
Dependability Evaluation of Middleware
Technology for Large-scale Distributed Caching

Domenico Cotroneo, Roberto Natella and Stefano Rosiello
Università degli Studi di Napoli “Federico II”, Italy
{cotroneo, roberto.natella, stefano.rosiello}@unina.it

Abstract—Distributed caching systems (e.g., Memcached) are
widely used by service providers to satisfy accesses by millions
of concurrent clients. Given their large-scale, modern distributed
systems rely on a middleware layer to manage caching nodes, to
make applications easier to develop, and to apply load balancing
and replication strategies. In this work, we performed a depend-
ability evaluation of three popular middleware platforms, namely
Twemproxy by Twitter, Mcrouter by Facebook, and Dynomite
by Netflix, to assess availability and performance under faults,
including failures of Memcached nodes and congestion due to
unbalanced workloads and network link bandwidth bottlenecks.
We point out the different availability and performance trade-offs
achieved by the three platforms, and scenarios in which few faulty
components cause cascading failures of the whole distributed
system.

I. INTRODUCTION

The massive diffusion of social networks, streaming services,
and other distributed applications posed new challenges for
service providers. Companies such as Facebook, Twitter, and
Netflix serve millions of users from all over the world and
manage huge amounts of data, achieving at the same time a
high level of Quality of Experience (QoE). At the Velocity
international event [1], several companies reported that they
face a strict correlation between QoE and users’ loss. For
instance, Google found that a 400 ms delay resulted in a
−0.59% change in searches/user. Furthermore, even after
the delay was removed, these users still had −0.21% fewer
searches, indicating that bad QoE affects customer behavior in
the long term.

To face with the above issue, modern distributed applications
adopt a distributed in-memory caching tier between the
web/business logic and the storage tiers. Distributed caching
offers significant performance benefits at an affordable cost,
as main memory becomes cheaper and network interfaces
become faster, with 1 Gbit now standard everywhere and 10
Gbit gaining traction. Distributed caches work well on low-cost
machines (e.g., machines usually adopted for web servers), as
opposed to database servers that require expensive hardware.
From the software point of view, distributed caches are mostly
implemented with key-value datastores, such as Memcached
[2]. These datastores adopt the NoSQL paradigm, where data
are stored, retrieved, and managed as associative arrays (also
known as “dictionaries” and “hash tables”). They offer several
advantages, including flexible data modeling, high performance,
and massive scalability.

As distributed systems grow towards millions of components,
dealing with failures becomes the standard mode of operation,
since there will always be a small but significant number of
servers and network segments that are failing at any given
time. Therefore, middleware platforms [3] are adopted to
enhance large-scale distributed caches with replication and
load balancing mechanisms, in order to undertake the burden
of tolerating faults and prevent poor QoE experienced by users.

In this work, we investigate the dependability, and in particu-
lar performance and fault-tolerance aspects, of three state-of-the-
practice middleware platforms for distributed caching, namely
Twemproxy [4], Mcrouter [5], and Dynomite [6], developed by
major service providers (respectively Twitter, Facebook, and
Netflix). To the best of our knowledge, previous work has been
assessing performance and dependability of NoSQL datastores
[7], [8], [9], but did not assess these properties in the context
of middleware technology for these datastores.

We conducted a large experimental campaign by simulating
component failures through fault injection. In addition to
the traditional crash failures, we consider the so-called gray
failures, as reported by several previous studies on incidents
in real-world cloud platforms [10], [11]. Examples of gray
failures are unbalanced overloads and network bottlenecks,
which represent subtle failures that are difficult to detect and
to mitigate, and that are sometimes overlooked by designers
of distributed systems. Our experimental results show that the
middleware platforms react differently to the injected faults,
as their architectures embrace different trade-offs between
performance and availability. These trade-offs are often unclear
to designers, due to the lack of experimental evaluations in
the literature, which this work aims to compensate for. Our
experiments also show that faults of only few components in
the datastore tier may cause cascading effects that degrade
the performance of the whole distributed system. This result
points out that designers of distributed systems need to pay
special attention to configure and assess the middleware layer
to mitigate these failures.

In the following, Section II provides background on the
fault-tolerant middleware platforms; Section III presents the
experimental methodology and setup; Section IV discusses
the experimental results; Section V discusses related work;
Section VI concludes the paper.



II. MIDDLEWARE PLATFORMS FOR DISTRIBUTED CACHING

The middleware is located between clients and cache nodes,
and acts as a transparent proxy to aggregate connections for
improving scalability, and to perform failure detection and
data replication for improving fault-tolerance. In the next
subsections, we provide technical background on the three
middleware platforms analyzed in this study, with emphasis
on their architecture and their tunable configuration.

A. Twitter Twemproxy

Twemproxy (aka Nutcracker) is a fast and light-weight proxy
for the Memcached protocol. Twemproxy was developed by
Twitter to reduce open connections towards cache nodes, by
deploying a local proxy on every front-end node. Thanks
to protocol pipelining and sharding, Twemproxy improves
horizontal scalability of distributed caching. Twemproxy allows
to create a pool of cache servers to distribute the data and to
reduce the amount of connections. To send a request to any of
those servers, the client contacts Twemproxy, which routes the
request to a Memcached server. The same Twemproxy instance
can manage different pools, by setting different listening ports
to each pool. The number of connections between the client
and Twemproxy, and between Twemproxy and each server is
set through a configuration file. It is interesting to note that the
“read my last write” constraint does not necessarily hold true
when Twemproxy is configured with more than one connection
per server.

Twemproxy shards data automatically across multiple servers.
To decide the destination server for a request, a request hashing
function is applied to the key of the request to select a shard;
then, based on a chosen random distribution, the request is
routed to a Memcached server in the shard. Twemproxy pro-
vides 12 different hash functions (i.e., one_at_a_time, MD5,
CRC16, CRC32, FNV1_64, etc.) and 3 different distributions
(i.e., ketama, modula, random). It allows the application to use
only part of the key (hashtag) to calculate the hash function.
When the hashtag option is enabled, only part of the key is
used as input for the hash function. This option allows the
application to map different keys to the same server, as long
as the part of the key within the tag is the same.

When a failure occurs, Twemproxy provides a mechanism to
exclude the failed server. It detects the failure after a number
of failed requests (set in a configuration file), ejects the failed
server from the pool, and redistributes the key among the
remaining servers. Client requests are routed to the active
servers; at regular intervals, some requests are sent to the
failed server to check its status. When the failed server returns
active, it is added back to the pool and the key is distributed
again. Twemproxy increases observability using logs and stats.
Stats can be at the granularity of server pool or individual
servers, through a monitoring port. In the configuration file, it
is possible to define the monitoring port and the aggregation
interval. Companies that use Twemproxy in production include
Pinterest, Snapchat, Flikr and Yahoo!.

B. Facebook Mcrouter

Mcrouter is a Memcached protocol router to handle traffic to,
from, and between thousands of cache servers across dozens of
clusters, distributed at geographical scale. It is a key component
of the cache infrastructure at Facebook and Instagram, where
Mcrouter handles nearly 5 billion requests per second at peak.
It uses the standard ASCII Memcached protocol to provide
a transparent layer between clients and servers, and adds
advanced features that make it more than a simple proxy.

In the Mcrouter terminology, a Memcached server is a
destination, and a set of destinations is a pool. Mcrouter
adopts a client/server architecture: every Mcrouter instance
communicates with several pools, without any communication
between different pools. Several clients can connect to a single
Mcrouter instance and share the outgoing connections, reducing
the number of open connections. Looking at the Facebook
infrastructure at a high level, one or more pools with Mcrouter
instances and clients define a cluster, and clusters together
create a region. Mcrouter is configured with a graph of small
routing modules, called route handles, which share a common
interface (route a request, return a reply), and which can be
combined. The configuration can be changed online to adapt
routing to a transient situation, such as adding and warming up
a new node. Since the configuration is checked and loaded by
a background thread, there is no extra latency from the client
point of view.

Mcrouter supports sharding in order to adapt the datastore
tier to the growth of data. The data distribution among servers
is based on a key hash. In this way, different keys are evenly
distributed across different destinations, and requests for the
same key are served by the same destination. It is possible to
choose between different hash functions (e.g., CH3, weighted
CH3, or CRC32). Keys in the same pool compete for the same
amount of memory, and are evicted in the same way. Mcrouter
also provides a feature, namely prefix routing, that allows
applications to control data distribution on different pools, by
using different key prefixes. This feature is valuable since
applications generate and store data of different complexity
(e.g., caching the results of complex computations), and they
can prevent cache misses on “expensive” data by using different
prefixes than “cheap”, so that they do not compete for the same
memory space.

Mcrouter supports data replication. Read and write requests
are managed in a different way: writes are replicated to all
hosts in the pool, while reads are routed to a single replica,
chosen separately for each client, to achieve a higher read rate.
To increase fault tolerance, Mcrouter also provides destination
health monitoring and automatic failover. When a destination is
marked as unresponsive, the incoming requests will be routed
to another destination. At the same time, health check requests
will be sent in the background, and as soon as a health check
is successful, Mcrouter will send the requests to the original
destination again. Mcrouter distinguishes between soft errors
(e.g., data timeouts), which are tolerated to happen a few times
in a row, and hard errors (e.g., connection refused), which



cause a host to be marked unresponsive immediately. The
health monitoring parameters are set up through command line
options. It is possible to define the number of data timeouts
to declare a soft TKO (“technical knockout”), the maximum
number of destinations allowed to be in soft TKO state at
the same time, and the health check frequency. The health
check requests (TKO probes) are sent with an exponentially
increasing interval, whose initial and maximum length (in ms)
is configurable. The actual intervals have an additional random
jitter of up to 50% to avoid overloading a single failed host
with TKO probes from different Mcrouters.

Mcrouter provides mechanisms to check the current configu-
ration. Through an admin request, it is possible to verify what
is the route of a specifc request. Given the operation and the
key, the response from Mcrouter will be the server that owns
the data. It is possible to get the route handle graph that a given
request would traverse. These requests allow administrators to
get insights on the actual state of the system, e.g., to show
how the routing changes when a failure occurs.

C. Netflix Dynomite

Dynomite is a middleware solution implemented by Netflix.
The main purpose of Dynomite is to transform a single server
datastore into a peer-to-peer, clustered and linearly scalable
system that preserves native client/server protocols of the
datastores, such as the Redis and Memcached protocols.

A Dynomite cluster consists of multiple data centers (DC).
A data center is a group of racks, and a rack is a group of nodes.
Each rack consists of the entire dataset, which is partitioned
across several nodes in that rack. A client can connect to
any node on a Dynomite cluster when sending a request. If
the node that receives the request owns the data, it gives the
response; otherwise, the node forwards the request to the node
that owns the data in the same rack. Dynomite is designed to
be a sharding and replication layer. Sharding is achieved as in
distributed hash tables [12], [13]: Request keys are hashed to
obtain a token (an integer value); the range of all possible token
values is partitioned among the nodes, by assigning to each
node a unique token value; the keys that fall in the sub-range
ending with the node’s unique token are assigned to that node.

To achieve replication, datasets are replicated among all
the racks. When a node receives a set request, it acts as a
coordinator, by writing data in the node of its rack which owns
the token, and by forwarding the request to the corresponding
nodes in other racks and data centers. Every node knows the
distribution of the token in the nodes of all data centers through
to the configuration file. Using a similar technique for get
requests, it is possible to increase data availability and tolerate
node failures. The configuration file defines the topology, the
number of connections and the token range partitioning among
the nodes. Moreover, it is possible to configure one of three
confidence levels writes and reads:

• DC ONE: requests are propagated synchronously only
in the local rack, and asynchronously replicated to other
racks and regions;

• DC QUORUM: requests are sent synchronously to a quo-
rum of servers in the local data center, and asynchronously
to the rest. This configuration writes to a set of nodes
that forms a quorum. If responses are different, the first
response that the coordinator received is returned;

• DC SAFE QUORUM: similar to DC QUORUM, but
data checksums have to match.

Dynomite makes the caching system tolerant to failures of
one or few servers (i.e., less than the size of the quorum)
through replication, but it does not provide any failover
detection or online reconfiguration. This makes the system
less dynamic. For example, to add a new node you have to
recompute all tokens, update the configuration file, and restart
all processes. Failover detection, token reconfiguration, and
other features are provided from other components in the Dyno
ecosystem, like Dynomite-manager or Dyno client. Dynomite
provides REST APIs for checking the state of some parameters
(e.g., the confidence level), but this does not include routing
(i.e., where a key is stored or read from).

D. Qualitative comparison of fault-tolerance mechanisms

Both Mcrouter and Dynomite adopt replication as strategy
to achieve transparent fault tolerance. Of course, this strategy
has a major impact on performance, since a single request
turns in multiple operations on several machines. Given the
same settings (number of clients, connections, threads, etc.),
the throughput of the caching system can significantly degrade
when enabling replication: for example, if throughput without
replication reaches 20, 000 reqs/sec, it can settle to 5, 500
reqs/sec when using a replication factor of three. The same is
not necessarily true for latency, which is of the same order of
magnitude in all cases. Being able to use replication without
affecting latency is the reason why major service providers
are using this strategy despite lower throughput, since latency
is the key performance indicator that mostly influences the
Quality of Experience.

Mcrouter has a more complete failure management, as
compared to the previous ones. It consists on monitoring the
health state of destinations and detecting failures. By default, it
converts all get errors into cache misses, so that the application
can still work even if there is no replication and a high amount
of errors occur. Similar considerations on misses and errors
also apply for Twemproxy. When keys are redistributed among
nodes after a failure, Twemproxy turns the timeouts into cache
misses.

Both Twemproxy and Mcrouter rely on knowledge about the
infrastructure and its failures to be configured with appropriate
values, e.g., for the frequency of monitoring, the timeouts,
and the replication policies. The main factors driving the
configuration are: the fault duration, the throughput, and the
amount of data on each server. For example, if we have a
throughput of 20k set reqs/sec, and 100k keys on each node,
then all keys can be redistributed in 5 seconds and be again
available. Thus, it is worth adopting redistribution when the
throughput is high, the amount of data on each node is small,
and the outage of faulty nodes is expected to b long.



Dynomite is fault-tolerant with some limitations. In particular,
if the coordinator node fails (i.e., the node that first receives a
request), there is no retry mechanism that sends the request to
another node. Thus, coordinator failures are not tolerated. This
is a deliberate design choice, since Dynomite is designed to be
on the same host running a Memcached server, thus when the
host fails, both Memcached and Dynomite fail. Furthermore,
if the rack includes a failed node, the rack still continues to
count towards the quorum, while the rack is excluded from
the quorum when all its nodes are failed.

III. EXPERIMENTAL METHODOLOGY AND SETUP

Our experimental campaign aims to identify potential depend-
ability issues that emerge when caching systems are deployed
at a large scale. We deployed the three middleware platforms
on a testbed with dozens of caching nodes, and we adopted
fault injection to accelerate the occurrence of faults for testing
purposes. Fault injection artificially injecting faults that emulate
common failure scenarios in a large-scale distributed system.

In this study, the target system is composed by two tiers:
(i) the Middleware tier, which includes nodes running the
middleware platform under analysis, by accepting clients’
requests and forwarding them to Memcached servers; and (ii)
the Cache tier, which contains Memcached servers where the
actual data are stored and fetched. We focused our analysis on
Memcached since it is widely used by many internet companies
such as Facebook [14], Google [15], and many others [16],
[17], [18] and it is well supported by the middleware software
under analysis.

Controller

Monitor

Workload 
Generator

Fault 
Injector

Middleware

Target System

Cache

Workload 
library

Faultload
library

Fig. 1. Fault injection testbed

In addition to these components, our testbed includes a fault
injection environment with the following components:

• Fault injector: It injects faults into the target system
during the experiment. It can be custom-built hardware
or software. In our environment, we use a software fault
injector implemented through a bash shell script which
kills and overloads the victim nodes.

• Workload generator: It emulates user traffic to exercise
the target system, e.g., by running actual applications,
benchmarks, or synthetic workloads. In our environment, it

is implemented through a Python application, as discussed
in the following. The experiment data concerning database
requests (e.g. throughput, latency, misses, etc.) are also
collected by this component.

• Monitor: It performs data collection, and keeps track of
the progress of experiments. In our environment, we use
a bash shell script. As we use Memcached server for the
caching tier, we monitor the caching servers, including
metrics such as total cache size, global hit percent, number
of connections, get/set/delete requests per second,
and network bandwidth utilization. Moreover, we collect
global statistics for the clusters as a whole and for
individual servers, including slabs, occupation, memory
wasted, and items stored in a server [2]. The monitor also
collects data about resource usage (e.g. CPU, memory,
net, etc.). This data is retrieved by daemons installed in
each virtual machine of the target system (including both
the database instances and the middleware VMs) which
periodically read system performance metrics from the
proc filesystem.

• Controller: It orchestrates the experiments. It can be a
program that runs on the target system or on a separate
computer. In our testbed, it is implemented through a
bash shell script and it is located in a dedicated host. Its
tasks include: resetting the machines before starting the
experiment, warming up the servers, starting the workload
generators, and triggering fault injection.

We have considered three different scenarios that can affect
large-scale distributed systems:

1) Crash failure of Memcached servers. This is the
classical fault model adopted in fault injection for
distributed systems, where a node is shut down and
unresponsive because of hardware or software faults.
Examples include power outages, broken CPU or RAM
components (e.g., due to over-heating), logically- or
physically-severed network connections, security attacks
(e.g., a DDoS), or software crashes due bugs in the OS
or applications. The fault injector emulate crashes by
sending UNIX signals to Memcached servers in order to
stop and to restart them.

2) Unbalanced overloads of a subset of Memcached
servers. This represents a so-called gray failure. Over-
load conditions (i.e., insufficient resources to serve
the incoming user traffic) are a critical aspect for
the design of large-scale distributed applications [19].
Unbalanced overloads are especially problematic: they
occur when a small subset of overloaded nodes become
a bottleneck for the whole distributed system. One
typical case is represented by hot-spots, e.g., popular
multimedia resources and application features [20], [21],
[22]. Unbalanced overloads can also be caused by over-
commitment (e.g., the same host is shared by multiple
tentants, which face a high load at the same time)
and design faults in system configuration and software
[23]. These faults are often overlooked in the design



of distributed systems, as they cause subtle effects that
are difficult to detect. Thus, our experiments evaluate
how the middleware platforms contribute to mitigate
(or, exacerbate) unbalanced overloads in the caching
nodes. This fault is emulated by introducing CPU-bound
processes on a subset of Memcached nodes.

3) Link bandwidth bottlenecks. Network faults can affect
links, switches, and NICs in a data center. Similarly
to unbalanced overloads, the worst case is represented
by silent, non-fail-stop faults in small parts of the
network. Typically, these faults are caused by wear-
out of NICs and links, which lead to packet loss and
performance degradation [11]. These faults are emulated
by re-configuring the OS to restrict the bandwidth of
network interfaces (e.g., from 1000 Mbps to 100 Mbps).

A. Workload generation

To generate a workload for the caching nodes and for the
middleware platform, we need i)to create connections to send
data requests, and ii) to collect performance metrics from the
clients’ perspective. We initially tried several publicly-available
tools, but many proved not to be suitable for carrying out our
experiments. The first tool was the CloudSuite Data Caching
Benchmark [24], which is part of CloudSuite, a benchmark suite
for cloud services. This tool does not support execution in the
presence of failures (which we will deliberately force with fault
injection), and stops making requests when a server fails. Then,
we tried Memaslap [25], a load generation and benchmark tool
for Memcached servers included in libMemcached. However,
the format of requests generated by this tool are incompatible
with Mcrouter. For this reason, we developed our own tool,
namely Mcrouter Mcbench. It is written in Python, uses the
aiomcache library to create the connections and makes requests
according to the Memcached protocol. Mcbench generates
only set (20%) and get (80%) requests with random keys
and values. The tool can be configured with respect to the
distribution of keys and values lengths; the duration of the
experiment; the desired throughput; the number of threads,
clients and connections per server; the list of servers where to
forward requests.

The tool collects performance statistics about requests that
are successful and failed, latency, and misses, aggregating
them every second. To warm up servers, we configure the
tool to initially perform only set requests. The random
distribution of the keys is based on a real-world Twitter dataset
from the CloudSuite Data Caching Benchmark [26]. To create
random distributions for a more intensive workload for large
distributed systems, we scaled-up the Twitter dataset by a
factor of ten, while preserving both the popularity and the
distribution of object size, with alphanumeric variable-length
keys. The original dataset consumes 300MB (267,433 rows) of
server memory, while the scaled dataset requires about 3GB
(2,674,339 rows).

TABLE I
CONFIGURATION OF THE EXPERIMENTAL TESTBED

Node Type # of
nodes

VM configuration

Controller
Node

1 2 vCPU, 16GB RAM, 120 GB HDD

Middleware
Node

7 4 vCPU, 4 GB RAM, 20 GB HDD

Memcached
Node

30 1 vCPU, 8 GB RAM, 20 GB HDD

Workload
generator

7 4 vCPU, 8 GB RAM, 40 GB HDD

Total 45 88 vCPU, 340 GB RAM, 1.14 TB HDD

B. Testbed configuration

The experimental testbed was built on top of OpenStack, an
open-source Infrastructure-as-a-Service (IaaS) cloud computing
platform. The experimental testbed consists of eight host
machines SUPERMICRO (high density), equipped with two 8-
Core 3.3Ghz Intel XEON CPUs (32 logic cores in total), 128GB
RAM, two 500GB SATA HDD, four 1-Gbps Intel Ethernet
NICs, and a NetApp Network Storage Array with 32TB of
storage space and 4GB of SSD cache. The hosts are connected
to three 1-Gbps Ethernet network switches, respectively for
management, storage and VM network traffic. The testbed is
managed with OpenStack Mitaka and the VMware ESXi 6.0
hypervisor.

The system architecture detailed in Table I consists of:

• one controller machine, which orchestrates the test and
sends commands to the other machines;

• seven workload generators, which send requests to the
middleware platform;

• seven middleware machines, which forward the requests
to the Memcached servers;

• thirty Memcached servers.

The connections between the middleware and the Mem-
cached servers vary depending on the specific middleware. In
the case of Twemproxy and Mcrouter, each instance of the
middleware connects to all servers, as in Fig. 2. In Dynomite,
each instance connects only to one node, since there as many
Dynomite instances of Dynomite as the number of Memcached
servers, as shown in Fig. 3. Therefore, in Dynomite there are
fewer connections between the middleware and the Memcached
servers, and the instances of the middleware communicate with
each other to route the requests.

To have a balanced load among the physical hosts, we equally
divided the VMs in order to have one workload generator,
one middleware and at most five Memcached servers on each
physical host. For Twemproxy, the dataset is divided among
all thirty nodes; for Mcrouter and Dynomite, which support
replication schemes, we have three pools/racks, each composed
of ten nodes among which the dataset is divided, thus with a
replication factor of three. Thus, a set operation is performed
on three different nodes and a get operation in one node out of
three. In case of a miss or of an error the operation is retried on
the remaining nodes and it is returned the first valid response



Workload 
Generator Middleware

Distributed Datastore

Middleware

MiddlewareWorkload 
Generator

Workload 
Generator

Fig. 2. Twemproxy and Mcrouter topology

Workload 
Generator

Distributed Datastore

Middleware

Workload 
Generator

Workload 
Generator

Middleware

Middleware

Fig. 3. Dynomite topology

if any. If the middleware supports the quorum (i.e., in the case
of Dynomite) the middleware should reply with an error if the
reply does not reach the quorum of two valid responses. We
carried out a capacity test to define the maximum throughput
that can be reached by the system. The maximum throughput
is 18, 500 reqs/sec per workload generator with Twemproxy,
and 7, 200 reqs/sec per workload generator with Mcrouter and
Dynomite. We then calibrated the workload generator to have
a throughput per workload generator of 16, 500 reqs/sec for
Twemproxy, and 6, 500 reqs/sec for Mcrouter and Dynomite.
The total number of requests served in the experiments are
respectively 115, 500 reqs/sec and 45, 500 reqs/sec.

IV. EXPERIMENTAL RESULTS

In the following, we report on the results of fault injection
experiments, with three subsections for each category of faults.

Each experiment was repeated five times. We obtained very low
variations across different runs on the aggregated data across
the whole cluster (throughput, latency, misses and errors). We
carefully analysed data to see if all runs demonstrate the same
failure behavior and choose a representative one out of the five
to present the results.

A. Crash of Memcached servers

In these experiments, Memcached is stopped on a subset of
the caching server nodes. An experiment has a total duration
of 600 seconds. We have an initial phase of 200 seconds
(warm-up), in which the system and the workload execute
without faults; then, we have a second phase of 200 seconds
(fault-injection), in which the fault is actually injected in the
system; and a final phase of 200 seconds (recovery), in which
the fault is removed from the system. Several experiments
were performed by increasing the number of failed servers, to
evaluate how this affects the behavior of the system and its
fault tolerance mechanisms.

When Memcached nodes crash, the three middleware plat-
forms react in different ways. Client requests can experience
three possible outcomes, as summarized in Fig. 4: done (i.e.,
the key-value pair is correctly set or retrieved), misses (i.e.,
the key-value pair cannot be retrieved because of the fault,
despite it is actually stored by the caching tier); errors (i.e.,
the middleware returns an error signal to the clients).

By using Twemproxy, we have cache misses both during the
failure and the recovery phase (two values are reported in the
cells of the table). Moreover, when the number of failed server
is higher than 4, we observe a significant throughput decrease
and latency increase, due to the timeouts required to activate the
node ejection mechanism. We found that cache misses during
the recovery phase are even more than during the fault-injection
phase due to a redistribution of the keys in the nodes that are
still alive. Fig. 5 shows in detail this behaviour: after 200s a
subset of memcached nodes are stopped and restarted after
200s. During the fault, the part of the keys are redistributed
in the remaining nodes. Those keys are potential future cache
misses during the recovery phase due to another change in
the topology. This behavior happens because Twemproxy does
not provide mechanisms for data replication that could mask
data losses during node failures, and does not support online
topology changes without redistributing keys among the nodes.

Mcrouter and Dynomite both support failure detection and
data replication. Under the same conditions, Mcrouter is able
to mask Memcached failures without significant latency and
throughput variation when only 1-out-of-3 servers with the
same data are crashed. If two nodes with the same data are
crashed, there are timeouts errors, since the only alive server
becomes overloaded. The unresponsive nodes are promptly
detected and removed from the topology and thus we did not
found effects on the latency, which remained stable up to 10
out of 30 node failures. Dynomite is also capable to mask node
crashes. However, due to the specific peer-to-peer architecture
of Dynomite, when the failed node is in the same rack of
the coordinator, and the received responses from other racks



Failed 
Nodes

Twemproxy Mcrouter Dynomite

Errors 0 0% 0% 0%
1 0% 0% 0.5%
10 0% 0% 5.7%

Misses 0 0% 0% 0%
1 2.5 % 0% 0%
10 23 % 0% 0%

Requests
Completed

0 100% 100% 100%
1 100% 100% 100%
10 78% 100% 100%

Fig. 4. Performance under Memcached crash failures

Fig. 5. Cache miss rate during experiments with crash of Memcached servers

are different (such as a cache miss and a cache value), the
coordinator always replies with the local rack response [27]
which is an error . Moreover, in case of two-out-of-three crashed
nodes with the same data, all requests to these data experience
a failure due to the impossibility to reach the quorum. Thus,
differently from Mcrouter, the system does not suffer from
an overload of the only available replica, but the clients can
experience data unavailability (i.e., service errors).

B. Unbalanced overloads of Memcached servers

In this scenario, a subset of the caching servers experiences
an overload, which does not simply cause a fail-stop behavior
(such as crashes, which are explicitly notified by the OS), but
degrades the performance of the servers without explicit failure
notifications. In all of the middleware platforms, the data and
the requests are distributed among nodes using a stateless and
fixed scheme, by computing a deterministic hash function on

the keys (consistent hashing). This approach selects a node
(or a subset of nodes) only on the basis of the key, without
considering the workload of the nodes across the datacenter.
This can result in an uneven distribution of the workload, such
as when most of the users’ requests are on a specific resource
(hot-spot), or when there is physical resource contention on
specific nodes.

Fig. 6. Performance under unbalanced overloads of Memcached nodes.

Fig. 6 shows the percentage of requests done for the
three middleware platforms, when injecting overloads on an
increasing number of caching servers. In Twemproxy, the
presence of unbalanced overloads significantly affects the
performance, since these nodes are slowed-down, but are not
enough to trigger the ejection mechanism and keys reallocation.
It is interesting to note the absence of correlation between the
number of failed servers and the number of timeouts errors.
This means that having just one or several overloaded nodes
has the same impact on performance. We looked at resource
utilization metrics of the non-overloaded nodes, and found that
these nodes are under-performing much below their normal
load, despite they are not directly targeted by fault injection.
This behavior occurred because most of the requests in the
Twemproxy queue were waiting on the network sockets opened
towards the overloaded nodes, and could not be quickly re-
sent to another node. Therefore, the effects of one faulty node
propagate through the middleware to the whole caching tier.

Among the three middleware platforms, Mcrouter is the
one most robust against unbalanced overloads, as there is no
degradation of the rate of requests done (Fig. 6). The fault
does not impact on the throughput and latency of the caching
tier. Resource utilization remains stable in non-overloaded
nodes, and only saturates on the overloaded ones. This behavior
was due to the failover mechanism, which is able to detect
the overloaded nodes, mark them as soft TKO as shown in
the logs in Fig. 7, and remove them from the list of routes.
Thus, Mcrouter addresses both overloads and crashes of servers
in a similar way. Thanks to the exclusion of failed servers,



requests are directly sent to another node without any waiting
time, thus achieving a stable latency. Regardless of the pool
of the overloaded nodes (in the same pool, or in different
ones), performance is not affected. Instead, when we inject
an overload in two nodes with the same data, performance is
inevitably degrades. In our experiments, throughput reduces
by 85% and latency grows by two orders of magnitude. The
overloaded nodes alternate between states (active vs. soft TKO),
with one node active and the other unavailable, and vice versa.
This behavior increases latency, since set requests cause the
middleware to wait for responses from an overloaded node to
achieve a majority. In the case of get requests, part of them
are sent to an overloaded node.

Dynomite is not able to properly manage unbalanced
overloads. The average throughput decreases proportionally
with the increase of overloaded servers (Fig. 6). In this
middleware platform, the throughput degrades due to the high
latency of requests processed by the overloaded servers. Fig. 8
shows the effects of the overload of two out of thirty servers
on the cpu usage of the remaining nodes. In particular we
observe a significant cpu usage reduction across the whole
datastore cluster. Requests for a given key can experience a
high or low latency, depending on whether an overloaded node
is chosen among the nodes of the quorum. Differently from
the Twemproxy case, Dynomite does not propagate the effect
of overloaded nodes to the remaining servers.

C. Network link bottlenecks

In these experiments, we inject faults in the caching tier by
reducing the network bandwidth of a group of servers. In this
case, the fault affects a group of Memcached servers that are
hosted on the same host, to reproduce a fault (e.g., network
congestion) happening at the infrastructure level. Restricting
the bandwidth leads to a bottleneck in the network.

In Twemproxy, bottlenecks in a subset of connections affect
the caching tier as a whole system, as the overall throughput
and latency degrade, showed in Fig. 9. The standard deviation
of latency becomes an order of magnitude higher than the
average, which indicates the unbalance of the latency for
different requests. Since the latency does not increase for all
requests, there are not enough timeouts to trigger the ejection
mechanism. The throughput degrades to 20, 000 reqs/sec, which
represents a reduction of 82% when compared to 115, 000
reqs/sec reached under a normal condition. As in the case of
unbalanced overloads, in Twemproxy all nodes are impacted
by the effects of the fault.

Network bottlenecks are the only kind of fault that have
an impact on the performance of Mcrouter. We have a sharp
increase of latency, as shown in Fig. 9, and a decrease of
the throughput, with some requests that experience errors.
The throughput decreases from 45, 000 reqs/sec under normal
conditions to 8, 500 under faults, and the average latency
increases from 2.8 ms to 142.3 ms under faults.

Dynomite is able to manage the reduction of network
bandwidth, as these faults are transparent to the clients. We
found that there is no variation in throughput, and we do

not have any request with errors. Comparing latency with
vs. without faults (Fig. 9), we notice a small increase of
latency (from 2.8 ms to 4.2 ms under faults) which cannot
be considered statistically significant. This behavior is due to
the peer-to-peer architecture adopted by Dynomite. Indeed,
one of the main advantages of the peer-to-peer architecture
is that it increases tolerance to faults related to a specific
connection. By creating several connections between nodes in
a rack, the bandwidth reduction of few connections does not
affect performance, since requests are forwarded to the other
connections. Thus, this approach is effective at isolating the
problem. The effects of the fault do not propagate across the
system, which is why the performance of the caching tier as a
whole is not significantly affected.

V. RELATED WORK

Over the last few years, NoSQL data stores have found
widespread adoption [28]. In contrast to traditional databases,
these storage systems typically sacrifice consistency in favor
of latency and availability [29] as in the CAP theorem [30],
so that they only guarantee eventual consistency and promise
high scalability and low cost.

Modern applications are increasingly dependent on critical
data stored with these technologies. For example, these so-
lutions allow Netflix to scale their production systems up
to 50 Cassandra clusters with more than 500 nodes, and
a distributed caching tier, composed by tens of thousands
of Memcached instances serving about 30 million requests
per second [31], [32], [33]. To deliver high availability and
performance, many replication schemes are used to tune
different levels of consistency and fault-tolerance [34]. In this
context, companies such as Facebook, Twitter and Netflix
develop and use middleware platforms [17], [18], [35], such
as the three we compared in this work, to ease the adoption
of key-value datastores at large scale.

Performance of distributed datastores are often studied
in terms of large-scale either by real deployment such as
at Facebook [36] or by simulation [37], [38]. Klein et al.
[39] compare the performance and the scalability of three
popular distributed datastores (i.e., MongoDB, Cassandra and
Riak) to study how the tunable consistency models affect
the solution performance. Studies on real workloads pointed
out the problem of unbalanced load in distributed datastore
nodes [40], [41]. Many studies focus on the load balancing
optimizations to prevent this issue. SPORE [20] is a solution to
hot-spot problems due to a highly skewed workload. SPORE
modifies the traditional Memcached behavior implementing
advanced data replication strategies based on key popularity.
Zhang et al. [42] propose a solution to load imbalance due
to a hot-spot workload and server heterogeneity. NetKV [43],
is an accelerated proxy to inspect key requests and analyze
the datastore workload to replicate hot-spot keys on multiple
servers, in order to limit the load unbalancing due to the
workload skewness. MBal [44] is a novel in-memory datastore
architecture aiming to resolve load unbalancing problems
within the datastore tier itself. This architecture includes a



Fig. 7. Mcrouter logs during unbalancing overloads.

Fig. 8. Average vCPU usage before (blue) and after (red) unbalanced overload injection.

centralized coordinator that monitor the system state and applies
data replication and migration strategies among not only the
distributed instances but also at thread level among the CPU
cores within each node. More recent solutions take advantage
of emerging RDMA hardware technology as an opportunity to
design novel load balancing algorithms [45], [46] to mitigate
the effect of load unbalancing.

Testing the robustness of large-scale distributed systems
is a challenging issue, since it is difficult to simulate large
deployments with tests. Recently, many companies adopted
fault injection in production systems to uncover architectural

problems that could not be identified by testing in a controlled
environment [47], [48], [49]. Chaos Monkey [50] and Simoorg
[51] are examples of fault injectors developed respectively
by Netflix and LinkedIn to perform these kind of tests.
Microsoft also provides a fault injector as a service [52] to
test applications running on their Azure IaaS cloud platform.

Fault-tolerance of distributed datastores is recurring topic
in the scientific literature [7], [8]. Ventura and Antunes [9]
adopted fault injection to assess the dependability of three
widely-used NoSQL datastores (MongoDB, Cassandra, and
Redis), and demonstrated that simple faults, such as the restart



Fig. 9. Performance under network link bottlenecks.

of an instance of the datastore, could affect the integrity of the
whole system. Our work focuses on how faults impact on the
middleware layer. Moreover, in this work we consider not only
faults in the datastore system, such as the crash of Memcached
servers, but also performance problems, such as unbalanced
overloads and network bandwidth bottlenecks, which are both
difficult to detect and very common in large deployments [10].

VI. CONCLUSION

The criticality of large-scale distributed systems, where
components fail routinely, mandates the use of technologies
able to transparently manage failures and assure high per-
formance. In this paper, we investigated fault-tolerance and
performance concerns in middleware for distributed caches,
which has recently been emerging as a solution to deploy in-
memory caches at a large scale. We conducted fault injection
experiments on three middleware platform from major service
providers, by simulating both crashes and performance faults.
The experimental results lead us to the following lessons
learned:

• Differences in performance and availability trade-offs.
Even if all of the middleware platforms provide fault-
tolerance, fault injection revealed that they exhibit different
behaviors under faults. These differences are implicitly
due to their different architectures and mechanisms, but
their implications are not self-evident, and knowing about
them is crucial for designers to achieve performance
and availability goals. We found that Twemproxy and
Dynomite can escalate failures of the nodes into failures
of the caching tier, either as cache misses or as service
errors; instead, Mcrouter enforces full transparency of the
faults, but at the cost of a worse latency under some of
the fault scenarios.

• Criticality of performance faults. The middleware plat-
forms are most effective at addressing crashes, but that
they are more vulnerable against performance faults,
such as unbalanced overloads and network bottlenecks.
These faults are not systematically managed by the
middleware, as this is a cross-cutting concern between
the middleware and the OS, e.g., they are not explicitly
notified by the OS, but can only be detected by monitoring
resource utilization. These faults even caused cascading
effects across the caching tier, turning into performance
degradation experienced by the clients.

• Importance of testing for performance issues at a
large scale Beyond the issues mentioned above at the
architectural and fault-management levels, the middleware
platforms can also suffer from implementation bugs that
only become apparent when testing them at a large
scale. In our tests, we found that Twemproxy exhibits
a significant performance degradation under unbalanced
overloads, and that the performance degradation is not
simply due to the reduction of resources in the system,
but it is exacerbated by a bottleneck in the software. Thus,
it is important to not only rely on architectural reviews,
but also to actually test the platforms at a large scale,
either in a controlled or in a production environment.

REFERENCES

[1] S. Souders, “Velocity and the bottom line,” 2009, accessed
on: 2019-11-11. [Online]. Available: http://radar.oreilly.com/2009/07/
velocity-making-your-site-fast.html

[2] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal,
vol. 2004, no. 124, p. 5, 2004.

[3] A. Anwar, Y. Cheng, H. Huang, J. Han, H. Sim, D. Lee, F. Douglis, and
A. R. Butt, “Customizable scale-out key-value stores,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 9, 2020.

[4] Twitter/Twemproxy on Github. [Online]. Available: https://github.com/
twitter/twemproxy

[5] Facebook/Mcrouter on Github. [Online]. Available: https://github.com/
facebook/mcrouter

[6] Netflix/Dynomite on Github. [Online]. Available: https://github.com/
Netflix/dynomite

[7] F. Beyer, A. Koschel, C. Schulz, M. Schäfer, I. Astrova, A. Reich et al.,
“Testing the suitability of cassandra for cloud computing environments
consistency, availability and partition tolerance,” 2011.

[8] D. Nelubin and B. Engber, “Nosql failover characteristics: Aerospike,
cassandra, couchbase, mongodb,” Thumbtack Technology, 2013.

[9] L. Ventura and N. Antunes, “Experimental assessment of nosql databases
dependability,” in 2016 12th European Dependable Computing Confer-
ence (EDCC). IEEE, 2016, pp. 161–168.

[10] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
2017, pp. 150–155.

[11] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey et al., “Fail-slow
at scale: Evidence of hardware performance faults in large production
systems,” ACM Transactions on Storage (TOS), vol. 14, no. 3, pp. 1–26,
2018.

[12] L. Chi and X. Zhu, “Hashing techniques: A survey and taxonomy,” ACM
CSUR, 2017.

[13] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[14] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Characterizing
facebook’s memcached workload,” IEEE Internet Computing, vol. 18,
no. 2, pp. 41–49, 2013.



[15] M.-C. Lee, F.-Y. Leu, and Y.-P. Chen, “Cache replacement algorithms
for youtube,” in 2014 IEEE 28th International Conference on Advanced
Information Networking and Applications. IEEE, 2014, pp. 743–750.

[16] J. Carroll. (2013) Building Pinterest in the cloud.
[Online]. Available: https://medium.com/@Pinterest Engineering/
building-pinterest-in-the-cloud-6c7280dcc196

[17] M. Rajashekhar, “Caching at twitter and moving towards a persistent,
in-memory key-value store.”

[18] I. Papapanagiotou and V. Chella, “Ndbench: Benchmarking microservices
at scale,” arXiv preprint arXiv:1807.10792, 2018.

[19] E. Bauer and R. Adams, Reliability and Availability of Cloud Computing,
1st ed. Wiley-IEEE Press, 2012.

[20] Y.-J. Hong and M. Thottethodi, “Understanding and mitigating the impact
of load imbalance in the memory caching tier,” in SoCC. ACM, 2013.

[21] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A. Freedman, K. Birman,
and R. van Renesse, “Characterizing load imbalance in real-world
networked caches,” in Proceedings of the 13th ACM Workshop on Hot
Topics in Networks. ACM, 2014, p. 8.

[22] B. Oonhawat and N. Nupairoj, “Hotspot management strategy for real-
time log data in MongoDB,” in ICACT. IEEE, 2017.

[23] D. Cotroneo, R. Natella, and S. Rosiello, “Overload control for virtual
network functions under cpu contention,” Future Generation Computer
Systems, vol. 99, 2019.

[24] CloudSuite Data Benchmark at Github. [Online]. Available: https://github.
com/parsa-epfl/cloudsuite/tree/master/datasets/twitter-dataset-graph

[25] Memaslap Documentation. [Online]. Available: http://docs.libmemcached.
org/bin/memaslap.html

[26] Twitter memcache dataset from CloudSuite Data Benchmark. [Online].
Available: https://github.com/parsa-epfl/cloudsuite/tree/master/datasets/
twitter-dataset-graph

[27] Dynomite tunable consistency. [Online]. Available: https://github.com/
Netflix/dynomite/wiki/Consistency

[28] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–43, 2018.

[29] J. Domaschka, C. B. Hauser, and B. Erb, “Reliability and availability
properties of distributed database systems,” in 2014 IEEE 18th Inter-
national Enterprise Distributed Object Computing Conference. IEEE,
2014, pp. 226–233.

[30] D. Bermbach and S. Tai, “Eventual consistency: how soon is eventual?”
Proc. 2011 MW4SOC, 2011.

[31] Y. Izrailevsky. (2011) NoSQL at Netflix. [Online]. Available:
https://medium.com/netflix-techblog/nosql-at-netflix-e937b660b4c

[32] M. Do, P. Oberai, M. Daxini, and C. Kalantzis. (2014)
Introducing Dynomite: Making Non-Distributed Databases,
Distributed. [Online]. Available: https://medium.com/netflix-techblog/
introducing-dynomite-making-non-distributed-databases\-distributed-c7bce3d89404

[33] S. Madappa, V. Nguyen, S. Mansfield, S. Enugula, A. Pratt, and F. Siddiqi.
(2016) Caching for a Global Netflix. [Online]. Available: https://medium.
com/netflix-techblog/caching-for-a-global-netflix-7bcc457012f1

[34] S. Esteves, J. Silva, and L. Veiga, “Quality-of-service for consistency of
data geo-replication in cloud computing,” in European Conference on
Parallel Processing. Springer, 2012, pp. 285–297.

[35] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache

[39] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser,
“Performance evaluation of nosql databases: a case study,” in Proceedings
of the 1st Workshop on Performance Analysis of Big Data Systems, 2015,
pp. 5–10.

at facebook,” in Presented as part of the 10th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 13), 2013,
pp. 385–398.

[36] D. Shankar, X. Lu, M. Wasi-ur Rahman, N. Islam, and D. K. Panda,
“Benchmarking key-value stores on high-performance storage and in-
terconnects for web-scale workloads,” in 2015 IEEE International
Conference on Big Data (Big Data). IEEE, 2015, pp. 539–544.

[37] X. Wang, H. Sun, T. Deng, and J. Huai, “Consistency or latency? a
quantitative analysis of replication systems based on replicated state
machines,” in 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2013, pp. 1–12.

[38] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu, “Using
simulation to explore distributed key-value stores for extreme-scale
system services,” in SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2013, pp. 1–12.

[40] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems, 2012,
pp. 53–64.

[41] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[42] W. Zhang, J. Hwang, T. Wood, K. Ramakrishnan, and H. H. Huang,
“Load balancing of heterogeneous workloads in memcached clusters.” in
Feedback Computing, 2014.

[43] W. Zhang, T. Wood, and J. Hwang, “Netkv: Scalable, self-managing,
load balancing as a network function,” in Autonomic Computing (ICAC),
2016 IEEE International Conference on. IEEE, 2016, pp. 5–14.

[44] Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching
framework with adaptive load balancing,” in Proceedings of the Tenth
European Conference on Computer Systems. ACM, 2015, p. 4.

[45] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using rdma efficiently
for key-value services,” in Proceedings of the 2014 ACM conference on
SIGCOMM, 2014, pp. 295–306.

[46] S. Ghandeharizadeh and H. Huang, “Scaling data stores with skewed
data access: Solutions and opportunities,” in 8th Workshop on Scalable
Cloud Data Management, co-located with IEEE BigData, 2019.

[47] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[48] E. Reinhold, “Rewriting uber engineering: the opportunities microservices
provide. uber engineering,” 2016.

[49] Y. Sverdlik, “Facebook turned off entire data center to test resiliency,”
Data Center Knowledge, vol. 15, 2014.

[50] C. Bennett and A. Tseitlin, “Netflix http://techblog. netflix.
com/2012/07/chaos-monkey-released-into-wild. html (2012),” 2015.

[51] A. Shenoy. (2016) A Deep Dive into Simoorg:
Our Open Source Failure Induction Framework. [On-
line]. Available: https://engineering.linkedin.com/blog/2016/03/
deep-dive-Simoorg-open-source-failure-induction-framework

[52] Microsoft. (2017) Introduction to the Fault Analysis Service.
[Online]. Available: https://azure.microsoft.com/en-us/documentation/
articles/service-fabric-testability-overview/


