
An unsupervised approach to discover
filtering rules from diagnostic logs

Marcello Cinque†⋆, Raffaele Della Corte†‡, Giorgio Farina†⋆, Stefano Rosiello‡
†DIETI - Università degli Studi di Napoli Federico II, via Claudio 21, 80125 Naples, Italy

⋆CINI - Consorzio Interuniversitario Nazionale per l’Informatica, M.S. Angelo, Via Cinthia, 80126 Naples, Italy
‡Critiware s.r.l., via Carlo Poerio 89/A, 80121, Naples, Italy

{macinque, raffaele.dellacorte2, giorgio.farina}@unina.it, stefano.rosiello@critiware.com

Abstract—Diagnostic logs represent the main source of in-
formation about the system runtime. However, the presence
of faults typically leads to multiple errors propagating within
system components, which requires analysts to dig into cascading
messages for root cause analysis. This is exacerbated in complex
systems, such as railway systems, composed by several devices
generating high amount of logs. Filtering allows dealing with
large data volumes, leading practitioners to focus on interesting
events, i.e., events that should be further investigated by analysts.

This paper proposes an unsupervised approach to discover
filtering rules from diagnostic logs. The approach automatically
infers potential events correlations, representing them as fault-
trees enriched with scores. Trees define filtering rules highlighting
the interesting events, while scores allow prioritizing their anal-
ysis. The approach has been applied in a preliminary railway
case study, which encompasses more than 710k events generated
by on-board train equipment during operation.

Index Terms—Filtering, Fault-tree, Data analysis, Event logs

I. INTRODUCTION

Diagnostic logs are the primary source of information for
understanding the runtime behavior of a system. Diagnostic
logs are sequences of text lines –typically stored in log files–
reporting on the runtime behavior of a system [1], including
entries highlighting the occurrence of system failures. Their
analysis has been extensively used for troubleshooting [2]–[4].
However, leveraging diagnostic logs for root cause analysis,
i.e., identifying the fault originating failures occurred during
system operation [5], is a challenging task. Human experts
generally rely on their experience to manually identify anoma-
lous log entries, often by querying for predefined keywords.
Understanding and traversing the diagnostic data logs from
different components demands for substantial cognitive work
by human experts. Highly specialized analysts are expected
to face a number of challenges, which encompass the high
volume and heterogeneity of data, the presence of different
error and failure mode, the presence of corrupted, duplicated
or redundant data, or even worst, the absence of data to infer
the root cause of the occurred problem, the absence of consol-
idated and automatic analysis procedures. This is exacerbated
in complex systems like Train Control and Monitoring System
(TCMS) [6], which include a wide set of heterogeneous
subsystems, each one generating diagnostic logs.

Filtering is one of the analysis techniques allowing to deal
with large data volumes by supporting the identification of
interesting events [7], i.e., events that should be followed up
by analysts for further investigation because they may help
revealing root cause of occurring failure. Filtering rules allow

retaining events that are expected to have been generated
under exceptional conditions, e.g., failures, and discarding
the events generated by normative operations or containing
redundant information with respect to the retained ones. The
discovery of filtering rules in an automatic way represents a
valuable tool for domain experts, since it can suggest potential
events correlation across huge data volumes, which can be
reviewed by the experts for validation. In this respect, different
studies propose methods to infer events relationship from logs,
representing them as fault-tree [8]–[10]. However, existing
approaches require labeled datasets, e.g., datasets where events
are already grouped together and the occurrence or not of the
interesting event is provided for each group, which can be
difficult to obtain for real-world production systems.

In this paper we propose an unsupervised approach to auto-
matically discover filtering rules from diagnostic logs. The ap-
proach leverages both temporal coalescence and unsupervised
machine learning techniques to automatically infer potential
events correlations from diagnostic data, and extract filtering
rules. The inferred rules are represented as fault-tree models, in
order to provide to domain experts a comprehensive and sim-
plified representation for review. A novel scoring mechanism
is also proposed to provide each rule with a numerical score,
which allows experts to prioritize the validation of the obtained
rules as well as to easily discard potential wrong filtering rules.
We applied the proposed approach to a preliminary railway
case study in the context of the AID4TRAIN project, which
is being developed by Critiware S.r.l., an industrial railway
partner acting as problem owner and data provider (Hitachi
Rail Italy), and with the support of a national research center
(CINI). The case study encompasses diagnostic logs collected
through the TCMS of a high-speed train. The dataset includes
more than 710k events collected in a production environment
during eight weeks of train operation.

The paper is organized as follows. Section II introduces a
motivating example for our proposal. Section III describes our
approach, encompassing both event-tree learning and scoring
mechanisms. Section IV presents the results in our railway
case study. Section V discusses both background concepts and
related work, while Section VI concludes the work.

II. MOTIVATING EXAMPLE

Diagnostic equipment available on modern systems are able
to automatically report information related to potential faults
or functional anomalies. However, as anticipated, the conse-
quences of a fault are hardly confined on the component that

is first affected by the problem, and can have cascade effects
(and related diagnostic messages) on many components. This
leads to log with an excessive number of lines, which hardens
the root cause analysis task, impacting to the overall life-cycle
cost of a working system, due to the need of highly specialized
maintenance staff. The analysis is impaired by several factors:
data volume and heterogeneity, variety of fault types, presence
of corrupted, redundant or repeated data, and, in rare cases,
lack of useful information to reconstruct the event of interest.

While there is still the need for human experts, to ulti-
mately judge the hypothesized cause of a fault and program a
maintenance action, the problem we aim to solve is to reduce
the gap between the expert and the raw data, by providing
a simplified view of knowledge automatically extracted from
data in the form of fault trees. The challenge we address
in this paper is to infer these models by mining potential
correlations across huge volumes of data, spanning significant
hours of functioning of the on-board equipment, in production
environments. Learned grouping rules can be then used, after
passing the expert review, to automatically filter previously
unseen raw data, hence reducing the amount of information to
be delivered to the specialist, in case of anomalies.

As an example, a sequence of events happening multiple
times in the logs of our railway case study is related to the
emergency braking system of a train, which is depicted in
Fig. 1. When an emergency brake is activated, the event is
reported by multiple components of the train (such as the
braking system, the vehicle, and monitoring and diagnostics
system). These events happen near in time and are strictly
correlated. Our approach aims to capture this correlation by
analyzing historical diagnostic logs collected during the sys-
tem runtime, and propose a simplified view to the maintenance
experts by highlighting the primary event (i.e., Emergency
brake activated in A48) and marking as secondary
the remaining ones as they can be easily filtered out. However,
sequences of recurring events not always indicate a potential
filtering rule. Indeed, in Fig. 2 is shown an example of a
sequence reporting events due to multiple persistent failures
(i.e., in the WC and in the HVAC systems). These three
events are not due to a common root cause but since they
are persistent, they are reported multiple times by diagnostics
close in time. Multiple concurrent faults can mislead the
automatic learning of filtering rules. Our approach propose
a scoring mechanism (described in Section III-B) in order to
spot those cases and discarding potential wrong filtering rules,
therefore reducing the effort of the domain expert in verify and
validate them.

…
Code 81 : _BREMG_A48 «Emergency brake enabled in A48»
Code 383: _VEIC_P03 «Received manual braking command»
Code 410: _MDS_P18 «Emergency brake»
…

Fig. 1. Example of recurring events caused by cascading effects.

…
Code 14 : _HVAC_CAB1 «Loss of communication with HVAC cabin 01»
Code 710: _FltToiletT1 «WC out of order in sector T1»
Code 810: _PressureFlt «Fault in tank pressure switch WC sector T1»
…

Fig. 2. Example of recurring events caused by different concurrent faults.

III. PROPOSED APPROACH

The proposed approach aims to support maintenance pro-
cesses by providing practitioners with potential filtering rules.
Each rule highlights the event to consider as primary, i.e., the
interesting event that should be retained, and the ones to con-
sider as secondary, i.e., the events that can be discarded since
they can be considered as consequence of the primary event.
Moreover, each rule is characterized by a score summarizing
the correlations between events composing the rule, which
provides an immediate feedback to domain experts about the
validity of the rule, as well as a prioritization for the rules
validation. The approach leverages two main stages: (i) Rule
discovery, which aims to infer filtering rules from diagnostic
log in an automatic way, representing them as fault-tree; (ii)
Scoring, which enriches the obtained rules with the score. Fig.
3 depicts the steps composing the proposed approach. We first
describe the steps of the Rule discovery stage, i.e., Tupling,
Clustering and Fault-Tree building, and then the Scoring stage.

A. Rule discovery

The Rule discovery stage leverages both temporal coales-
cence and unsupervised Machine Learning (ML) techniques to
infer potential filtering rules, and represent them as fault-tree.
This stage encompasses the following three steps.

Tupling. The event-tupling is a widely recognized technique
[11] for temporal coalescence. A tuple is a set of events
which are close in time; the assumption here is that often
multiple events that are reported together are due to the same
underlying anomaly. Moreover, the same anomaly may persist,
repeats often over time, and propagates to other components,
which in turn may report an additional event into the log. Two
subsequent events are included in the same tuple if the time
elapsed between their occurrences is less than a fixed time
window. Otherwise, they will be grouped in different tuples.
In this process the choice of the window size is a crucial factor,
and represents a configuration of our approach. The obtained
tuples are then represented as a binary sequence, with each
element indicating the presence of an event in the tuple.

Clustering. In this step, the tuples encompassing a similar
set of events are grouped together in a cluster leveraging an
unsupervised ML technique, in order to discover potential
filtering rule. To this aim the step makes use of a hierarchical
clustering technique based on single linkage [12]. To measure
the distance between two tuples, the step uses the hamming

Fig. 3. Overview of the proposed approach.

distance, which is directly proportional to the number of
different events occurred in the tuples. For each cluster, the
number of events composing the clusters, the probability of
occurrence of the event within the cluster, and the average
duration of the tuples of the cluster are computed. Each cluster
is considered to be a potential learned filtering rule if it
contains at least two events and at least two tuple. Indeed,
clusters with a single tuple are likely due to chance, while
clusters with less than two events are not useful to learn
potential correlations between events.

Fault Tree building. Each cluster is transformed in a two-
level fault tree. The root of the tree is the primary event, which
is selected depending on the list of known interesting events
(provided as input), i.e., events that domain experts already
known to be relevant in the target system (such as events
representing potential root cause of failures). If the cluster
contains an interesting event indicated in the list, this event
is used as primary event of the tree; otherwise, the primary
event is represented by a potential unknown event, which
needs to be investigated from domain experts. The remaining
events of the cluster are used as leaves of the tree, indicating
secondary events. Each tree represent a filtering rule, which
can be summarized as follows: when all the events composing
the tree occur within the related time window (i.e., the average
duration of the tuples within the cluster), the root event of the
tree is marked as primary, while all other events as secondary.
This allows analysts to easily filter-out all the secondary events
from logs, focusing only on the primary ones when analyzing
diagnostic data for root cause analysis.

The domain experts are expected to review the obtained
fault trees in order to consolidate the related rule. To this aim
each rule is translated in a XML standard representation1 of a
fault tree, which can further elaborated, discarded and accepted
by a domain expert by means of a graphical fault-tree editor.
Moreover, the score provided by the scoring step (described
later) is attached to each fault tree to support their analysis.
It is important to note that the reviews made by experts are
provided as inputs to the clustering step, which accepts the
list of accepted and discarded rules. This prevents that rules
already analyzed by experts will be reviewed again. Further,
if the experts identify new primary events during the analysis,
they will be included within the known interesting events list.

B. Scoring

The score reduces the manual effort of domain experts
allowing both cluster filtering and prioritization. In details,
the score helps the domain experts to (i) test the validity of
clusters and (ii) assign a priority to clusters in order to guide
their validation. This is an important feature since, despite the
tupling tuning obtained from the sensitivity analysis works
well in the average cases, there are corner cases that need
to be detected and handled. Timing coalescence might group
independent event sequences within the same tuple when the
frequency of these events together is not negligible (collision).
At the same time, it might split an independent diagnostic
event sequence in different tuples when the time window is
too tiny (truncation). Our scoring mechanism mines the dataset

1The Open-PSA Model Exchange Format is used as XML representation.

to check for these phenomena, and provides a score describing
the correlations between the cluster events. While the clusters
classified as collisions or truncation are discarded due to lack
of empirical evidence, the remaining clusters are provided
to the expert domains as several DAGs (Directed Acyclic
Graphs), where each node represent a cluster. DAGs show the
inclusivity relationships between clusters as well as the score
of the clusters. This representation helps the expert domains
to guide the validation, and enables the score computation.

Each DAG is analyzed from the leaves. For simplicity,
we describe one iteration of DAG exploration to show how
our score is calculated. For each leaf, the score is calculated
considering all binary combinations of the events composing
the related cluster. In details, for each binary combination
of events Ei, Ej , we calculate a correlation Index in both
direction, i.e., Ei− > Ej and Ej− > Ei, according to the
following equation:

IndexEi−>Ej
=

P (Ej |Ei)− P (Ej)

1− P (Ej)
(1)

Then a score is calculated for the events couple, as the
maximum between the two calculated index:

ScoreEi,Ej
= max{IndexEi−>Ej

, IndexEj−>Ei
} (2)

In order to understand the proposed correlation index, let
us give this illustration: considering IndexEi−>Ej

, the event
Ei affects Ej only if the frequency of Ej is higher when Ei

occurs. Hence, the Index subtracts the frequency of Ej when
Ei is verified with the frequency of Ej in the entire dataset.
The obtained Score has two operational ranges of values: (i)
score less than or equal to zero, indicating that Ei and Ej

could be independent events that are together for a chance;
(ii) score from zero to one, which estimates the maximum
achievable correlation between the two events. We choose the
maximum in (2), because (for instance) if we have a diagnostic
event that generates a fault, the presence of that event does
not always imply a fault, but it generally causes the fault. In
that case, the score is close to one because it chooses the
maximum correlation between the two directions. Once we
estimate the score for each binary combination, the score of
the cluster is calculated as the arithmetic means of the event
binary combinations:

ScoreCi
=

∑N−1
i=1

∑N
j=i+1 Score(Ei, Ej)
N∗(N−1)

2

(3)

If this score is negative, we can classify that cluster as an
aggregation of independent events (i.e., a collision). While
if the score is positive, it is adopted as a priority metric to
guide expert validation. Subsequently, we can build the score
of the parent cluster from the leaves. Since the the parent
cluster includes all the events of its children, we computed the
parent score by averaging solely the new binary combinations
that are not included in the children. This allows evaluating
only the added value of the parent cluster with respect to its
children. Again, if the score is negative, we can conclude that
the events added from the parent cluster have no significant
effect and thereby the cluster can be classified as a collision.
A particular case is when the new cluster does not add new
combinations of events, we can classify that case as evidence

of tupling truncation, keeping the parent while classifying the
direct children as truncations.

In conclusion, the clusters classified as collisions or trun-
cations are not provided to the expert domains for lack of
empirical evidence. In contrast, the clusters with positive
scores are provided in a DAG with the associated scores
(priority) to guide the expert validation from the cluster, which
includes more probably rules.

IV. RAILWAY CASE STUDY

As a preliminary case-study, we collected eight weeks of
diagnostic logs generated by the TCMS of a single high-speed
train during operation; the collection has been made by means
of the train control room facility at our industrial partner. The
collected dataset is not labeled; therefore, no information is
provided about the relationship of the events. Before analyzing
the dataset with our approach, which has been implemented
as Python-based modules, we execute a data preparation
step. This step aims to transform the data in the format
expected by the proposalas well as to address suggestions
provided by our industrial partner. First, the raw output of
the diagnostic systems is converted in a table, containing for
each event: a timestamp, the event-type and the event-code
(which are described in the train model of the specific train),
a description in natural language of the event and the name of
the component affected. The obtained table is then analyzed to
discard duplicated events (i.e., events with the same event-code
and timestamp), according to industrial partner indications.

A. Rule discovery statistics
The dataset obtained after the data preparation step is com-

posed by 716,062 events, observed in a period of eight weeks.
During this time-frame 1,364 unique events are observed. In
order to properly configure our proposal, we first performed a
sensitivity analysis in order to select the tupling window. Fig.
4 shows the number of tuples by the selected tupling window.
We selected the window size that correspond to the knee point
of the curve, which represents a good tradeoff according to
the previous study in [11]. Therefore, we considered a tupling
window of 5 seconds, corresponding to 53,297 tuples.

Configured the tupling window, we run the proposed ap-
proach on the prepared dataset. After the execution of the
clustering step, we obtained 5,705 clusters. Only 1,749 clusters
contains more than a single tuple, and only 1,488 contains at

2 4 6 8 10 12 14 16
Tupling window (s)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

N
u

m
b

er
 o

f
tu

p
le

s

104 Tupling window size (knee point)

X 5
Y 53297

Fig. 4. Tupling windows size (knee point analysis).

Distribution of number of events by rule

2 5 10 15 20 25+
of Events

0

50

100

150

200

250

300

o

f
F

ilt
er

in
g

 r
u

le
s

Fig. 5. Distribution of the number of events in each learned rule.

least two diagnostic events. Therefore, the proposal considers
the 1,488 remaining clusters as potential filtering rules learned
in an automatic way, with a reduction of about 97% with
respect to the number of tuples. This allows understanding the
advantage of using our proposal, since the analysts can focus
directly on the review of the obtained rules (whose amount
will be further reduced considering the scoring mechanism, as
shown later) instead of digging in the large amount of tuples
looking for relevant event correlations. Finally, Fig. 5 shows
the distribution of the number of events for each learned rule.
The 70% of the total rules learned is composed by less than
8 events. Rules with more than 20 events represent only less
than 11%.

B. Filtering rule representation
As indicted in Section III-A, the resulting clusters are then

converted in the Open-PSA fault-tree XML representation. As
an example, Fig. 6 shows the tree representation of the rule
obtained from the cluster capturing correlation indicated in the
motivating example in Fig. 1, which should be analyzed by
a domain expert. To facilitate the analysis of the expert, each
node of the tree is enriched with the following information:

• an eventID, which is a combination of event name and
event code extracted from the train model of the system,
e.g., 81-_BREMG_A48;

• the time window (for root event only), i.e., @window
parameter, indicating the maximum time in which the
rule applies;

• the component to which this event belongs to, i.e., @com-
ponent parameter;

• the probability of occurrence, i.e., @probability param-
eter, which is defined as the ratio of number of times
the event occurred in the cluster and the total number of
tuples of the cluster;

• a natural language description of the event.
In the provided example, the cluster includes the events 81,
383 and 410, which have been grouped together by the
proposal. These events happened at least two times within a
time window of 1.6 seconds. The event type BREMG_A48
(81) has been indicated by the domain expert as a potential
interesting event (through the dedicated list provided to the

Fig. 6. Example of graphical representation of a learned rule.

FT building step). Therefore, it has been placed at the root
of the fault-tree. The obtained tree represents an example of
rule obtained in an automatic way by using the proposal, and
that can be analyzed and modified by experts through any
fault-tree editor compliant with the Open-PSA fault-tree XML
representation. In this respect, the proposal allows to obtain
potential filtering rules from historical data in an automatic
way as well as to combine the view provided by logs with the
expertise of the analysts.

C. Role of the score

The proposed score is adopted to (i) filter clusters that
are not sufficiently supported by empirical evidence and to
give (ii) a priority to each cluster. For instance, the loss
of communication with HVAC event shown in the mo-
tivating example in Fig. 2 is high frequent in our dataset,
making the probability to occur with another independent
event sequence not negligible, i.e., a ”collision” takes place. In
this example, our approach detected the inconsistency within
the example of Fig. 2, providing two filtering rules to the
experts: the first including only the events with code 710 and
810, with a score equal to 0.97; the second encompassing also
the Code 14 event, but with a score equal to 0.03. Therefore,
the very low score of the second rules suggests that the rule can
be potentially discarded (as also confirmed by our industrial
partner). Moreover, the higher score of the first rule provide to
that rule an higher priority with respect to the second rule, as
expected. The proposal detected also the correlation pointed
out in Fig. 1, generating one candidate filtering rule (i.e.,
the one depicted in Fig. 6) with a 0.9 score, which suggests
a strong correlation between events composing the rule. As
already mentioned in Section III-B, it is also frequent that a
cluster adds no new event combinations with respect to its
child clusters. Hence, once assigned a score to the children,
no score can be associated with the parent cluster. We handle
this special case keeping only the parent cluster and discarding
the children. This phenomena could be caused from either the
truncation of the timing window or as effect of randomly event
occurrence. In both cases, we delegate the validation to the
expert domains keeping the parent cluster.

In TABLE I, we show how our score helps to reduce the
number of clusters. For example, it can be noted that solely
filtering the clusters from truncation/collision phenomena, we
reduce the number of clusters of 40% (first row of the table).

TABLE I
ROLE OF THE SCORE

Score Threshold Reduction (% clusters)
Filtering 40%

Score > 0.2 60%
Score > 0.4 75%
Score > 0.6 85%
Score > 0.8 90%

Distribution of the score by cluster

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
cluster score

0

50

100

150

cl

u
st

er
s

Fig. 7. Distribution of the clusters score.

In addition, we observed (with the support of our railway
partner) that clusters with a low positive score do not support
the filtering rules. For this reason, the domain expert can tune
a threshold for the score; once set the threshold, the clusters
with a score lower than the threshold are not presented as
filtering rules candidates to the domain expert. In particular,
the remaining rows of TABLE I provide the reduction factor
with different score thresholds, which ranges from 60% to 90%
for 0.2 and 0.8 threshold, respectively. This is also confirmed
by the distribution of clusters score in Fig. 7, which shows
that most of the clusters have a score lower than 0.5. Experts
analyzed 20% of the clusters with a score of 0.4 and concluded
it could be used as a valuable threshold. In conclusion, we
started from more than six thousand unique tuples. Through
the clustering, we reduce the number of unique tuples to 75%,
and, subsequently, choosing a threshold of 0.4, we reduce the
clusters of 75% with 388 remaining clusters, getting a 93%
final reduction of the unique tuples.

V. RELATED WORK

Diagnostic logs contain a large amount of textual and
numerical information about system behavior under real work-
load conditions, which makes their analysis useful for classi-
fying the propagation of errors and failure modes. Leveraging
coalescence techniques, like heuristic tupling, the error events
can be coalesced in tuples to associate them with a failure
mode. For instance, error events occurring close in time can
be coalesced to represent a single failure mode. The validity
of heuristic models for time coalescence in event logs is
discussed in [13], which also presents a sensitivity analysis
that is adopted in our study. Spatial coalescence heuristics are
adopted in the analysis of large systems such as data-centers
and supercomputers [14], [15]. Collisions are the main issue

of tupling heuristics: errors of different failure modes can be
associated to the same failure mode, for example, because the
chance that independent failures occur on different nodes is
not negligible or due to a wrong tuning of the time window.
In this paper, the tupling heuristics are adopted to identify
independent events root causes, while we adopted clustering
to support the filtering rules represented by the tuples.

Clustering techniques group events that are similar each
other and dissimilar between the events of other clusters.
Clustering methods includes Partitional and Hierarchical clus-
tering [16]. Partitional clustering defines at-priori the number
of clusters, and searches the partition maximizing a given
function cost. An example is k-means [17], which tries to
minimize the total intra-cluster variance at each iteration.
Hierarchical clustering can be divisive or agglomerative.
Initially, agglomerative algorithms assume each cluster (leaf)
containing a single object; subsequently, at each iteration, the
”closest” clusters are joined to get a larger cluster. Measures of
similarity between clusters are necessary to link the clusters.
Linkage methods, such as Single-link (used in our proposal),
Average-link and Complete-link, calculate the inter-cluster dis-
tance considering all combinations of points between the two
clusters [18], [19], while geometric methods adopt geometric
centers to represent the clusters, and to calculate the inter-
cluster distance. For instance, the Ward’s method is a geomet-
ric method that minimizes the intra-cluster variance. Divisive
algorithms instead initially consider a partition formed by
a single large cluster containing all the elements; then, the
cluster is divided iteratively. Divisive clustering, as opposed to
agglomerative one, needs to measure the density or sparsity of
points within a cluster to decide if proceed with the division.

Discovering filtering rules allows obtaining valuable in-
formation about events correlation with the aim to pinpoint
interesting events from data under analysis. Different ap-
proaches have been proposed with aim to infer event corre-
lations directly from data, making assumptions on the data
set, conducting statistical tests and representing correlation as
fault-tree models [8]–[10], [20], [21]. In particular, the work in
[8] is the first completely automated tool to test the causality
in the fault-tree construction statistically. However, differently
from our proposal, the existing approaches require labeled
datasets, i.e., dataset where events are already grouped together
and the label indicated the occurrence or not of the root event
is provided, which can be difficult to obtain for real-world
production system, like our railway case study. Similar to our
approach, the work in [22] tries to infer filtering rules (for
outlier detection) from unlabeled data; however, the approach
combines both unsupervised and supervised approaches to
discover filtering rules, hence requires a labeling step before
inferring the rules.

VI. CONCLUSION

The paper proposed an unsupervised approach to discover
filtering rules from diagnostic logs. The approach allows
to infers potential events correlations in an automatic way,
extracting filtering rules represented as fault-trees. Filtering
rules are accompanied with a novel score allowing to support
the validation of rules. The approach has been applied in a
preliminary railway case study, with more than 710k events

generated by on-board train equipment during eight weeks of
operation. Future work will focus on extending the proposal to
automatically suggest primary events for discovered rules as
well as on the extensive validation of the approach in different
industrial contexts.

ACKNOWLEDGMENT

This work has been supported by the Meditech Competence
Center under the AID4TRAIN Project (I65F21001010005).

REFERENCES

[1] M. Cinque, R. Della Corte, and A. Pecchia, “An empirical analysis
of error propagation in critical software systems,” Empirical Software
Engineering, vol. 25, no. 4, pp. 2450–2484, 2020.

[2] J. Tian, S. Rudraraju, and Z. Li, “Evaluating web software reliability
based on workload and failure data extracted from server logs,” Soft
Eng, IEEE Transactions on, vol. 30, no. 11, pp. 754–769, Nov 2004.

[3] E. Chuah, A. Jhumka, J. C. Browne, B. Barth, and S. Narasimhamurthy,
“Insights into the diagnosis of system failures from cluster message
logs,” in 11th European Dependable Computing Conference (EDCC),
Sept 2015, pp. 225–232.

[4] A. Pecchia, I. Weber, M. Cinque, and Y. Ma, “Discovering process
models for the analysis of application failures under uncertainty of event
logs,” Knowledge-Based Systems, vol. 189, p. 105054, 2020.

[5] H. Lal and G. Pahwa, “Root cause analysis of software bugs using
machine learning techniques,” in 2017 7th International Conference on
Cloud Computing, Data Science & Engineering-Confluence. IEEE,
2017, pp. 105–111.

[6] J. Goikoetxea, “Shift2rail connecta: The next generation of the train
control and monitoring system.” Zenodo, Apr 2018.

[7] M. Cinque, R. Della Corte, and A. Pecchia, “Contextual filtering
and prioritization of computer application logs for security situational
awareness,” Future Generation Computer Systems, vol. 111, pp. 668–
680, 2020.

[8] M. Nauta, D. Bucur, and M. Stoelinga, “Lift: Learning fault trees from
observational data,” in QEST, 2018.

[9] A. Linard et al., “Fault trees from data: Efficient learning with an
evolutionary algorithm,” ArXiv, vol. abs/1909.06258, 2019.

[10] A. Linard, M. L. P. Bueno, D. Bucur, and M. Stoelinga, “Induction
of fault trees through bayesian networks,” Proceedings of the 29th
European Safety and Reliability Conference (ESREL), 2019.

[11] C. Di Martino, M. Cinque, and D. Cotroneo, “Assessing time coales-
cence techniques for the analysis of supercomputer logs,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1–12.

[12] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”
Annals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[13] J. P. Hansen and D. P. Siewiorek, “Models for time coalescence in event
logs,” Digest of Papers. FTCS-22: The Twenty-Second International
Symposium on Fault-Tolerant Computing, pp. 221–227, 1992.

[14] A. J. Oliner and J. Stearley, “What supercomputers say: A study of
five system logs,” 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), pp. 575–584, 2007.

[15] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. A. Jette, and R. K. Sa-
hoo, “Bluegene/l failure analysis and prediction models,” International
Conference on Dependable Systems and Networks, pp. 425–434, 2006.

[16] R. Xu and D. C. Wunsch, “Survey of clustering algorithms,” IEEE
Transactions on Neural Networks, vol. 16, pp. 645–678, 2005.

[17] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” 1967.

[18] P. H. A. Sneath, “The application of computers to taxonomy.” Journal
of general microbiology, vol. 17 1, pp. 201–26, 1957.

[19] T. Sørensen et al., “A method of establishing group of equal amplitude
in plant sociobiology based on similarity of species content and its
application to analyses of the vegetation on danish commons,” 1948.

[20] P. J. Nolan, M. G. Madden, and P. R. Muldoon, “Diagnosis using fault
trees induced from simulated incipient fault case data,” 1994.

[21] P. D. McNicholas, T. B. Murphy, and M. O’Regan, “Standardising the
lift of an association rule,” Comput. Stat. Data Anal., vol. 52, pp. 4712–
4721, 2008.

[22] K. Yamanishi and J.-i. Takeuchi, “Discovering outlier filtering rules from
unlabeled data: Combining a supervised learner with an unsupervised
learner,” in Proc. of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’01. New York,
NY, USA: Association for Computing Machinery, 2001, p. 389–394.

