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Abstract—Network Function Virtualization is an emerging
paradigm to allow the creation, at software level, of complex
network services by composing simpler ones. However, this
paradigm shift exposes network services to faults and bottlenecks
in the complex software virtualization infrastructure they rely
on. Thus, NFV services require effective anomaly detection
systems to detect the occurrence of network problems. The paper
proposes a novel approach to ease the adoption of anomaly
detection in production NFV services, by avoiding the need to
train a model or to calibrate a threshold. The approach infers
the service health status by collecting metrics from multiple
elements in the NFV service chain, and by analyzing their (lack
of) correlation over the time. We validate this approach on an
NFV-oriented Interactive Multimedia System, to detect problems
affecting the quality of service, such as the overload, component
crashes, avalanche restarts and physical resource contention.

Index Terms—NFV; fault correlation; overload; quality of
service; anomaly detection;

I. INTRODUCTION

A key challenge for telecom operators and service
providers is to efficiently deploy rich network services, and to
optimize network resources to improve customer’s quality of
experience. To achieve these goals, it is important to be able
to dynamically combine single network functions, such as IP
forwarding, Network Address Translation, Traffic Shaping,
Deep Packet Inspection Functions, into service function
chains, to create service-specific traffic forwarding policies [1].

Network Function Virtualization (NFV) seems to be the
promising answer to this problem that promotes a paradigm-
shift, from network hardware equipment to virtual network
functions (VNFs). More specifically, NFV aims to leverage
standard IT virtualization technology to consolidate them in
industry-standard high volume servers, switches, and storage;
and to take advantage of orchestration and monitoring
solutions used for cloud computing [2], [3].

Being a software- and a cloud-based solution, NFV inherits
the threats coming from these domains and, in particular, the
relatively-low reliability and performance of Off-The-Shelf
hardware and software components [4], [5], [6], [7]. For this
reason, the main consortia behind NFV, including the ETSI
and OPNFV, pointed out the need for fault correlation algo-
rithms to detect the occurrence of network problems from their
symptoms [8], [9]. An important class of problems in this area
is represented by faults that restrict the capacity of the whole
VNF service chain. Examples of these faults are bottlenecks,
virtual machines crashes, hardware faults, overload conditions.
We name these faults as performance anomalies.

By looking at the existing literature, the classical approach
to detect such anomalies in cloud infrastructures is based
on anomaly detection [10]. However, these techniques suffer
from limited flexibility, as they require to train classification
algorithms with data obtained from extensive test campaigns
or with historical data [11], [12], [13]. Although there are few
recent studies that adopted these approaches in the context of
NFV systems [14], [15], [16], the need of data training could
be unattainable for the following reasons. First, since new
service function chains have to be delivered in a short time, it
is very difficult to perform test campaigns to get training data.
Second, historical data cannot be used because each service
has different characteristics, thus it is very difficult to tailor
previous datasets to new contexts. Furthermore, other studies
on anomaly detection used threshold-based classifiers, which
are easier to deploy. Even in this case, such approaches still
need to be calibrated for the specific service, which is very
difficult to achieve.

In this paper, we present a novel approach to identify
performance anomalies in VNF service chains. The key
feature of the proposed approach is that it neither requires
to train a model, nor to calibrate a threshold to identify
performance anomalies inside the VNF chain. Instead, we
take advantage from the fact that the VNF chain can be
seen as a multistage pipeline, where the output of a network
function is the input of the next one. Therefore, the resource
utilization metrics of VNFs in a service chain have a strong
dependency (e.g., the outgoing network traffic from the first
stage is related to the CPU load on the second stage of the
chain). Thus, our approach collects metrics from connected
VNF stages, as they are naturally correlated. Then, it analyzes
their co-variation over time to infer potential performance
anomaly at each stage of the chain. Our approach can also
be adopted in large-scale NFV systems with the presence of
load-balancing and replication.

We evaluated the approach on a real world NFV-oriented
IP Multimedia System (IMS), namely Clearwater [17], that
has been designed to support massive horizontal scalability.
Clearwater adopts popular cloud computing design patterns
and technologies, including the OpenStack/KVM virtualiza-
tion stack. To analyze performance anomalies in the context
of this IMS system, we applied a set of test scenarios, which
encompass the most common anomalies [18], [19], including:

• A sudden increase of load from subscribers;
• The crash of subsets of VNFs nodes (e.g., due to bugs

in the VNF software);



• Avalanche restarts, triggered by the failover of VNF
instances;

• Faults at hardware level, causing contention on physical
resources.

We show that the proposed detection approach covers all
these scenarios, and presents no false positives during the
normal behavior of the system.

The paper is structured as follows. Section II discusses the
problem of anomaly detection and the related work. Section
III presents our anomaly detection approach. Section IV
introduces the Clearwater VNF chain and the architecture of
the experimental testbed. Section V evaluates the performance
of the detector, in terms of accuracy and latency. Section VI
concludes the paper.

II. RELATED WORK

Continuous, online monitoring and analysis is a key
component for managing cloud infrastructures. The analysis
of performance metrics and resource utilization enables a
better understanding of application and system behaviour,
helps to tune configurations to meet application SLA
requirements, and provides insights for troubleshooting.

The most common cloud monitoring and dashboards
systems, such as Amazon CloudWatch [20] and Google Stack-
Driver [21] monitor the system on per-VM basis and allow to
setup and customize simple detection rules (e.g., thresholds on
monitored metrics) and trigger maintenance task (e.g., scaling,
rebooting). More advanced commercial products, such as
Datadog [22], also implement simple data mining features,
using seasonal auto regression, trend detection, online adaptive
learning, and statistical distribution models. However, since
the products focus on symptoms on individual VM instances,
they are prone to false alarms: for instance, without any
knowledge about the specific applications, they cannot discern
if a drop in the load of a VM is caused by a sudden workload
decrease in the whole system or by an undetected fault in some
component. As discussed later, our approach takes into account
the nature of NFV applications (based on pipeline processing
of high-volumes of packet streams) to detect these scenarios:
it analyzes the correlation of metrics from neighbour VMs in
the VNF service chain, to distinguish licit workload variations
from faulty conditions that affect the quality of service.

In general, anomaly detection systems aim to automate the
discovery and classification of problems by analyzing these
data, and checking whether the system behaves accordingly
to what is expected. In order to characterize such behaviors,
classical approaches use machine learning techniques, such
as random forests classifiers [23], neural networks [12],
automatic rule learning and fuzzy logic [11], unsupervised
clustering [24], [25]. Most of the anomaly detection research
has applications in intrusion and misuse detection. Instead, our
approach generally considers performance anomalies caused
by faults in a VNF chain, regardless that they are accidental
or intentionally induced by intrusion/misuses (e.g., by forcing
software crashes or by overloading resources in order to cause
a denial of service). In general, we focus on faults that impact
on the quality of service in terms of responsiveness (e.g.,

latency) and availability (e.g., request timeouts or failures);
instead other forms of intrusion/misuse that do not cause
performance anomalies are out of the scope of this work.

More recently, these approaches have been applied in the
context of NFV applications. Miyazawa et al. [14] proposed
a distributed architecture to perform fault detection using
unsupervised data clustering techniques and self-organizing
maps. In [16], Sauvanaud et al. suggest a supervised learning
approach. They perform fault injection experiments in a
NFV testbed to collect labeled monitoring data, from both
hypervisors and virtual machines instances. Then, they build
a classifier using the random forest algorithm, showing high
detection accuracy and low false positive. However, both
approaches require retraining the models in case of changes
in the hardware or software configuration, workload patterns
or other influencing factors.

Moreover, all the previous techniques require training
models with data coming from extensive test campaign or
historical data. However, in the context of NFV, the needed
training data may be unattainable, since service function
chains must be delivered in a short time (thus limiting the
amount of tests for getting training data) and are tailored for
each specific service (thus limiting the usefulness of historical
data). For the same reasons, most anomaly detection systems
used in practice are threshold-based classifiers, which are
ease to deploy and provide an acceptable quality of detection
(in terms of accuracy and latency), but they still need to be
calibrated for the specific service. By contrast, our approach
relates metrics coming from multiple interconnected VNF,
without the need to build representative datasets to train
detection models. Moreover, the approach is robust and easy
to deploy as we analyze the correlation between the metrics,
rather than comparing metrics with some absolute reference
value that would depend on the type of VNF software, the
VM sizing, etc. (e.g., 80% CPU utilization could be normal in
some contexts, but could be a performance anomaly in others).

In the field of classical (i.e., non-virtualized) network
management systems, alarm correlation [26] between
multiple distributed entities is widely used to detect faults and
isolate the causes across a big number of network appliances
interconnected [27], [28]. In [29], Kliger et al. defined the
networking graph as a causality graph on which nodes can be
marked as problems or symptoms, and use event correlation
to find causal relations among the events. They demonstrate
that this approach is resilient to high rates of symptom loss
(i.e., false negatives) and false alarms. Similarly, we show
that it is possible to identify causal relationships in the VNF
service chaining model between the VNF instances in the
network. We apply the correlation analysis to the monitoring
data to recognize symptoms of problems in the network.

III. FAULT CORRELATION APPROACH

Our approach is based on the idea that a network packet
or request follows a chain of VNFs, as shown by the VNF
graph in Fig. 1. Each VNF in the graph can have a different
number of replicas, that are scaled according to a preliminary
capacity planning or to cloud elasticity. The load is balanced
across all the replicas of the VNF.



Fig. 1: A pipeline of network functions

In this architecture, there are metrics from multiple stages
that are naturally correlated (e.g., the outgoing network traffic
of the first stage and the CPU load of the second stage).
If resource utilization (e.g., CPU, memory, ...) increases in
a VM hosting a network function, an increase should also
occur in VMs hosting the subsequent VNF in the service
chain. If this is not the case, a VM is obstructing the network
flow, causing a performance anomaly. Thus, we analyze the
correlation in the time between metrics from two distinct
network functions to infer the service health status. Fig. 2
shows the vCPU load of two connected network functions
(i.e., the output traffic of VNF(A) is processed by VNF(B)).
When VNF(A) uses all the available CPU time (e.g., due
to an overload condition or a software fault), its throughput
start decreasing. As a consequence, the VNF(B) receives less
traffic to process and the CPU load on this VNF decreases.
This condition can be detected noting that there is a window
of time in which the CPU load on VNF(A) increases and the
CPU load on VNF(B) decreases. In correspondence of that
window, the two time series become negatively correlated. We
consider this condition a symptom of a performance anomaly.

The algorithm 1 raises an alarm when an anomaly is
detected between a pair of connected VNF stages, namely
VNF(A) and VNF(B), with VNF(A) preceding VNF(B) in the
chain.

The algorithm takes a window ∆t of n samples of a time
series describing a resource utilization in the time (e.g., the
CPU usage) from both the VNF(A) and the VNF(B) and

Fig. 2: Running correlation between two VNFs

Algorithm 1: Fault correlation algorithm
Data: n: sampling window size
Data: ∆t: (t− n,. . . ,t) time window
Set: counter=0
begin

foreach replica h of V NF (A) do
foreach replica k of V NF (B) do

ρh,k =

pearson(V NF
(A)
h (∆t), V NF

(B)
k (∆t))

Dk = D(ρh,k)

D = mean(Dk)
if D > 0.5 then

counter + +

if counter > |V NF (A)|/2 then
raise alarm

computes the correlation according to the Pearson’s index ρ
(i.e., equation 1) as the covariance σX,Y of the two variables
divided by the product of their standard deviations σX and
σY . Then, it ranks the correlation by computing a discrete
score, namely D-score, according to equation 2.

ρ(X,Y ) =
σX,Y

σX · σY
(1)

D(ρ) =



1, if − 1.0 ≤ ρ ≤ −0.7

0.75 if − 0.7 < ρ < −0.3

0.50 if − 0.3 ≤ ρ ≤ +0.3

0.25 if + 0.3 < ρ < +0.7

0 otherwise

(2)

A zero D-score indicates a strong positive correlation
between the two metrics considered, while a D-score equal
to 1 indicates a strong negative correlation among them.
Intermediate D-score values indicate weak correlations
(i.e., D = 0.75, D = 0.25) or absence of linear correlation
(D = 0.5). The values used in this equation are widely used in
statistics to evaluate the strength of the correlation [30], [31],
and do not depend on the specific system to be monitored.

Since each VNF in the chain can have multiple active
replicas, the Algorithm 1 processes windows of samples
gathered from each replica, and raises an alarm if more than
half of the spare nodes exhibit a correlation anomaly. More
precisely, for each replica h of the VNF(A) the algorithm
computes the D-score with all the replicas k of the VNF(B). If
the average D-score is greater than 0.5 (indicating a negative
correlation) we account a possible anomaly by increasing the
counter variable. When all the D-scores are evaluated, if the
counter is greater than the half of the number of VNF(A)

replicas, a majority of VNF instances exhibits a correlation
anomaly and an alarm is raised.

The choice to wait for a feedback from a majority of nodes
prevents false alarms that may be due to sporadic variations
of load balancing across replicas in the same VNF stage.
However, it is important to note that the algorithm is not



limited to detect problems caused by multiple nodes; it is still
able to detect performance anomalies caused by a single node.
In the case of a single faulty node, the algorithm will detect
an anomaly for the correlations between the faulty node (for
example, VNF(B)

3 ) and all the replicas of the previous VNF
stage (for example, VNF(A)

1 . . . VNF(A)
n ) that access the faulty

node. In general, the algorithm is designed to detect perfor-
mance anomalies that have an impact on the capacity of a VNF
stage, which can be either caused by single or multiple failures.

By executing the Algorithm 1 on sliding windows of n
samples, at time t, we compute the correlation between the
samples from time t− n, t− (n− 1), t− (n− 2), . . . , t− 1.
Samples are collected periodically every p seconds.

The configuration of the window, i.e., the size n and
the period of sampling p, is driven by the speed at which
performance anomalies are expected to happen. In our context,
according to the empirical experience of industries in the
ETSI consortium, performance anomalies such as avalanche
restarts and overloads are expected to develop within less
than 30 seconds [8]. Therefore, the n and p should be chosen
such that n · p ≤ 30, as this represents a lower bound on
the detection latency. For example, to have an high enough
resolution to notice variations of the resource utilization
metrics, and enough values to compute the correlation, the
period p should be in the order of few seconds (e.g., p = 2s).

Of course, the need to configure an high sampling
frequency may expose our approach to false alarms, that may
be caused by random fluctuations of measurements. To make
the approach robust to the high sampling frequency and to
the choice of these parameters, we discuss two strategies to
mitigate the downside of this choice:

1) use of smoothing functions on the time series to reduce
the noise in the data;

2) filtering the negative correlation events according to the
variance contained in the sampling window.

The first strategy requires to pre-process the sliding
window with a smoothing function. Multiple algorithms can
be adopted to this purpose. In Section V we compare the
detection accuracy and the detection latency using three
different types of smooth: (1) Running Moving Average
(RMA) to lower the impact of values too distant from the
average, (2) Running Moving Median (RMM) to lower
the impact of values too distant from the median, and (3)
Exponential Moving Average (EMA) to lower the impact of
older samples in the current sampling window.

The second technique prevents spurious alarms that may
occur when there is a negative correlation, but the variability
of the measurements is very small and has been likely caused
by random fluctuations (e.g., by chance, one of the time series
may slightly increase due to random fluctuations, and at the
same time the other time series may decrease). Thus, we detect
a “representative” anomaly if both there is a negative correla-
tion, and the variations of the measurements is large enough
to reflect some event that may be occurred in the VNF (e.g., a
fault or a workload change). To this purpose, we compute the
coefficient of variation (cv) on a window of samples W , as
the the ratio between its standard deviation σW and its mean

µW , according to the equation 3. Then, a correlation between
the time series is taken into account only if the cv is non-
negligible, i.e., the variation exceeds the average value of the
metric (typically, a coefficient of variation below 10% denotes
that variations are very small [32] and could be considered
random). This filter has also the advantage to exclude the sam-
pling windows in which the chosen metric remains constant;
in this specific case, the correlation index is undefined.

cv(W ) =
σW
µW

(3)

Fig. 3 shows an example of this second approach, by
considering the vCPU consumption of two consecutive VNF
in the pipeline. Before t = 200s there are small variations in
the vCPU utilization that are not representative of a change in
the workload. After t = 200s an increase in the load brings the
VNFx in overload, while reducing the load on VNFy by 23%
as a side effect (which is a consequence of resource saturation
at VNFx). In correspondence of this negative correlation, there
is a peak in the coefficient of variation of vCPU utilizations in
both the VNFs. Thus, we consider this correlation an anomaly.

Fig. 3: Coefficient of variation filter

IV. THE IMS CASE STUDY

The Clearwater IMS [17] is an open-source implementation
of the IMS core standard [33]. IMS functions are implemented
in software and packaged in VMs, and are designed to take full
advantage of virtualization and cloud computing technology.
All components can scale out horizontally using simple,
stateless load-balancing based on DNS. Moreover, Clearwater
follows common design patterns for scalable and reliable
web services, by keeping most components largely stateless,



and by storing long-lived state in clustered data stores.
Clearwater is a large software project, mostly written in C++
and Java, and including several subsystems. The architecture
of Clearwater core is showed in Fig. 4, and includes the
following components:

• Bono (P-CSCF): The Bono nodes are the first point of
contact for an UE (User Equipment), and they represent
the edge proxy providing P-CSCF standard interfaces to
IMS clients.

• Sprout (S-CSCF and TAS): The Sprout nodes are SIP
registrars and authoritative routing proxies. These nodes
implement the S-CSCF and I-CSCF interfaces of the
IMS standard. Furthermore, they implement a distributed
cache, using Memcached [34], for storing registration
data and other short-lived information.

• Homestead: The Homestead nodes are redundant mirrors
for the HSS (Home Subscriber Server) data store, using
Apache Cassandra [35], for retrieving authentication
credentials and user profile information. HSS mirrors
are part of both the S-CSCF and I-CSCF interfaces, and
provide Web services (over HTTP) to the Sprout layer.

• Homer: A Homer node is a XML Document Management
Server (XDMS) to store service settings documents for
each user of the system, using Apache Cassandra as the
data store.

• Ralf (Rf-CTF): The Ralf nodes provide charging and
billing functions, used by Bono, Sprout and Homestead
nodes to report events occurring when the CSCF chain
is traversed.

Fig. 4: Architecture of the Clearwater IMS.

The experimental testbed (Fig. 5) consists of four host
machines: three Dell PowerEdge R520 servers, equipped with
two 8-Core 2.2 GHz Intel Xeon CPU, 64GB DDR3 RAM,
two 500GB SATA HDD, two 1-Gbps Ethernet NICs, 8-Gbps
Fiber Channel HBA; one Dell PowerEdge R320 server with
a 4-Core 2.8 GHz Intel Xeon CPU, 8GB DDR3 RAM, two
500GB SATA HDD, two 1-Gbps Ethernet NICs, 8-Gbps
Fiber Channel HBA; A PowerVault MD3620F disk array with
4TB of network storage with a 8-Gbps Fiber Channel link.

Fig. 5: Experimental testbed.

The hosts are connected to a 1-Gbps Ethernet network for
general-purpose traffic, and another 1-Gbps Ethernet network
for management traffic. The virtual disks of VMs are stored
on three distinct GlusterFS partitions of the PowerVault SAN,
which are mounted on the hosts through the Fiber Channel
link.

The hosts are configured with CentOS Linux 7 and
the KVM hypervisor. The testbed is managed using the
OpenStack virtualization platform, version Juno [36]. The
Dell PowerEdge R320 serves as OpenStack Controller and
Network node; the three Dell PowerEdge R520 servers
represent the OpenStack Compute and Storage nodes, and
run the VMs of the Clearwater IMS. The OpenStack services
include: Nova, which manages the compute domain; Neutron,
which manages virtual networks among VMs; Cinder, which
controls the lifecycle of VM volumes; Glance, which manages
the cloud images of VMs; Heat, which orchestrates, through
a native REST API, the virtual IMS deployment; Horizon,
which supports the Web-based management dashboard.

To determine the number of VMs that had to host specific
network services, we made some preliminary capacity
tests. We defined a deployment configuration capable to
handle 500,000 subscribers (i.e. the engineered capacity)
corresponding to (i) 90,000 registration attempts per minute,
and (ii) 8,000 call attempts per minute. At this level the
average CPU utilization is 80% in all the Clearwater VMs
and all the requests are correctly served by the system. The
number and type of VMs hosting services is detailed in
TABLE I. Each VM hosts a single VNF.

Other VMs are used to generate the IMS workload. Such
machines run the SIPp traffic generator. Each SIPp instance
generates SIP traffic towards a specific P-CSCF instance. Each
couple of subscribers will attempt to register or renew the
registration every 5 minutes, on average. After a successful
registration, one can attempt to setup a call to the other (with
16% of probability) or remain idle until the next registration
renewal (with 84% of probability). The call hold time is,
by default, 60 seconds. 10 SIPp are used for generating the
initial load of 500,000 subscribers in 10 minutes (Initial
Ramp-up period). To generate the overload conditions in our
test scenarios, we run 40 additional SIPp VMs.



TABLE I: Clearwater VMs deployment configuration.

Service Clearwater
Node
Name

# of
VMs

Flavor Details

Edge Proxy
(P-CSCF)

Bono 10 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

SIP Router
(I/S-CSCF)

Sprout 10 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

HSS Mirror Homestead 5 VCPUs: 1
RAM: 4GB
Disk Size: 80GB

Rf CTF Ralf 4 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

XDMS
(MMtel
services)

Homer 2 VCPUs: 1
RAM: 4GB
Disk Size: 100GB

Name service
(DNS)

- 1 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

Workload
generator
(SIPp)

- 10-40 VCPUs: 1
RAM: 2GB
Disk Size: 100GB

V. EXPERIMENTAL EVALUATION

In our experimentation, we study the ability of the detection
algorithm to identify performance anomalies, and to avoid
false positives. In the context of the IMS case study, such
anomalies cause the failure of some user registrations and/or
some call setup requests. On the opposite, when there are no
faults affecting the quality of service, all the registrations and
the call setups are correctly processed by the system. Thus,
we use the SIPp workload generator to check at client-side
the success of such requests, in order to evaluate the outcome
of the detection algorithm.

In our evaluation, we consider test scenarios that involve
service failures of the IMS system. To have meaningful
test scenarios, we induce performance anomalies that cause
service failures, that is, the quality of service experienced
by clients degrades, either in terms of throughput (i.e., there
should be a gap between the request rate from the client, and
the throughput of traffic served by the IMS) and latency (i.e.,
there is a long delay between a request and the corresponding
results). In quantitative terms, we cause service failures where
the throughput is less than 90% of the request rate for more
than 5 seconds, and the 90th-percentile of the request latency
is lower than 250ms. The requests that violate the latency
requirements are signalled either by the system (i.e., with
SIP 500 messages) or by the client (i.e., in case of timeout
events). In both cases, these requests are marked as failed
and are not accounted in the overall throughput. Thus, in our
discussion, we focus on presenting the throughput metric, as
in all tests the latency violations were always accompanied
by throughput violations during the same periods.

To assess the detection algorithm, we consider a set of
overload scenarios (caused by workload surges and faults), and
perform r repeated experiments for each scenario, where we
evaluate the number of times the algorithm is able to detect the

overload. The following Detection Outcomes are considered:
• Overload not detected: the algorithm detected the

overload no more than in 20% of the experiments;
• Overload detected: in at least 80% of the experiments,

the algorithm was able to detect the overload;
• Unreliable detection: in the other cases.
To summarize the detection outcomes across different

scenarios, we compute the Overall Detection Coverage,
which we define as the percentage of the scenarios where the
detection outcome is overload detected.

Another requirement of NFV services is that anomalous
conditions have to be detected as soon as possible, so that
mitigation mechanisms can be quickly activated, and the
impact on the quality of service can be reduced. Thus, as a
further metric for the assessment of the detection algorithm,
we consider the Detection Latency, which is defined as the
time between the occurrence of an overload condition (i.e.,
the moment at which users’ registrations and/or calls start
failing) and the detection of such condition by the algorithm.

Finally, we consider the rate of false alarms that are
raised by the detection algorithm. To this aim, we perform
experiments without anomalies, and keep track of any (false)
alarms raised by the algorithm during the experiment.

Ideally, to be deployed in production environments
according to the feedback from our industrial partners, our
proposed algorithm should have a quick detection latency and
no false positives, and a reasonably high detection coverage;
this can be a challenging goal considering that we do not
rely on any preliminary calibration of thresholds (e.g., we do
not fix a minimum or maximum value for CPU or bandwidth
utilization in our algorithm).

We applied the proposed approach by correlating the CPU
utilization of VNFs in the service chain. One of the reasons
why we focus on this metric is that, in NFV services, the net-
work consumption is highly correlated to the CPU utilization,
since NFV is intended to use standard COTS CPUs to process
high volumes of network traffic. Moreover, in a preliminary
phase of our work, that we could not present due to the lack
of space, we performed an analysis for the dimensionality
reduction of the metrics space, which confirmed that metrics
were highly correlated to CPU utilization.

Fig. 6 shows an example of correlation, in the presence
of a performance anomaly, between the first two components
of the Clearwater VNF chain, the P-CSCF CPU % (Bono)
and S-CSCF CPU % (Sprout). The figure shows the time
series for vCPU utilization of two instances of these network
functions, and the Pearson correlation index (the yellow line)
computed between these two, by using a sliding window.
A workload surge is generated at minute 10. After minute
10, the Bono node starts dropping new connection attempts
due to the overload, thus causing a reduced load on the
subsequent Sprout node. When this happens, the correlation
index drops close to −1, and our algorithm considers this
as a symptom of fault (a performance anomaly). Analogue
conditions occur in all the other failure scenarios that we
consider in the experimental evaluation.

In summary, we consider the following sets of experiments:



Fig. 6: Example of negative running correlation between
P-CSCF and S-CSCF CPU utilization.

1) Sudden workload surges: the workload of the system
rapidly grows, exceeding the engineered level of the
IMS. In such a case, the available resources of the
system may not suffice to manage the incoming load.

2) Component failure: the failure of a component of the
system reduces available resources to satisfy all user
requests, thus, causing an overload condition.

3) Anomaly-free, long-running workload: we consider
long-running tests, with both constant and variable
workloads, within the engineered level of the IMS and
without any fault, to check whether any normal variation
of the workload may trigger false positives.

In each scenario, we apply the fault correlation approach
to the main service chain of the Clearwater IMS, including
Bono, Sprout and Homestead, as shown in Fig. 7. More
precisely, we apply the fault correlation algorithm to both the
Bono-Sprout and Sprout-Homestead VNF pairs. We do not
consider the Sprout-Ralf VNF pair since the external billing
function (required by Ralf) is not included in Clearwater.
Moreover, we do not consider homer, since it only provides a
secondary functionality (a database service for the Telephony
Application Server) that is not included in the IMS standard.

Fig. 7: VNF graph representing the chain of services’
utilization.

A. Sudden workload surges

We study the impact of different types of workload surges
on the QoS of the IMS and on the effectiveness of our
detection approach. In each test with workload surges, we
consider a different combination of the following three factors:

• The number of subscribers, as the user volume affects
the severity of resource contention and of the saturation
of the IMS capacity;

• The duration of the ramp-up period, that is, the time for
the workload to increase from the engineered level to
the selected level (the shorter is the ramp-up, the quicker

TABLE II: Factors and levels for studying the impact of
workload surges.

Factor Level 1 Level 2 Level 3 Level 4
#
sub-
scribers

600k
20%-MTN

1M
100%-MTN

3.2M
640%-MTN

5.5M
1000%-
MTN

Ramp-
up

10 min 6 min 3 min

Call
hold
time

2 min 1 min

is the workload surge and the on-set of the overload
condition);

• The call hold time, which affects the the type and
frequency of requests to the IMS, and consequently lead
to different workload patterns.

TABLE II reports in the detail the possible values that
we selected for the three factors (four possible numbers of
subscribers, three possible ramp-up periods, and two possible
call hold times). In particular, the number of subscribers is
expressed in relative terms with respect to the engineered level,
that is, the users are 20, 100, 640, 1000% more numerous than
normal (denoted with X%-MTN). We adopted a full factorial
design, with 4×3×2 = 24 test configurations in total. In these
experiments, workload surges are introduced starting at minute
10 since the beginning of the experiment; the time required to
reach the peak of subscribers depends on the ramp-up period.

We found that covering boundary conditions (e.g., relatively
high and relatively low volumes of users) highlights different
behaviors of the IMS: in these extreme cases, either just few
registrations and calls fail (but have still a noticeable effect on
the perceived QoS), or almost all registrations and calls fail
(as the resource competition is too strong to allow any request
to get a sufficient amount). These differences also reflected
on the performance of the detection algorithm. Instead, we
found that the ramp-up period and the call hold time have a
limited influence on the performance of detection; thus, for
the sake of space, we limit the presentation of detailed results
only to a specific ramp-up period (i.e. 10 minutes) and call
hold time (i.e. 60 seconds).

We performed 5 repeated experiments for each test
configuration (r = 5). A performance anomaly condition
occurs when a non-negligible percentage (≥10%) of user
registrations and/or call setups are not successful, either
because the request is not served within a time limit (10
seconds), or the IMS explicitly refuses the request and returns
an error message to the client. The anomaly condition is
considered detected if the algorithm raises an alarm within 60
seconds from the occurrence of registration and/or call failures.

Fig. 8 presents two examples of overload due to the increase
of the number of subscribers. Fig. 8a shows, respectively,
the number of incoming registration requests per minute,
and the number of completed registrations per minute, when
the workload is 20% larger than the nominal capacity. The
difference between the two curves represents the amount of
requests that could not be service due to resource contention



(a) Load 20% larger than the engineered level (20%-MTN)

(b) Load 1000% larger than the engineered level (1000%-MTN)

Fig. 8: Registration attempts per minute and registrations
completed per minute

and saturation. Similarly, Fig. 8b shows the case where the
number of subscribers increases by 1000%. In the former
case (20%-MTN), the workload peak affected the quality of
service for a small share of users, while the others were still
serviced. Instead, in the latter case (1000%-MTN), not only
the users in excess could not be serviced; but the workload
surge caused a failure of the IMS software (which was unable
to allocate resources, such as memory), thus leading to the
unavailability of the IMS. Clearly, the larger the increase
of the number of subscribers, the larger the number of
registrations that are not correctly completed.

To evaluate the detection algorithm based on the running
correlation, we consider several values of sample window
size, i.e., we vary the number of samples from the time series
that are correlated. Also, we evaluate detection performance
when using different smoothing algorithms. Specifically, we
consider to use (i) 10, (ii) 20 or (iii) 30 samples; and, as a
smoothing algorithm, we test (i) Running Moving Median
(RMM), (ii) Running Moving Average (RMA), and (iii)
Exponential Moving Average (EMA).

The results for the detection algorithm under workload
surges are reported in TABLE III. Clearly, the size of the
sampling window and the smoothing function have a big
impact on the detection performance. In all the considered
overload conditions, the RMM and RMA smoothing functions
perform better than EMA. This result is probably due to
the fact that giving less importance to older samples in
EMA, makes the algorithm more sensitive to noisy peeks
revealing trends that are not representative. Moreover, the
RMM algorithm appears more robust than RMA regarding
the size of the sampling window due to the fact that the
mean is more sensitive to outliers than the median. This
results in lower detection latencies. In general, the average

TABLE III: Detection outcomes and latency under workload
surges.

Overload
Window Smooth Detection

Outcome

Detection
Latency
(seconds)

Subs.
(MTN)

20%

10
RMM

Detected (4/5) 29.0
20 Detected (4/5) 45.6
30 Not Det. (1/5) 28.0
10

RMA
Unrel. Det. (2/5) 37.0

20 Non Det. (1/5) 48.0
30 Not Det. (0/5) -
10

EMA
Unrel. Det. (3/5) 46.0

20 Non Det. (0/5) -
30 Not Det. (0/5) -

100%

10
RMM

Detected (4/5) 29.0
20 Detected (4/5) 44.0
30 Unrel. Det. (2/5) 57.0
10

RMA
Detected (4/5) 33.2

20 Detected (4/5) 47.2
30 Not Det. (0/5) -
10

EMA
Detected (4/5) 36.5

20 Detected (4/5) 42.0
30 Not Det. (0/5) -

640%

10
RMM

Detected (5/5) 42.4
20 Detected (5/5) 58.0
30 Detected (5/5) 46.2
10

RMA
Detected (5/5) 49.3

20 Non Det. (1/5) 58.0
30 Non Det. (0/5) -
10

EMA
Detected (5/5) 46.0

20 Non Det. (0/5) -
30 Non Det. (0/5) -

1000%

10
RMM

Detected (5/5) 29.4
20 Detected (5/5) 49.4
30 Detected (5/5) 46.2
10

RMA
Detected (5/5) 38.0

20 Detected (4/5) 57.0
30 Non Det. (0/5) -
10

EMA
Detected (5/5) 36.0

20 Non Det. (2/5) 57.0
30 Non Det. (0/5) -

detection latency varies between 30 and 60 seconds and
increases when using bigger sampling windows. Collecting
a sample every 2 seconds, a sampling window of 10 samples
requires at least 20 seconds to be filled. Longer windows (e.g,
30 samples) result in worst coverage and longer detection
latencies, especially with small overload conditions. For this
reasons we recommend to use small sampling windows and
the more robust RMM smoothing algorithm to achieve good
results. With this configuration, we obtain 100% of detection
coverage and an average detection latency of 32 seconds.

B. Component failure
We here analyze how component failure inside the NFV

infrastructure (and thus, the variation of the capacity of the
service chain) impacts on the QoS and on the effectiveness of
the detection algorithm. We consider the following potential
failure events:

1) The failure of physical CPU cores of a machine that
hosts VNFs, which is emulated by deliberately turning
off a subset of CPU cores, thus forcing the hypervisor
and the VNFs to run on fewer CPU cores and causing
physical CPU contention.

2) The crash of VMs that run VNF software, which is
emulated by deliberately terminating a VM, thus forcing



(a) the failure of 28 CPU cores over 32 (b) the failure of 8 S-CSCF nodes over 10

(c) the failover of 8 P-CSCF nodes over 10

Fig. 9: Registration attempts and registrations completed per minute, under component failures (injected at minute 20).

the IMS traffic to be load-balanced on the remaining
replicas of the VNF.

3) The restart of VMs that triggers the migration and
restart of IMS sessions. In the telecom domain, this
phenomenon is often referred to as the avalanche effect,
and is regarded as a problematic event due to the need
to quickly restart a high number of connections in a
limited time, and to force state migration in the case of
stateful network functions [8].

TABLE IV reports in the detail the levels for experimenting
with component failures. In total, we consider 4 test
configurations, with r = 5 repetitions for each configuration.

TABLE IV: Factors and levels for studying the impact of
failure events.

Factor Level 1 Level 2 Level 3 Level 4
Failure 16 out of

32 pCPU
failure

28 out of
32 pCPU
failure

8 out of 10
S-CSCF
failure

8 out of 10
P-CSCF
failover

We apply the first type of failure on one of the three
physical nodes that run the IMS; the second type of failure on
S-CSCF services, by killing 8 VMs running the Clearwater
Sprout service; and the third type of failure on P-CSCF
services, by restarting 8 VMs running Bono, thus triggering
the P-CSCF recovery. All the injections are performed 20
minutes after the start of the experiment.

Fig. 9 shows examples of the impact caused by the failures
on the IMS. For three out of four failure events (the levels 2,
3, and 4 in TABLE IV), the injected faults indeed caused an
overload of the IMS system, since many users were affected
by failures due to unsuccessful registrations. Instead, in the re-
maining case (the level 1 in TABLE IV), the CPU failure were
not enough to cause an overload condition, as the IMS client

did not perceive any service degradation. The IMS components
tolerate small a amount of physical CPU contention (e.g., the
loss of 10% of CPU time, spent in involuntary wait state)
with no effects on the throughput and the latency. Therefore,
we decided to consider this experiment as anomaly-free (the
remaining CPUs were able to tolerate the component failure
and to serve the workload, so no anomaly should be detected
for this case). This case is further analyzed in the next section.

To analyze the detection algorithm under component
failures, for the sake of brevity, we focus the discussion on
the case with a workload below the engineered capacity (i.e.
400k subscribers), sampling window size of 10 samples and
a sampling period of 2s (i.e., the window length is equal
to 20s), and we apply the Running Moving Median (RMM)
as smoothing function; these choices for the window size
and smoothing were the best ones according to the previous
analysis with workload surges. Again, we have a performance
anomaly when a noticeable amount of user registrations and/or
call setups are not successful. The anomaly is considered
detected if the algorithm raises an alarm within 60 seconds
from the occurrence of registration and/or call failures.

Results from these injection experiments, reported in
TABLE V, reveal a high detection coverage. The mean
detection latency (i.e., 18 seconds) is approximately equal to
the time required to fill the window (i.e., 20 seconds) with
samples collected after the injected fault. The detection of this
kind of issues is faster than the case with workload surges,
because the injection of the faults caused quicker variations of
the CPU utilization in a majority of the VMs, all at the same
time. In the case of CPU contention (e.g., caused by the CPU
failures), all the VMs deployed on the same injection target
experienced involuntary waits due to the hypervisor scheduler.
In the case of a reduced number of VMs (e.g., due to the crash



TABLE V: Results for detection based on running correlation
for overload conditions due to failures.

Failures Window Smooth Detection
Outcome

Detection
Latency
(seconds)

physical
CPU
contention

10 RMM Detected (4/5) 13.0

S-CSCF
crash 10 RMM Detected (5/5) 24.0

P-CSCF
failover 10 RMM Detected (5/5) 18.0

of S-CSCF instances) the algorithm required less feedback to
reach the majority before raising an alarm, resulting in lower
detection latency. In case of avalanche restarts (e.g., due to
the failover of P-CSCF nodes) all the newly started instances
immediately experienced overload and the algorithm got a
quick feedback from a majority of the nodes.

C. Anomaly-free, long-running workload

To test for the occurrence of any false alarms under
anomaly-free conditions, we carry out a set of experiments
that are within the engineered capacity of the IMS system. We
consider both the case of a stable workload at the engineered
capacity, and two scenarios with variable workload (still within
the limits of the engineered capacity). Finally, we consider the
case of a failure event that reduces the available physical CPU
cores (16-out-of-32) while still providing enough capacity for
serving the workload (see also the discussion in the previous
section). In these conditions, the algorithm should not detect
any failure, thus any alarm is considered a false positive.

In the case of stable workload, we exercise the IMS with
a constant number of subscribers (500k users). In the case
of variable workload, we vary the number of subscribers
over time. Periodically (every 20 minutes on average) the
number of subscribers is reduced or increased, according to
two patterns: in the first pattern (Fig. 10) the workload varies
between three levels below the engineered capacity; in the
second pattern (Fig. 11), the workload varies between five
levels, up to the engineered capacity of the IMS.

100k  
subs

200k  
subs

350k  
subs

Fig. 10: Variable workload below the engineered capacity.

100k  
subs

200k  
subs

350k  
subs

400k  
subs

500k  
subs

Fig. 11: Variable workload that saturates the engineered
capacity.

In all these experiments, the detector provided an
encouraging result: no false alarms were raised, for all test
configurations. This result is motivated by the robust criteria
that we adopt in the algorithm, as we require that (i) the
CPU utilization should not simply vary on individual nodes,
but the variations should be correlated at different pairs of
VNFs; (ii) the correlation should show a high strength; (iii) a
majority of the replicas in a VNF tier should be involved in
the variation. Indeed, it is very unlikely that a false positive
may occur, as confirmed by our anomaly-free experiments.

VI. CONCLUSION

We presented an approach to ease the adoption of anomaly
detection systems in production NFV services. We showed
that, by taking into account the VNF service chain topology,
we can correlate performance metrics from different VNFs to
infer the health of the service chain (e.g., service performance
anomalies caused by the occurrence of bottlenecks and
component failures). We proposed an algorithm to combine
the correlations across multiple VNF replicas, to improve the
accuracy of the detection.

We are planning to evaluate in a future work additional
cases, such as to correlate non-adjacent VNFs in more
complex topologies. In this work, we applied the algorithm
to adjacent VNFs only, for two reasons: (1) in non-adjacent
VNFs, we need to extend the basic approach to take into
account the propagation delay between distant VNFs, but this
would require tuning efforts by the users (instead, we are
striving for a solution that is easy to deploy); (2) computing
the correlation online between all the possible pairs of time
series may be unpracticable in long VNF chains, due to the
explosion of combinations of VNF pairs.

We validated the approach using an NFV-oriented IP Mul-
timedia Subsystem (IMS). We selected a set of scenarios
including overload, contention on physical resources and crash
of the VNF instances, and studied the impact on the quality
of service. We evaluated the detection coverage (i.e., the
percentage of the scenarios where the detection outcome is
detected) and the detection latency (i.e., the time between the
occurrence of a failure and the detection of the anomaly). The
experimental results show that the approach performs well
across several conditions when using the Running Moving
Median (RMM) smoothing function and a window of 10 sam-
ples with a sampling period of 2s. With these parameters, an
anomalous condition is detected within half minute on average,
with a very high detection coverage and no false positives.

The insensitivity of the algorithm against false positives,
along with the freedom from thresholds that depend on
the system (that would need to be calibrated with training
samples, and to be tuned when the system is upgraded or
reconfigured), are two key concerns that we took into account
in the design of the algorithm, in order to make easier its
adoption in production environments.
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