at least one resource on the
i-th data node required to complete the current ser-505

vice request. If there is at least one storage node in
which the residual capacity is not sufficient to pro-
cess the data requests (i.e., C(i) − L(i) < 0), the
algorithm rejects the service request. Otherwise, if
the service request is accepted, the algorithm dis-510

counts the number of data requests towards node i
from its available capacity budget, and updates the
budget on the Distributed Memory.

4. IP Multimedia Subsystem Case Study

We here consider a case study from the telecom515

domain, where overloads are a recurrent issue, and
where high performance and availability are key
concerns [38, 9, 10]. A current trend (Network
Function Virtualization, NFV) in this domain is the
migration of services from traditional hardware ap-520

pliances to softwarized ones, and to run them on
cloud computing infrastructures [39]. The goal of
NFV is to reduce costs and improve manageability,
while achieving the same, or even better, reliabil-
ity and performance of traditional hardware appli-525

ances. The IP Multimedia Subsystem (IMS), i.e.,
an architectural framework for delivering multime-
dia content over internet, is one of the most relevant

7
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ALGORITHM 2: Admission Control

// On arrival of a service request

begin

Clocal = get local capacity budget()
if Clocal = 0 then

REJECT the request
end

M = get metadata(app request)
L = get data location(M)

foreach datastore node ni in L do

// Check if there is enough capacity

C(i) = get datastore capacity budget(ni)

if C(i)− L(i) < 0 then
REJECT the request

end

end

// Update capacity budgets

foreach datastore node ni in L do
update datastore capacity budget(ni,
C(i)− L(i))

end

update local capacity budget(Clocal − 1)

ACCEPT the request
end

use cases for NFV.
We analyze the impact of unbalanced overloads530

on the open-source Clearwater IMS [40], deployed
on an experimental testbed with 100+ virtual ma-
chines. Clearwater is an NFV-oriented implementa-
tion of IMS (Figure 4): all components are horizon-
tally scalable using simple, stateless load-balancing;535

the various components are decoupled, and inter-
act through standard interfaces through connection
pooling; long-lived state is stored in datastore nodes
using NoSQL technologies. In particular, the IMS
uses the Memcached datastore, which is the most540

commonly used among popular applications that
need to manage data over thousands of datastore
nodes [41, 42, 43, 44, 45]. The datastore holds data
of IMS users (subscribers) related to authentication
and billing information, and requests are balanced545

across the tier through consistent hashing. In this
architecture, unbalanced overloads can be caused
by resource hogs and by software and configuration
issues.

To assess our proposed solution (labeled as “data-550

dependency-aware”), we also consider a baseline
representative of existing overload control solu-
tions (labeled as “non-data-dependency-aware”).

Round robin
node selection

Direct node selection
(by hash)

BONO SPROUT 
ASTAIRE

MEMCACHED

HOMER

SIP/TCP BIN/TCP
IMS Subscribers

(SIP)

Round robin
(DNS)

node selection

HOMESTEAD

Figure 4: Overview of the Clearwater IMS.

As baseline, we consider the overload control mech-
anism included in the Clearwater IMS [46, 47]. This555

algorithm uses a token bucket to control the rate
of requests that a node can process. The token re-
placement rate is tuned by computing the smoothed
average latency of processed requests, and by com-
paring this metric with a configured latency tar-560

get. This algorithm is an evolution of the one pro-
posed by Welsh and Culler [32], and representative
of latency-based overload control typically adopted
in distributed systems.

4.1. Integration of the overload control solution565

To apply the overload control solution, we de-
ploy the Capacity Monitoring and the Admission
Control respectively on the Memcached and Sprout
nodes. The Distributed Memory runs on a ded-
icated set of standalone nodes in order to ana-570

lyze its overhead (Sec. 6). The Data Location
Discovery block implements the procedure in Fig-
ure 5. It extracts from the incoming SIP messages
the user identity (e.g., 50012345@example.com)
and, in case of an INVITE message, the iden-575

tity of the callee (e.g., 5001244@example.com).
On each user request, the Sprout node ac-
cesses the information about the user session in
JSON format, by performing a query on Mem-
cached, using the key reg\\user identity (e.g.,580

reg\\50012345@example.com).

The Data Location Discovery procedure looks-
up the Memcached node by computing a hash
function on the key for the user’s data (e.g.,
MD5(reg\\50012345@example.com)). In this case585

study, the Data Location Cache is optional, as the
hash function can be computed on every request
with a small overhead. Since the data location can
be determined solely from the request, we use the
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(50012344@critiware.com)

reg//50012345@critiware.com
reg//500123444@critiware.com

Figure 5: Data Location Discovery for the IMS.

Distributed Memory to only store capacity informa-590

tion about the datastore nodes.
After a REGISTER or an INVITE message, the IMS

and the user agent generate a flow of messages, by
following a sequence specified by the SIP protocol
(e.g., INVITE - 100 Trying - 180 Ringing - 200 OK595

- ACK). In all these messages, the server will request
the same key, and thus will query the same datas-
tore node. Thus, before admitting a new user ses-
sion, on the first INVITE message we check whether
there is enough capacity to satisfy all of the sub-600

sequent messages in the sequence. The Admission
Control algorithm takes into account the type of
the request, and performs throttling on the first
REGISTER and the first INVITE message of a SIP
session. This approach gives priority to SIP ses-605

sions that are already established, to prevent user-
perceived errors in the middle of a SIP session.

4.2. Experimental setup

The experimental testbed consists of eight host
machines SUPERMICRO (high density), equipped610

with two 8-Core 3.3Ghz Intel XEON CPUs (32 logic
cores in total), 128GB RAM, two 500GB SATA
HDD, four 1-Gbps Intel Ethernet NICs, and a Ne-
tApp Network Storage Array with 32TB of storage
space and 4GB of SSD cache. The hosts are con-615

nected to three 1-Gbps Ethernet network switches,
respectively for management, storage and VM net-
work traffic. The testbed is managed with Open-
Stack Mitaka and the VMware ESXi 6.0 hypervisor.
In order to reproduce unbalanced overload condi-620

tions, we adopted a large IMS deployment, which
includes 50 nodes in the Sprout application tier,
50 nodes in the Memcached datastore tier, and 10
nodes in the Bono front-end tier. We configured the
number of nodes for the other components of the625

IMS proportionally to the capacity of the Sprout,

Bono, and Memcached nodes, such that to have an
average CPU utilization in each component of 80%
with no request failures. We deployed a cluster of
10 VMs for workload generation, using SIPp [48]630

to generate a SIP workload for the IMS system.
SIPp generates message flows between subscribers
and the IMS according to the SIP protocol, and it
is also by the Clearwater project to perform tests
on the IMS. The SIPp configuration used in our635

experiments is available online [49].

In order to perform a conservative evaluation of
the overload control solution, we simulate a worst-
case overload scenario, where a higher number of
subscribers and requests suddenly enter the system640

at the highest possible rate. As this work has been
conducted in the context of an R&D cooperation
with a commercial vendor of NFV products and
services, we tuned the behavior of the subscribers
(e.g., the rate of busy-hour call attempts) accord-645

ing to the experience of the company with overload
conditions [25]. In this workload, every subscriber
registers and periodically renews the registration
every minute on average. After a successful regis-
tration, a subscriber attempts to set up a call with650

another subscriber (with 16% of probability), or re-
mains idle until the next registration renewal (with
84% of probability). The call hold time is, by de-
fault, 60 seconds. Thus, the scenario reproduces 60
Busy Hour Register Attempts (BHRA) per user and655

5 Busy Hour Call Attempts (BHCA) per user. Our
deployment can handle up to 110k subscribers with-
out exhibiting any failure, corresponding to 1,833
REGISTER/s and 153 INVITE/s on average, with
an average CPU utilization of 80%.660

We adopted the following experimental plan. We
consider different volumes of workload, by varying
the number of subscribers. The workload volume
range from normal conditions (request rate at 70%
and 100% the engineered capacity, with 80k and665

110k subscribers) to overloading ones (respectively,
request rate at 4, 10 and 100 times the engineered
capacity of the system, up to 11M subscribers). The
workload surges assess the ability of overload con-
trol to discard requests in excess, and to ensure a670

high throughput of served requests. Moreover, we
make the overload condition to be unbalanced in
the datastore tier, by injecting resource contention
in 5 out of 50 datastore nodes, in order to assess
whether overload control can achieve high resource675

utilization of the non-overloaded nodes. All exper-
iments are divided in 3 phases, as follows:
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1. Initial ramp-up phase: We introduce new
subscribers in the system, up to the engineered
capacity, and wait for a steady state. We use680

this condition as a starting point for the eval-
uation.

2. Workload surge: We add more subscribers
to generate a workload surge (up to 100 times
the engineered capacity) to cause an overload685

condition.

3. Hog injection: We simulate an unbalanced
overload condition in the datastore nodes (e.g.,
reduced capacity due to hogs on the same ma-
chine, or bad configuration), by injecting de-690

lays in Memcached’s request handling.

The IMS is a performance-critical application,
which needs to assure a low response time (latency)
even under stressful conditions. We consider typi-
cal latency constraints, where registration requests695

and call-setup requests should be served within
100ms and 250ms at most, respectively [38, 29].
In order to evaluate both the service rate and la-
tency achieved by the IMS, we evaluate the use-
ful throughput of served requests, i.e., the number700

of requests per second that are correctly processed
within latency constraints. Requests that exceed
latency constraints are treated as errors, thus low-
ering the useful throughput.

4.3. Experimental results705

We first present in detail a case of workload
within the engineered capacity of the system (1x
load), while injecting an unbalanced load condition
in the datastore tier, in order to analyze the per-
formance overhead of overload control, and the ef-710

fects of resource contention. Then, we present in
detail a representative experiment workload above
the engineered capacity (10x load), to analyze the
combined effects of workload surge of subscribers
and unbalanced overloads in the datastore tier. Fi-715

nally, we analyze the IMS performance over all of
the experiments.

Figures 6a and 6b show the performance of the
IMS for registration and call-setup requests, with a
workload at the engineered level (1x), by generating720

110k subscribers. During the steady state (starting
at minute 4), after all of the subscribers performed
an initial registration, the system is able to process
1800 registrations/s and 150 call-setup/s on aver-
age. The throughput of the overload control solu-725

tions are matching, and both close to the rate of the

incoming requests from the clients. The proposed
overload control solution incurs a negligible over-
head, since it only needs to perform a lightweight
parsing of few bytes of the requests, to extract the730

request type and user identities, and to compute the
hash function. Thus, the proposed overload control
solution does not interfere with the performance of
the system under normal conditions.

Later during the experiment at minute 10, when735

the hog is injected, the registration throughput
decreases by 12% for both overload control solu-
tions, but with different behaviors. The proposed
overload control solution selects requests based on
their data dependencies, and rejects them before740

they enter the system, thus avoiding that these re-
quests could reach the overloaded datastore nodes.
Instead, with non-data-dependency-aware overload
control, requests in excess are still admitted in the
system, and fail later when the requests hit the745

(overloaded) datastore nodes. This second behav-
ior is undesirable, since it exacerbates the over-
load condition of the datastore nodes (increasing
the likelihood of software failures), wastes resources
(some sessions will partially processed and even-750

tually fail), and causes long delays experienced
by the clients (i.e., they only notice request fail-
ures after a timeout). More insights on this ef-
fect can be observed in Figure 6c, which shows
the CPU consumption of an overloaded datastore755

node, when a CPU hog injected after minute 10.
In the case of non-data-dependency-aware overload
control, the CPU utilization saturates to 100% as
an effect of requests in excess that are still admit-
ted. The data-dependency-aware throttling pre-760

vents these requests in excess from reaching the
datastore node, and stabilizes CPU utilization be-
low 80%.

Figures 7a and 7b show the performance of the
IMS when the workload exceeds the engineered ca-765

pacity by 4 times. After the ramp-up phase, we
generate a workload surge at minute 4, by intro-
ducing up to 440k subscribers. With non-data-
dependency-aware overload control, the registra-
tion throughput significantly decreases, down to770

105 registrations per second on average. Moreover,
the call-setup throughput becomes even lower, since
even the registered users are able to initiate calls
due to the high resource contention. As pointed out
in Figure 7c (between min 4-10), the CPU utiliza-775

tion of datastore nodes is highly variable, as non-
data-dependency-aware overload control only indi-
rectly adapts to the load of the datastore tier, by
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(c) Memcached CPU consumption

Figure 6: IMS performance at the engineered capacity (1x).

averaging request delays over a time window. As a
result, too many requests are admitted in the sys-780

tem, which eventually lead to the failure of several
application nodes due to out-of-memory kills by the
OS.

With the proposed data-dependency-aware over-
load control solution, the throughput is always785

above the engineered throughput, for both regis-
tration and call-setup operations. Registrations
in excess (i.e., the difference between request at-
tempts and throughput in Figure 7a) are timely
rejected, without experiencing failures of the ap-790

plication nodes, and with a stable CPU utilization
(Figure 7c). The admitted subscribers are able to
make call-setup requests at full capacity (i.e., there
is no gap between request attempts and through-

(a) Registration Throughput (400%)

(b) Call-setup Throughput (400%)

0 2 4 6 8 10 12 14 16
Time (min)

0  

20 

40 

60 

80 

100

C
P

U
 U

ti
l. 

(%
)

(c) Memcached CPU consumption

Figure 7: IMS performance at 4x the engineered capacity.

put in Figure 7b), thus achieving a high quality795

of service for the admitted subscribers. Interest-
ingly, during the workload surge, the registration
throughput is even higher than the engineered level
(over 2000 regs/s). This behavior is caused by
the lower number of datastore accesses (2) made800

by re-registration requests, compared to datastore
accesses (6) made by new registrations. As sub-
scribers get admitted and lower their datastore ac-
cesses, the system opportunistically admits some of
the new subscribers in excess, thus gradually in-805

creasing the overall amount of registrations.

During the injection of resource hogs, the sessions
that are currently served by the injected nodes are
slowed down, causing a CPU saturation for about 1
minute (after min 10, in Figure 7c), with both over-810

11

Electronic copy available at: https://ssrn.com/abstract=4100264



load control solutions. When these sessions end,
the data-dependency-aware solution is able to keep
the CPU utilization around 80%, since it avoids
accepting any new session that accesses the over-
loaded datastore nodes. Instead, in the non-data-815

dependency-aware case, the application nodes keep
submitting new requests to the overloaded datas-
tore nodes, which are enqueued and cause the ex-
haustion of the socket pool. This behavior, in turn,
causes failure in application nodes.820

Even during the injection of a hog, overload
control preserves the registration throughput for
already-registered sessions (Figure 7a), which is still
above the engineered level. Sessions are not admit-
ted if any of its data requests access any of the over-825

loaded datastore nodes. In this process, overload
control also prevents some data requests to non-
overloaded datastore nodes. Thus, datastore nodes
become less loaded, so other sessions (i.e., the ones
that do not use overloaded nodes) are gradually ad-830

mitted in place of the rejected ones.

Figure 8 summarizes the performance of the IMS
(average and standard deviation of the throughput
for registrations and call-setups) under hog injec-
tion, for all workloads, and for both the overload835

control solutions. When the load is within the en-
gineered capacity (0.7x and 1x), there are no sig-
nificant differences between the two overload con-
trol solutions. However, as discussed before for the
1x case (Figure 6), data-dependency-aware over-840

load control prevents unnecessary resource waste
and delays, by rejecting sessions before they enter
the system. Under higher load conditions (4x, 10x,
and 100x), the performance degrades, and the IMS
components eventually experience software crashes845

due to resource exhaustion. When we introduce the
data-dependency-aware overload control, the IMS
does not experience crashes, and reaches a stable
throughput above 90% of the engineered capacity.

5. Distributed Fileserver Case Study850

We here analyze the overload control solution in
the context of a case study on a distributed fileserver
for cloud storage, which has high performance and
availability requirements, and is prone to hot-spots
[50, 51]. This case study is based on a proprietary855

system from our industrial project partner, where
we experiment with unbalanced overload scenarios
that the company experienced in this context. This
system includes three tiers (Figure 9): a frontend
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Figure 8: Overview of results on the IMS.

tier, based on HAproxy, which performs load bal-860

ancing; an application tier, composed of web appli-
cation nodes; and the datastore tier, composed of
Memcached nodes.

S1

S2

S3

S4 M3

Fileserver
Application Tier

Memcached
Datastore Tier

S5 M4

M1

HTTP
client 

requests

H1

H2

H3

HAproxy
Load Balancing Selection by 

consistent
hashing

M2

Round
robin

selection

Figure 9: Overview of the distributed fileserver case study.

The user can perform 4 types of operations on
the system: (1) registration, (2) file upload, (3) file865

download, and (4) de-registration. Clients select an
instance of the HAproxy by querying a DNS server
(bind9 in our setup). The application tier is state-
less: no session state is stored in the web applica-
tion nodes. For example, the same client can send a870

registration request to the server S1, and an upload
request to the server S2. The web application stores
the data in the Memcached key-value store cluster.
These services are implemented by a C application,
based on libevent library for asynchronous commu-875

nication with clients, and on libmemcached for com-
munication with the datastore.

12

Electronic copy available at: https://ssrn.com/abstract=4100264



The registration is a “set” operation that stores
user account information on a datastore node (such
as the username and the last access time) under a880

specific key, while the de-registration is a “delete”
operation that removes the key-value pair from the
server. To make an upload request, the client sends
a file through an HTTP POST request message
that includes the “username”, the “filename” and885

the file contents. Then, the application divides the
file contents into chunks of equal size (1MB), and
stores the chunks into data nodes. The applica-
tion uses the string key "username$filename$i"
to identify the i-th chunk. Then, sequentially for890

each chunk i, the application computes the hash
function MD5("username$filename$i) to identify
the location of a datastore node where to save
the chunk. Finally, the application uses the key
"username$filename" to store the file size ob-895

tained from the Content-Length HTTP header.
The upload operation uses the setMulti function to
store multiple key-value pairs on datastore nodes.
For download requests, the application uses the
same strategy. It extracts the “username” and900

the “filename” from the request message. Then,
it gets the current file length by querying the
key "username$filename", and computes the hash
MD5("username$filename$i") for every chunk i.
The download operation uses the getMulti function905

to concurrently retrieve multiple chunks from data-
store nodes.

5.1. Integration of the overload control solution

To apply the overload control solution, we de-
ploy the Capacity Monitoring and Admission Con-910

trol respectively on the datastore and the applica-
tion nodes. We deployed the Distributed Memory
in a set of dedicated Memcached nodes, in order to
assess its overhead (further discussed in Sec. 6).

For this case study, the Data Location Discov-915

ery procedure (Figure 10) parses the HTTP Re-
quest message, to extract information about the
request type, the username, the filename, and the
content-length. Then, it builds the same group of
hash keys generated by the application (e.g., user8,920

user8$file.txt, user8$file.txt$chunk1, . . . ).
Using the request identifier (i.e., username for
the register and the unregister operations, and
username$filename for the upload and the down-
load operations), the admission control performs a925

cache lookup to identify the nodes needed to per-
form the operation. In case of a cache miss, the

admission control finds these locations by comput-
ing the hash function, and creates a new entry in
the cache. Once the locations have been computed,930

the admission control algorithm evaluates the loca-
tion array L, where the i−th element represents the
number of file blocks to be accessed on the datas-
tore node i.

HTTP Request
Message

Extract information

Build resource
hash-keys

Request in 
Data Location 

Cache?

Data Location 
Array

Compute MD5 of 
keys to find data 

locations

Store request in 
cache

No

Yes

Username
Filename

Content-length

user8
user8@file.txt

user8@file.txt$chunk1...n

Figure 10: Data Location Discovery for the fileserver.

5.2. Experimental setup935

The experimental testbed is based on the same
hardware and software as the previous case study
(Sec. 4). In order to reproduce representative un-
balanced overload conditions, we set up a testbed
with a large number of nodes. We use 50 indepen-940

dent VMs for the application tier, and a further 50
VMs for the datastore tier. Service requests are
load-balanced among 10 VMs by HAProxy in the
front-end tier.

We performed a conservative evaluation of the945

proposed solution, by simulating a worst-case over-
load scenario, where hot-spot resources are sud-
denly requested at the highest possible rate. The
workload is generated by Apache JMeter in a dis-
tributed configuration. We deployed 10 additional950

VMs to submit requests to the system, and a con-
troller VM to set up the experiment and collect
performance data, including application latency,
throughput, and service failures. We tuned the
workload generators following the experience of our955

industrial partner. The workload runs a set of
clients, which register on the system and perform
several uploads and downloads of files with a size
between 8KB and 4MB, and random contents. In
this configuration, the system can handle up to 700960

concurrent users with no failures, achieving an av-
erage throughput of 175 uploads/s and 175 down-
loads/s.

We adopt an experimental plan with different un-
balanced overload conditions in the datastore tier.965
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Initially, we apply a workload with a balanced re-
quest mix at a rate within the engineered capacity
of the system, in which each user requests its own
files. Then, we apply a skewed workload, by in-
troducing additional clients that repeatedly access970

a shared set of hot-spot files, at a rate 4, 10, and
100 times the engineered capacity. The files are lo-
cated across a set of 7 to-be-overloaded nodes out
of 50 datastore nodes. We vary the number of these
clients between 0 (i.e., 1x balanced workload) and975

70K (100x skewed workload on the hot-spots). All
experiments are divided into 3 phases, as follows:

1. Initial ramp-up phase: We introduce new
clients in the system, up to its engineered ca-
pacity, and wait for a steady state. We use this980

condition as starting point for the evaluation.

2. Hot-spot generation: We increase the work-
load by introducing additional clients that ac-
cess shared files, to generate hot-spots in the
datastore.985

3. Final ramp-down phase: We gradually re-
duce the workload until we remove the effects
of the hot-spot.

In this case study, we again evaluate the useful
throughput of the system. The application treats as990

errors the requests that experience latency higher
than 200ms. Thus, any significant latency increase
will show up as lower throughput.

5.3. Experimental results

We first discuss the case of normal conditions,995

with a balanced load at the engineered capacity.
Then, we discuss the effect of hot-spots, with refer-
ence to the case of 10x skewed workload. Finally,
we compare the overall throughput across all the
experiments (1x, 4x, 10x, 100x workload on hot-1000

spots).

The experiment with balanced load within the
engineered capacity (1x) showed that our solution
has no side effects when the system is under normal
conditions (Figures 11a and 11b), since both the1005

upload and download throughput of the system are
still at the engineered capacity, and no failures are
experienced. The CPU utilization on the datastore
nodes is also comparable for the two solutions Fig-
ure 11c. When performing data-dependency-aware1010

control, we did not observe any latency violation
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Figure 11: Fileserver performance at engineered capacity
(1x).

under normal conditions, as the Data Location Dis-
covery uses caching to quickly look up the locations
of data dependencies.

In the experiments with skewed workload on hot-1015

spots, we observed a significant degradation in the
case of the baseline approach, both in terms of up-
load and download throughput (between min 2-7 in
Figure 12a and 12b, with reference to 10x skewed
workload). The throughput of download operations1020

is lower than upload operations, since the two op-
erations are not independent, and the slow-down
and failure of upload operations cause a decrease of
download requests. The requests for hot-spot files
have an impact on all users in the system, since the1025

system tries to process all requests at the same time,
but fails at completing most of them. This behavior
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Figure 12: Fileserver performance at 10x engineered capac-
ity.

can be observed in the CPU utilization of datastore
nodes with hot-spot resources (Figure 12c). In the
baseline case, CPU utilization saturates to 100%.1030

Instead, with data-dependency-aware overload
control, both the upload and download throughput
only experience a moderate decrease of the through-
put (Figure 12a and 12b). The Data Location Dis-
covery is able to keep up with the high rate of1035

requests for hot-spot resources, as the location of
these resources is quickly recorded in its cache. The
overload control solution keeps the CPU utilization
at 85% (Figure 12c), which is the target CPU uti-
lization that we configured in the Admission Con-1040

trol to prevent excessive resource contention. Fi-
nally, after the hot-spot phase, the CPU utilization
reduces as expected (min 7-9).
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Figure 13: Overview of results on the distributed fileserver.

All experiments are summarized in Figure 13. In
the baseline case (non-data-dependency-aware), the1045

fileserver exhibits a noticeable throughput degra-
dation. In the worst case (100x overload), the
throughput reduces to about one-half on average for
uploads, and about one-third on average for down-
loads. Instead, with data-dependency-aware over-1050

load control, the throughput is above 90% of the
engineered throughput, even in the worst case of
the 100x overload condition, both for uploads and
downloads. By preventing the admission of requests
that are overloading hot-spot datastore nodes, the1055

overload control solution leaves the system with
enough available capacity to serve all the admitted
requests, even during a high workload surge.

6. Overhead and scalability

Since our solution is meant to be deployed in1060

multi-tier systems, with a large number of nodes
in each tier (e.g., up to 10k nodes in production
systems at our industrial partners), we optimized
this component to achieve high scalability and low
overhead.1065

The proposed solution deploys an agent on
each application node to perform data-dependency-
aware overload control. This agent has a small
memory footprint, with less than 10 MB even in
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the 100x overload case. The agent consumes some1070

CPU for request inspection and admission, depend-
ing on the volume of incoming requests. In our ex-
periments, the CPU overhead was small, and less
than 8% in the worst-case 100x load (Figure 14).

The computational cost of the overload control1075

algorithms is limited. The Algorithm 1 executes
periodically (e.g., every few seconds) to get infor-
mation about the load of datastore nodes, and per-
form simple computations, similarly to monitoring
solution that are adopted by cloud system admin-1080

istrators. Thus, it has a constant computational
cost with respect to the number of client requests,
and scales linearly with the number of nodes in the
datastore tier.

More importantly, the communication cost (i.e.,1085

number of exchanged messages with other nodes)
of the Algorithm 1 is also small and scales linearly
both with the number of nodes in the application
tier, and of nodes in the datastore tier. We con-
solidate the monitored data into the Distributed1090

Memory stored in an additional NoSQL datastore,
which runs on a small set of nodes to avoid becom-
ing a performance bottleneck, and which transpar-
ently manages the distribution of key-value pairs,
with low memory consumption. Moreover, the Dis-1095

tributed Memory keeps at a minimum the commu-
nication latency by using a NoSQL datastore, which
is lightweight and schemaless, and by establishing a
fixed pool of persistent connections with each node.
As discussed in experimental evaluation of Sec. 41100

and 5, the impact on the tail latency is small enough
to prevent violations of latency constraints. Since
there is no direct communication between nodes in
the application and datastore tiers, the number of
connections only grows linearly with the number of1105

nodes in the tiers.

The Algorithm 2 also has a limited computa-
tional and communication cost. The algorithm is
executed on every incoming serving request. The
algorithm finds the location of datastore nodes by1110

extracting metadata from the client’s request mes-
sage. The algorithm only iterates over a small
subset of datastore nodes, i.e., the ones that hold
the data needed by the incoming service request.
Moreover, the algorithm only communicates with1115

the Distributed Memory, to retrieve information
about the current available capacity of these nodes.
Therefore, the communication cost does not in-
crease when scaling up the datastore tier.
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Figure 14: CPU utilization of the overload control agent.

6.1. Sizing the Distributed Memory1120

We here analyze the Distributed Memory com-
ponent at increasing scale, in order to quantify the
cost of deploying the proposed solution, in terms of
additional nodes.

Let TA be the engineered throughput of a single1125

application node; NA and NC respectively the num-
ber of application nodes and of distributed mem-
ory nodes, respectively; and R the average num-
ber of accesses to the Distributed Memory per ser-
vice request. Each application node has a pool of1130

p connections to each of the NC nodes of the Dis-
tributed Memory, to avoid opening TCP connec-
tions on-demand. Therefore, the total number P of
connections is constant (P = NA · p).

The maximum number of requests towards the1135

Distributed Memory is limited by the engineered
capacity of the application tier. If requests exceed
the capacity of the application node, they are re-
jected without any further inspection (the local ca-
pacity in Alg. 2). Thus, the maximum number of1140

requests inspected by an overload control agent is
equal to the engineered capacity of the application

node. We denote as T
(P )
C the maximum throughput

of an individual Distributed Memory node at con-
currency level P . This throughput can be experi-1145

16

Electronic copy available at: https://ssrn.com/abstract=4100264



mentally obtained by performing a simple capacity
test, using a synthetic workload generator to gen-
erate P concurrent connections and to measure the
throughput, as discussed in the next subsection.

The Distributed Memory as a whole can handle1150

at most NC ∗ T (P )
C requests. This capacity must

match the maximum number of requests that come
from the application tier, which is NA∗TA∗R when
the workload reaches the engineered capacity of the

system, that is, NATAR = NCT
(P )
C . Therefore, the1155

number of Distributed Memory nodes needed to sus-
tain the overload control algorithm is given by:

NC =

⌈
NATAR

T
(P )
C

⌉
(2)

6.2. Example: scaling the solution up to 10K nodes

We performed a capacity test to estimate the
maximum throughput of a Distributed Memory1160

node. We used the memtier-benchmark tool to gen-
erate synthetic workload for Memcached. Figure 15

shows the throughput T
(P )
C for a number of concur-

rent connections P ranging from 50 to 50k.
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Figure 15: Capacity test of a Distributed Memory node.

Using Eq. 2 and the results from the capacity1165

test, we evaluate the number of Memcached nodes
needed to apply our solution in a system with 10k
application nodes.

A) Our testbed configuration (up to 50 appli-
cation nodes). The number of application nodes1170

is NA = 50. The average number of requests to the
Distributed Memory per service request is R = 4.
The engineered throughput of a single application
node is TA = 40 req/s at the steady state (the whole
throughput is 2, 000 req/s). The connection pool1175

size in each application node is p = 5 connections.
The concurrency level of each Memcached server is

P = NA·p = 250 connections. Each server is config-
ured with 1 vCPU and 4GB RAM. The throughput
of a single Memcached server at this concurrency1180

level is T
(250)
C = 203, 349 req/s (Figure 15). There-

fore, the minimum number of nodes to deploy is:

NC =

⌈
NATAR

T
(P )
C

⌉
=

⌈
50 ∗ 40 ∗ 4

203, 349

⌉
= 1

B) Scaling the system up to 10, 000 applica-
tion nodes. Under the same conditions, if we scale
the application tier up to 10k nodes (NA = 10, 000),1185

we obtain a Memcached concurrency level P =
NA · p = 50, 000 connections. Considering that a
single TCP connection requires up to 1 KB of mem-
ory in a Linux system, the memory overhead will
be less than 50 MB per node. The performance of1190

each Memcached server drops to T
(50K)
C = 130, 579

req/s (Figure 15), due to resource contention caused
by the high volume of requests. Thus, the number
of Memcached nodes that are required to handle
10, 000 application nodes is:1195

NC =

⌈
NATAR

T
(P )
C

⌉
=

⌈
10, 000 ∗ 40 ∗ 4

130, 579

⌉
= 13

We remark that this is a worst-case result. On
average, a large part of the 50, 000 connections are
idle most of the time: the concurrency level is lower
than the number of active connections, since con-
nection pools have spare connections.1200

Figure 16 shows the required number of nodes
for an increasing number of application nodes (NA)
and for different values of R, assuming that each ap-
plication node has an engineered throughput equal
to TA = 40 req/s, as in the previous examples.1205

When the number of application nodes is below
200, a single Memcached node suffices. In the ex-
treme case of 10, 000 application nodes, in which a
single application request performs 20 accesses on
average, the solution requires up to 62 Memcached1210

nodes, which is still less than 1% of the nodes of
the application tier.

7. Related Work

In this section, we review previous studies on
overload control. Since this topic is closely related1215

to autoscaling and load balancing, we also review
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Figure 16: Number of nodes for the Distributed Memory
(NC), at different scales of the application tier (NA) and
average number of datastore operations per user request (R).

studies in these areas and discuss how they are re-
lated to this work.

Autoscaling. A common strategy to face over-
loads is scaling-out cloud instances, either in a re-1220

active way (e.g., when resources are exhausted, or
delays are too long), or in a proactive way (e.g.,
by anticipating overloads through forecasting). Ex-
amples of reactive solutions are autoscaling solu-
tions from public IaaS providers, such as AWS Auto1225

Scaling [52], the UNIFY framework for NFV or-
chestration [53], which performs load balancing and
elastic scaling of VNFs based on performance mea-
surements, Autoscale [54], which scales out applica-
tion nodes in response to workload pattern changes,1230

and VNF-DOC [55], which auto-scales based on
workload forecasting. However, these solutions are
aimed at stateless cloud instances, but are not suit-
able for scaling stateful datastores, which need to
redistribute data across nodes. Recent research1235

on overloaded datastores includes PAX [56], which
profiles the workload to detect and to redistribute
hot-spot resources on newly added nodes. These
solutions are complementary to our work for two
reasons. First, scaling-out takes a non-negligible1240

amount of time, during which the system is exposed
to degraded QoS and software failures. In this time-
frame, our throttling solution can cooperate with
autoscaling, by preserving QoS of sessions up to
the system capacity, while more capacity is added1245

in background and data is redistributed. Second,
overloads are caused not only by external workload
surges, but can also be a consequence of internal
faults, such as software bugs and misconfigurations.
In these cases, scaling out is ineffective against the1250

root cause of the overload.

Load balancing. Optimizing load balancing in
datastores is another approach to prevent unbal-

anced overload conditions, by dynamically replicat-
ing and migrating data. SPORE [21] and SP-cache1255

[24] address hot-spots due to skewed workloads, by
taking into account key popularity to perform more
sophisticated data replication. Zhang et al. [22] de-
signed a middleware between applications and data-
stores, that includes a hot-spot detector, and a key1260

redirector that replicates popular keys on multiple
servers, and forwards them to servers according to
their resources. NetKV [57] is a proxy that inspects
key requests, and replicates hot-spot keys on multi-
ple servers to mitigate unbalanced workloads. MBal1265

[23] is an in-memory datastore designed to prevent
load unbalancing problems. It includes a central-
ized coordinator that monitors the system state and
performs data replication and migration. Similar to
autoscaling, these strategies can be slow at adapt-1270

ing to sudden workload changes and faults, since
data need to be copied across nodes. In contrast,
throttling does not modify the way data are ac-
cessed and distributed, prevents unbalanced traffic
in excess from entering into the system.1275

Throttling. Admission control and traffic throt-
tling solutions have been frequently used in IT
and telecom systems to promptly react to over-
loads. In general, these approaches monitor service
performance (e.g., in terms of throughput and la-1280

tency at the application layer) and resources (e.g.,
CPU utilization), and throttle traffic in a dynamic
feedback loop. Kasera et al. [9] analyzed throt-
tling algorithms in the context of carrier-grade tele-
com switches, such as the Random Early Discard1285

(RED), which throttles traffic according to the re-
quest queue size, and the Occupancy algorithm,
which throttles traffic according to CPU utilization
and rate of accepted calls. Hong et al. [10] present
a broad overview of overload control schemes for1290

the SIP protocol. We adopted a similar algorithm
for NFV-Throttle in the context of virtual network
functions [25].

In the context of distributed systems, Welsh and
Culler [32] proposed an adaptive overload control1295

approach using a token bucket and a closed con-
trol loop to tune traffic according to service latency.
This approach is quite representative of the state-
of-the-practice in distributed applications, as in the
case of the Clearwater IMS [40]. More recent de-1300

velopments for cloud computing include: brownout
techniques [58, 34], which adaptively activate or de-
activate optional parts of applications to manage
overloaded resources; DAGOR [33], which performs
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business-oriented admission control by propagating1305

a business priority level across requests for the same
session, and tuning the admission level based on
the current load; Wisp [35], which propagates lo-
cal admission rates of individual processes, from
downstream services to upstream ones, in order1310

to perform admission control of entire workflows;
and Breakwater [59], which reduces the overhead of
overload control for microsecond-scale RPCs by is-
suing credits from downstream services to upstream
ones, in a speculative way.1315

It is important to note that all of these stud-
ies addressed different aspects of overload control,
but none of them is applicable for handling
data dependencies and hot-spots that arise in
multi-tier systems with large-scale datastores. Only1320

few studies considered multi-tier web sites, such as
Liu et al. [60], which adopt queuing theory and
feedback loops for adaptive load control; and Mup-
pala and Zhou [61] and Cherkasova and Phaal [62],
which differentiate between user workload patterns1325

to identify which tier can be overloaded. However,
these solutions handle the tiers as a whole, and are
not suitable against unbalanced overloads in large-
scale datastores (i.e., affecting few specific nodes).
Our solution mitigates this issue by performing1330

throttling at a fine-grain, according to data depen-
dencies and to the capacity of individual datastore
nodes.

8. Conclusion

We analyzed unbalanced overload conditions in1335

modern multi-tier systems with large-scale datas-
tores, which can be caused by hot-spot resources,
misconfigurations, background tasks, and hogs. We
proposed DRACO, a distributed overload control
solution that performs fine-grained requests throt-1340

tling, by taking into account data dependencies and
the available capacity of datastore nodes. This
approach is suitable for multi-tier systems where
traffic cannot be throttled by the inner tiers (e.g.,
due to data consistency issues); does not introduce1345

changes in the datastore tier (e.g., it is applica-
ble with off-the-shelf datastores); and it is based
on simple, robust heuristics based on CPU and
network utilization to tune the amount of traffic.
We evaluated DRACO on two case studies: a dis-1350

tributed fileserver, which is sensitive to problems of
data consistency and hot-spots, and a virtualized
IP Multimedia Subsystem, which must withstand
huge workloads and achieve high reliability. In our

experiments, we simulated unbalanced overloads up1355

to 100 times the capacity of the system. Results
showed a significant improvement in both QoS and
resource utilization.
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