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Abstract

Virtualization is gaining attraction in the industry as it promises a flexible way to integrate, manage, and re-use heterogeneous
software components with mixed-criticality levels, on a shared hardware platform, while obtaining isolation guarantees. This work
surveys the state-of-the-practice of real-time virtualization technologies by discussing common issues in the industry. In particular,
we analyze how different virtualization approaches and solutions can impact isolation guarantees and testing/certification activities,
and how they deal with dependability challenges. The aim is to highlight current industry trends and support industrial practitioners
to choose the most suitable solution according to their application domains.
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1. Introduction

In recent years, we are witnessing the increasing adoption of
virtualization technologies in industrial domains, such as rail-
ways, avionic, automotive, Industrial Internet of Things (IIoT),
but also in telco systems with the recent development of 5G.
[1, 2, 3, 4, 5, 6, 7]. In such industrial domains, it is quite com-
mon to deal with so-called mixed-criticality systems, which
integrate functionalities of different safety and/or time-critical
into a common platform to reduce the size, weight, power, and
cost of hardware. The integration of functionalities with differ-
ent safety and time requirements leads to numerous challenges,
especially when adopting virtualization technologies.

Even though virtualization easily supports mixed-criticality
compositions since it implicitly provides software support for
partitioning and running tasks on heterogeneous OS (real-time
and general-purpose) environments [8], it poses serious chal-
lenges, as described in the following.

The development of mixed-criticality systems in the indus-
try has to satisfy stringent requirements provided by safety-
critical standards, such as those for the avionics [9], automo-
tive [10], and railway [11]. These standards refer to temporal
and spatial isolation among software components, which are
the most critical properties that these systems have to verify.
Temporal isolation is about limiting the impact of resource con-
sumption (e.g., tasks running on a virtual machine) on the per-
formance of other software components (e.g., tasks running on
the other virtual machines). Spatial isolation includes the ca-
pability of isolating code and data between virtual machines
preventing tasks to alter private data belonging to other tasks,
including the allocated (memory-mapped) devices. Usually, the
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above-mentioned standards recommend providing documenta-
tion about evidence of a fail-safe and/or fail-stop behavior for
such systems, which ultimately prevent failures leading to hu-
man and cost losses.

To face these issues, many solutions and initiatives have
been developed over the years, both from industry and academia.
This resulted in a variety of, and often partial, solutions that
make very hard the decision from industry practitioners to choose
a proper virtualization platform, given the domain constraints.
The main factors that come into play during the process of
choosing the proper virtualization solution are the following:
hypervisor footprint, which is crucial especially for embedded
applications; the compliance with industry safety-related stan-
dards; the license of the solution (e.g., proprietary or open-
source); the explicit support to high availability; fault tolerance
and security; and the supported hardware platforms.

In the light of the above factors of virtualization for in-
dustrial needs, this work surveys the state-of-the-practice of
the most representative virtualization approaches adopted or
promising for industrial mixed-criticality systems. We group
solutions into four main categories:

• Solutions based on separation kernel and microkernel,
specifically designed for industrial and embedded domains;

• Solutions that try to enhance general-purpose hypervi-
sors (e.g., Xen and KVM) to support real-time properties,
to foster the adoption of mainstream cloud virtualization
solutions in the industry.

• Solutions that take advantage of the isolation support pro-
vided by Security CPU hardware extensions (e.g., ARM
TrustZone, Intel SGX), to achieve stricter isolation guar-
antees thanks to the latest hardware extensions;

• Solutions based on lightweight virtualization, such as con-

Preprint submitted to Future Generation Computer Systems 2021-12-14

ar
X

iv
:2

11
2.

06
87

5v
1 

 [
cs

.S
E

] 
 1

3 
D

ec
 2

02
1



tainers or unikernels, which try to achieve a compro-
mise between isolation and the small footprint required
in some industrial domains.

Although there exist other surveys in the current literature,
which cover the most common virtualization technologies in
embedded real-time domain [12, 13, 14, 15, 16, 17], we aim
at analyzing existing virtualization platforms and approaches in
a different light, considering the common issues that arise in
the industry. As already said, examples are isolation properties,
real-time performance, testing, and certification issues. The ul-
timate aim is to support industrial practitioners to choose the
most suitable virtualization solution, according to their specific
needs or domain.

The paper is structured as follows. Section 2 presents the
concept and terms about virtualization, the technical issues for
industry application, and discusses related surveys. Section 3
delineates industrial dimensions with respect to the virtualiza-
tion paradigm. Section 4 surveys and compares the state-of-the-
practice solutions among real-time hypervisors in the light of
industrial dimensions. A discussion according to the analyzed
solutions, by highlighting the current industrial and scientific
trends in virtualization, is provided in Section 5. Section 6 con-
cludes the paper.

2. Virtualization in Critical Systems

Virtualization is among the most promising architectural
approaches to implement mixed-criticality systems, i.e., to inte-
grate software components with different levels of criticality on
a shared hardware platform [14]. This objective can be achieved
using different approaches, such as hypervisors or OS-level vir-
tualization. A hypervisor (or Virtual Machine Monitor - VMM)
is a software layer that abstracts the hardware resources with
the aim to run different and isolated application environments,
called Virtual Machines (VMs) or guests, on the same physical
machine. A Virtual Machine is an execution environment typ-
ically containing an Operating System (OS), called guest OS,
and the application software.

� Taxonomy and applications. Virtualization approaches can
be classified along with several directions. A first distinction
is based on the presence of a host OS between the hypervisor
and the hardware. A type-1 hypervisor, often referred to as a
“bare metal” hypervisor, is run directly on the hardware, acting
as a classic OS and controlling directly the hardware resources.
A type-2 hypervisor is executed instead on top of an existing
“host” OS, which is used to manage hardware resources.

A second distinction is between full-virtualization or par-
avirtualization. A fully virtualized hypervisor abstracts com-
pletely the hardware resources (e.g., CPU, memory, etc.) to the
guests, emulating privileged instructions and I/O operations.
Examples are VMware ESXi [18], KVM [19], and Microsoft
Hyper-V [20]. This type of hypervisor has the advantage to
let guest OSes or applications run unmodified, as they were
running on the physical machine. With paravirtualization, the
guest is instead aware of the hypervisor. In this case, a guest OS

has to be modified to communicate directly with the underlying
hypervisor, through so-called hypercalls. Such an approach is
adopted, for instance, by the Xen hypervisor [21]. Similarly
to operating systems, hypervisors can be classified as embed-
ded, if targeted for a specific application, system, or mission,
otherwise they are general-purpose [22].

Comparing traditional, non–real-time hypervisors with real-
time hypervisors, the latter add explicit support (e.g., specific
scheduling algorithms) for the management of the time budged
allotted to VMs, in order to assure that individual VMs can
comply to stringent and explicit timing constraints. Real-time
hypervisors can be further classified as dynamic or static. Dy-
namic hypervisors map VM-related resources, like virtual CPUs
and virtual memory areas, at run-time as needed. On the con-
trary, static hypervisors can be seen as configuration layers that
partition hardware resources, with a one-to-one mapping be-
tween virtual CPUs and physical CPUs, and devices mapped
directly into the guest memory areas. Static solutions are of-
ten employed for embedded safety-critical or mixed-criticality
applications as they are more robust to failures due to miscon-
figurations and usually introduce less overhead due to virtual-
ization. Moreover, they are usually smaller in terms of lines of
code, and thus they are easier to test and certify according to
industrial standards.

Different types of guests can be run on top of a hypervi-
sor. Typically, either the guest VM contains a full-fledged OS,
or the application software directly without any need of a VM,
the latter being a more convenient choice in embedded environ-
ments. The OS can be either a full-fledged GPOS (General-
Purpose OS), such as Linux or Windows, or an RTOS (Real-
Time OS). This opens up to different combinations, depending
on applications’ requirements and constraints (see Figure 1):
RTOS and/or GPOS on top of a real-time hypervisor, and RTOS
and/or GPOS on top of a non-real-time hypervisor.

Concerning Figure 1, the focus of this survey is on solu-
tions for the upper-right quadrant, including mixed-criticality
systems, being them of major interest for industrial systems.

The lower-left quadrant includes traditional hypervisor ap-
plication domains, such as server consolidation in cloud en-
vironments. Using instead a GPOS on a real-time hypervisor
(lower-right quadrant) might be needed to isolate RTOSes run-
ning on the same platform, while providing non-critical ser-
vices in the GPOS, and it might be beneficial if the guest OS
has stringent QoS and performance requirements that can be
guaranteed with the time budged allocated by the real-time hy-
pervisor. Finally, using an RTOS on a non-real-time hypervisor
(upper-left quadrant) is not a common industrial practice, but it
might be useful for functional testing, debugging, and prototyp-
ing purposes.

A different option that is again gaining popularity lately is to
run guests within unikernels, which are a promising lightweight
solution for embedded domains. This model does not preclude
the selection of a hypervisor since it includes that an applica-
tion is linked directly with the OS, treated as a library contain-
ing basic functions such as memory management, scheduling,
networking stack, and basic I/O drivers. The guest binary will
thus embed both the application and the OS code, and can be
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Figure 1: Hypervisor and OS combinations with related applications

run directly on the physical hardware or on top of a hypervisor.
An alternative or complement to hypervisor-based virtual-

ization is OS-level virtualization. The goal is to obtain a virtual
domain, called container, with its own virtual CPU and virtual
memory as in the traditional processes of an operating system, a
virtual filesystem, a virtual network, process and user manage-
ment. These virtual resources are distinct for each container in
the system.

A container is not a virtual machine in the traditional sense,
since there is no emulation of the physical hardware. For this
reason, compared to full- and paravirtualization, this type of vir-
tualization is lighter. For this reason, containers are more and
more used in cloud environments to further improve applica-
tion consolidation on the same hardware, avoiding replicating
the OS stack. For the same reason, container-based virtualiza-
tion is gaining momentum also in real-time systems [17, 23],
especially when stringent scalability and size constraints must
be met, providing additional isolation level, while leveraging
container orchestration capabilities (e.g., Kubernetes [24]).

We remark that both container-and unikernel-based virtual-
ization do not include virtualization in the strict sense. How-
ever, both containers and unikernels are very spread concepts
in the context of virtualization systems literature, and are start-
ing to gain attention in industrial and real-time systems as well,
thus we discuss these kinds of approaches in this survey.

Figure 2 wraps up the different virtualization approaches
discussed above, which are only a partial view of the entire vir-
tualization spectrum.

� Isolation properties. As mentioned previously, virtualiza-
tion is one of the enablers for mixed-criticality systems, where
in general there is the need to create strongly isolated partitions
that run applications a different level of criticality.

In this respect, virtualization must ensure isolation between
virtual instances [25, 26, 27]. In simple terms, this means that
applications running on a virtual domain must have the illusion

Figure 2: Examples of virtualization approaches.

of being the only ones running on the physical machine. In
the context of virtualization, we mainly consider three isolation
properties.

Temporal isolation, or temporal segregation, is the abil-
ity to isolate or limit the impact of resource consumption (e.g.
CPU, network, disk) of a virtual domain on the performance
degradation of other virtual domains. This means that a crit-
ical task running on a virtual domain (for example a task on
a VM or inside a container) must not cause serious delays to
other critical and non-critical tasks running in a different vir-
tual domain, avoiding phenomena such as starvation, reduced
throughput and increased latency. Temporal isolation is cru-
cial in mixed-criticality systems, where tasks run in a criti-
cal domain must guarantee specific performance Service Level
Agreements (SLAs) and must not interfere with each other.
In the context of safety-critical applications, some standards
(e.g., IEC 61508-3 annex F [28], ISO 26262-6 annex-D [10],
ARINC-653 [29], DO 178 6.3.3f [9], CAST-32A [30]) suggest
adopting cyclic scheduling between virtual domains, to assure
static and predetermined time slots to each domain.

The other crucial property is spatial isolation (also known
as memory isolation or spatial segregation). This property de-
scribes the ability to isolate code and data between virtual do-
mains and between virtual domains and hosts. This means
that a task should not be able to alter private data belonging to
other tasks, including devices assigned to a specific task. Spa-
tial isolation is usually implemented using hardware memory
protection mechanisms, such as the Memory Management Unit
(MMU). Considering the case of shared physical devices, also
I/O isolation becomes important. Often, the IOMMU is used
to properly resolve the isolation of memory-mapped devices.
In some cases, access to hardware devices from the different
virtual domains is serialized.

Finally, fault isolation, or fault/error containment, prevents
that failures, occurring in a virtual domain, are propagated to
the hypervisor and/or to other virtual domains, causing block-
ages or even stopping the whole system.

� Related surveys. In years, several efforts on real-time vir-
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tualization were done, both from the commercial and academic
sides. These studies tried to reuse IT virtualization technolo-
gies, well tested in cloud computing, for real-time purposes
[12]. Gu and Zhao [13] survey virtualization technologies for
real-time embedded systems including those for safety-critical
applications, and discusses technical problems such as task-
grain scheduling and lock-holder preemption. Burns and Davis
[14] surveys the state of the art in the field of mixed-criticality
systems, with a focus on scheduling problems and solutions for
both single- and multiprocessor systems. Taccari et al. [15]
discuss embedded real-time virtualization solutions with a fo-
cus on ARM hardware-based virtualization support but limit the
analysis to open-source projects. Reghenzani et al. [16] present
a comprehensive survey on the real-time Linux kernel research
(i.e., PREEMPT RT). Struhàr et al. [17] present a technology
survey on real-time Linux container technologies, showing the
gaps that should be filled to be a viable solution for industrial
applications.

In this paper, we analyze the state of the practice of real-
time virtualization approaches in the light of industrial needs
that include safety/security certification and testing, reuse of
legacy systems, and dependability support. To the best of our
knowledge, this is often a neglected point of view on the exist-
ing solutions’ portfolio, which could aid industrial practitioners
to choose the most suitable virtualization approach according
to their domain requirements and constraints.

3. Virtualization Dimensions for Industry Needs

The main question we address in this paper is: what should
be the primary focus of industry when creating a new product
or migrating seamlessly legacy systems exploiting virtualiza-
tion technologies? In this section, we delineate three main di-
mensions that industry and researchers should focus on to prop-
erly adopt virtualization technology in mixed-criticality real-
time domains.

� Certification & Testing. The development of safety-critical
systems raises various challenges from the certification point
of view. In order to provide a specific safety integrity level
(SIL), almost all standards recommend cumbersome V&V ac-
tivities. Specifically, several studies in the literature [31, 32,
33, 34, 35, 36, 37] and various international safety-related stan-
dards [10, 38, 9, 39, 11] provide guidelines for testing activi-
ties, which encompass fault injection testing, robustness test-
ing, and performance testing, among other activities, such as
error impact analysis, coding standards, code review, etc. In
a virtualized scenario, such tasks have to be performed at the
different levels of the architecture, considering also the use of
Commercial-Off-The-Shelf (COTS) components. Concerning
cybersecurity, some standards require that the final system must
satisfy different security requirements in terms of the provided
partitioning level, the degree of resource isolation, complete
control over communication channels, and the development of
auditing mechanisms. This is the case of the Common Crite-
ria for Information Technology Security Evaluation (ISO/IEC
15408) standard [40], which added a profile named “Separation

Kernels in Environments Requiring High Robustness” Protec-
tion Profile (SKPP) [41, 42] (that currently was superseded by
the NIST document ”Security and Privacy Controls for Federal
Information Systems and Organizations” [43]).

Testing activities like functional and non-functional testing,
robustness testing, performance testing, as well as static and dy-
namic analysis, run-time verification, fault injection, fuzzing,
etc., are fundamental during the development of safety-critical
systems. Often, these activities are strictly linked to the certi-
fication process, but they are usually performed regardless of
the objective of making software certifiable. In particular, in
real-time virtualization solutions, great relevance assumes the
measure of the overhead introduced by the hypervisor, and how
it impacts task execution. For example, the worst-case exe-
cution time analysis (WCET) could be invalidated due to the
newly added software layers, with the consequent need to re-
peat the analysis. Furthermore, low-level synchronization prim-
itives like spinlocks, and mutexes, could be redefined to prevent
problems like priority inversion [44] and lock holder preemp-
tion [45] problems. These changes might require the original
test suite to be reviewed.

In summary, migrating towards a virtualized environment
requires redesigning the approaches used traditionally in the in-
dustry. The use of certified hypervisors or the availability of
test suites may help to reduce the related burden.

�Reuse of legacy systems. Legacy systems migration to a vir-
tualization paradigm brings several benefits, such as, avoiding
“divorce” of application and legacy OS, allowing the transpar-
ent execution of single-core software stacks on multicore hosts,
and emulating discontinued hardware. However, the migration
requires addressing a twofold issue. First, the pre-existent ker-
nel (GPOS or RTOS) needs to be ported to be properly run on
the specific hypervisor. Second, the chosen hypervisor has to
support (or needs to be adapted to) the target (or emulated)
hardware platform. These porting issues strictly depend on the
type of chosen hypervisor. Indeed, in the case of full-virtualization
with complete device emulation, software emulation is needed
for each device within the target board; otherwise, the guest OS
could not have all the functionalities properly set up. The good
point, in this case, is that the pre-existent kernel does not need
to be modified. Paravirtualized solutions are even more affected
by this issue since guest OS kernels must be modified according
to the interfaces provided with hypercalls to handle privileged
instructions and virtualize I/O devices. Porting issues is also a
problem if we consider the unikernel model. Indeed, unikernel
image embeds the application and its dependencies. From one
side, this reduces traditional compatibility issues between in-
VM components, but potentially introduces new issues between
unikernel VMs and the target hypervisor and their execution en-
vironment (i.e. computing resources, storage and networking
prerequisites). Anyway, several hypervisors can be supported
if the unikernel images are configured accordingly.

�Dependability support. Virtualization solutions used in cloud
computing environments are usually exploited to provide de-
pendable services, such as tenant isolation, high-availability,
fault-tolerance, migration and recovery techniques, and, in the
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worst-case (with severe faulty conditions), graceful degrada-
tion of the provided service. Naturally, these features are de-
sirable also for safety-critical real-time systems. Thus, the cho-
sen virtualization solution should support, for instance, easy-
to-use fault-tolerance tools and redundancy schemes like Triple
Modular Redundancy (TMR) or 2-out-of-2, which are classical
schemas used in industry to improve fault-tolerance. Concern-
ing security, the hypervisor (and guest OSes) are likely to be
the subject of attacks exploiting their vulnerabilities. In gen-
eral, the addition of new layers may increase the attack surface.
This, in turn, can severely harm the safety of the system. Spe-
cial care must be taken to mitigate attacks, by accompanying
the virtualization solution with mechanisms to keep communi-
cation channels secure, to cryptographically sign the running
code, and provide auditing services.

4. Virtualization Approaches and Solutions

In this section, we survey representative examples of vir-
tualization solutions, and related approaches, in light of cur-
rent industry trends and dimensions, mentioned above. This
overview is not intended to provide an exhaustive list of current
solutions adopted in the industry. Instead, it guides the reader
through examples of impactful solutions, in terms of approach
and disruption potential, provided not only by software man-
ufacturers through commercial products, but also by research
initiatives and experiments with open sources. Our goal is to
highlight the details of each solution to shed light on what is
important to know to choose the right approach for given inno-
vation needs.

The examples have been selected among four categories,
which resemble four trends in the current or prospective adop-
tion of virtualization in industry domains:

1. Solutions specifically designed for industrial and embed-
ded domains, that happen to be based on separation ker-
nel and microkernel approaches;

2. Solutions that try to exploit the best of existing general-
purpose hypervisors, adapting them to industry needs;

3. Solutions that take advantage of latest isolation features
at the hardware level (e.g., ARM TrustZone), to achieve
the strict isolation guarantees needed by industry stan-
dards;

4. Solutions that try to reduce the footprint and save flex-
ibility, with respect to classical virtualization methods,
employing lightweight virtualization like containers or
unikernels.

4.1. Separation Kernels and Microkernels

Several solutions have been developed that try to keep down
the complexity of the hypervisor while having a strong level
of isolation by using virtualization concepts. Developers pro-
vide also ad-hoc solutions that apply hybrid virtualization ap-
proaches. Such solutions fit well for the embedded domain
from dependability, certification, and testing point of view, as
well as, they support several board platforms in order to provide

host-level virtualization capabilities by running several guest
OSes. The aim of reduced complexity is usually achieved through
the adoption of separation kernel or microkernel approaches.

A separation kernel is a special type of very small bare-
metal hypervisor that utilizes hardware virtualization features
to (i) define fixed virtual machines and (ii) control information
flows. Separation kernels contain no device drivers, no user
model, no shell access, and no dynamic memory; these tasks
are all pushed up into guest software running in the VMs. This
simple architecture results in a minimal implementation that,
while less convenient for desktop or server use, is an excellent
fit for embedded real-time and safety-critical systems. Separa-
tion kernels were the first technologies used in years for imple-
menting so-called partitioned systems, and various effort was
made especially in the avionic domain to support the safety of
flight in Integrated Modular Avionics (IMA) according to the
ARINC653 standard [29]. Furthermore, the Multiple Indepen-
dent Levels of Security (MILS) [46] provided a high-assurance
security architecture intended to allow mixed security applica-
tions to be hosted on common hardware. Recent hypervisors
bring together separation kernel and virtualization concepts to
isolate virtual machines (also named partitions) at different crit-
icality levels on the same hardware platform.

A microkernel is a minimal kernel that implements only a
few abstractions and operations that need to be executed in su-
pervisor mode (e.g., memory management, process/thread man-
agement, IPC) while handling in user-mode the other kernel
functionalities (device drivers, filesystem, networking, paging,
etc.). In the last years, several microkernels have been devel-
oped for heterogeneous domains, and recently they have been
used as hypervisors in order to provide simple partitioning func-
tionalities with increasing reliability and security, using no 3rd-
party code and running drivers within guests.

Representative examples of both models are presented in
the following.

� VxWorks MILS. VxWorks MILS [47] is a commercial
separation kernel provided by WindRiver. The Wind River Vx-
Works MILS complies with security requirements derived from
the SKPP [41, 42], and after the SKPP was sunset, it conforms
to a subset of SKPP assurance requirements that apply directly
to the product that is provided by Wind River to its customers.
VxWorks MILS supports information flow control, resource
isolation, trusted initialization, trusted delivery, trusted recov-
ery, and audit capabilities. The information flow policies are set
by the customer-defined configuration vector, which includes
virtual boards and images, communication channels between
virtual boards (direction, mode, etc.), schedules for the virtual
boards, authorized system calls for every virtual board, etc. The
MILS establishes two primary security domains – MILS kernel
(supervisor) space and virtual board (user) space. The MILS
enforces a Least Privilege Abstraction Partitioned Information
Flow Policy (PIFP) to ensure security domains access only the
resources that are required for their assigned functionality. Al-
lowed information flows between specific virtual boards and
resources are specified by the configuration vector and these
flows are static. The MILS assumes protection from interfer-
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ence and tampering. Indeed, the MILS bootloader (MILS Pay-
load BootLoader) is the root of trust of the entire system, and if
the validation is successful the MILS kernel (MK) initialization
is called; after initialization, the scheduler removes the MK init
code and the related part in the configuration vector and sched-
ules the first VB for execution. At run-time, the VxWorks MILS
reference monitor and self-test subsystem verify that the MILS
remains in a secure state. If a failure causing the state to be-
come insecure is detected, the MK recovery is invoked to take
action as specified by the configuration vector, which can re-
sult in rebooting or halting the system. In [48], Cotroneo et al.
targeted VxWorks MILS to perform an experimental analysis
to establish potential timing covert channels in order to assess
the robustness of configurations provided by system designers.
In [49], Aroca et al. assess VxWorks MILS realtimeliness by
overloading the MILS kernel with ∼ 400 tasks alongside a ping
flood was executed against a testbed that uses a signal generator
and analyzes the signal response with an oscilloscope. The re-
sults show that the testbed could reliably handle and measure a
260KHz input frequency, with the worst response time of 3, 85
µs.

� PikeOS. PikeOS [50] is a commercial hypervisor from
SYSGO, used in the avionic domain. PikeOS architecture is
based on the L4 microkernel and can run on Intel x86, ARM,
PowerPC, SPARC v8/LEON, or MIPS processors. PikeOS sup-
ports multi-core platforms natively. That solution adopts three
different kinds of scheduling algorithms, that is, priority-based,
time-driven, and proportional share. For each real-time VM
(critical VM), PikeOS statically assigns a time-slice; whenever
a critical VM does not have any task to be executed, it do-
nates CPU time to non-critical VMs. PikeOS architecture is
ARINC653-compliant, in the sense that the PikeOS microker-
nel is the only privileged software and it is in full control of
the virtual partitions. PikeOS supports several guest OSes like
Android, RT-POSIX, ARINC653-based, Java, RTEMS. PikeOS
has been the target and the basis of several academic and indus-
trial evaluations. For example, August [51] analyzes the effect
of a cache-timing side channel attacks on AES [52] focusing on
a virtualization scenario based on PikeOS, as an example of a
real-time system dedicated to security. It will furthermore eval-
uate methods to counteract that threat by using the system’s
scheduler. Regarding certification and formal verification, in
[53] the authors formalized the hardware-independent security-
relevant part of PikeOS in order to prove intransitive noninter-
ference properties [54]; moreover, in [55] the authors presented
first results in the verification of the PikeOS microkernel system
calls. In [56], Muttillo et al. leverage Dhrystone benchmark to
compare Xtratum and PikeOS by varying the compilation op-
timization flags (e.g., O0, O1, etc.). We suggest the reader to
refer [56] for the extensive results provided by the study.

� Xtratum. Xtratum [57] is a para-virtualized type-1 par-
titioning hypervisor very popular for avionic embedded safety-
critical systems and consists in ∼ 9K LOC. Xtratum is based
on the APEX model, defined within the ARINC 653 standard
[29]. Furthermore, Xtratum supports several CPUs like Intel

x86 family, SPARCv8 family, ARMv7, and ultimately RISC-V
that is under development. Xtratum provides temporal isolation
between virtual partitions by leveraging a fixed cyclic sched-
uler. Spatial separation is provided by forcing partitions to ex-
ecute in user-mode without any memory shared area. Xtratum
data structures are all pre-defined at build time through a con-
figuration file, in order to know exactly what resources the hy-
pervisor will use. Xtratum defines a minimum set of hypercalls
each of which has a known execution time. Finally, Xtratum en-
ables interrupts only for partitions currently running, in order to
minimize temporal interferences. Regarding the software certi-
fication, Xtratum hypervisor was used as a fundamental com-
ponent for developing ARINC653-compliant RTOS [58, 59]
and for porting an OSEK-VDX-based RTOS to run on top of
Xtratum [60]. Furthermore, the research community leverage
Xtratum as a basis for fault-tolerant platforms in the context of
embedded systems for space applications [61]. A preliminary
analysis on the realtimeliness of Xtratum is conducted in [62],
however is not very indicative. Despite, Carrascosa et al. [63]
provide experimentation for native versus partitioned applica-
tions with the aim of evaluating the performance loss due to the
presence of Xtratum hypervisor. The authors compare the exe-
cution time of Dhrystone and CoreMark benchmarks on bare-
metal and a partition under the Xtratum cyclic scheduling. The
results show an execution time of ∼ 1-10 seconds, with 0.008%
and 1.087% a performance loss for Dhrystone and CoreMark
respectively. Further, the authors evaluated the partition con-
text switch (PCS) impact, and it is estimated to be in the range
of 149 to 151 µs.

� Jailhouse. Jailhouse [64] is a Linux-based partitioning
hypervisor developed within a research project by Siemens pub-
licly available in 2013. In particular, Jailhouse enables asym-
metric multiprocessing (AMP) cooperating with the Linux ker-
nel in order to run bare-metal applications or guest OSes prop-
erly configured. Given the Jailhouse objective more related to
isolation than virtualization, the hypervisor splits physical re-
sources (CPUs, memory, I/O ports, PCI devices, etc.) into
strongly isolated compartments called cells. Each cell is ex-
clusively assigned to one guest OS and its applications called
inmates. Jailhouse includes a cell, called root cell, that runs
the Linux kernel and will execute the Jailhouse hypervisor it-
self and the other cells. Despite the main objective being par-
titioning resources, Jailhouse allows inter-cell communication
through the ivshmem device model [65] from the QEMU project
[66], which is based on an abstraction of PCI devices.

Jailhouse consists of a few lines of code (around 30K C
and 1K Assembly lines of code), thus it should be ease both the
process of certification and the application of formal methods
for verification. Further, Jailhouse is released applying contin-
uous integration and static code analysis tools. Jailhouse sup-
ports various OSes besides Linux, like L4 Fiasco.OC on In-
tel x86 and FreeRTOS on ARM, Erika Enterprise RTOS v3 on
ARM64, and several ARM-based boards (e.g., NVIDIA Jetson
TK1, Xilinx ZCU102, etc.). About fault-tolerance, Jailhouse
provides a simple mechanism that allows restarting non-root
cells as soon as they enter deadlock states detected using time-
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outs. Recently, Jailhouse was chosen as the building block for
proposing a new family of safety-critical computing platforms
designed to be compliant with IEC 61508 standard [67].

In [27], Jailhouse is the target of real-time assessment. The
authors define an isolation coefficient, which represents the re-
sulting slow-down due to the execution of tasks in the presence
of other running tasks. For CPU isolation tests, an isolation
coefficient of 0.40 and 0.0086 are provided respectively by the
Linux and Jailhouse. The authors perform also L2-cache con-
tention tests with basically no difference in execution time nor
cache misses. Finally, the authors provide memory bus isola-
tion tests, and the results show that Jailhouse does not provide
any mechanism of bus isolation despite it does not introduce
any overhead penalties.

� L4-based. NOVA [68] is a type-1 hypervisor written
in C++, developed to enhance security more than safety. The
NOVA design is very similar to the L4 microkernel, but in con-
trast, it provides a full-virtualization solution. NOVA splits the
hypervisor in a full-privileged critical component named micro-
VMM, while the rest of the components are not privileged. The
micro-VMM includes only the scheduler (in that case NOVA
uses a preemptive priority-driven round-robin scheduler with
one runqueue per CPU), MMU, a limited set of hypercalls,
and implements the communication mechanisms between it-
self and other non-privileged components. In total, the size
of the NOVA hypervisor settles down in 36KLOC including
the microhypervisor (9 KLOC), a thin user-level environment
(7 KLOC), and the VMM (20 KLOC). In general, the NOVA
authors discuss deeply how the design principles can prevent
several virtualization attacks like VMM attacks, guest attacks,
and so on. They analyzed the performance overhead intro-
duced in NOVA and demonstrate that it can be lower than 1%
for memory-bound workloads. Further, they evaluate NOVA
against IPC and virtual TLB miss microbenchmarks, accord-
ing to different CPU architectures, obtaining latencies in the
order of 100ns. Finally, they compared memory virtualization
using hardware-based nested paging to a shadow page tables
approach and observed that nested paging reduces the virtual-
ization overhead from more than 20% to 1–3%. NOVA supports
many ARMv8-based boards (e.g., NXP i.MX 8MQuad, Rene-
sas R-Car M3, Raspberry Pi 4 Model B, Avnet Xilinx Ultra96,
as well as QEMU virtual platform) and x86/x68 64 CPU fami-
lies. NOVA was also analyzed by Tews et al. in the context of
the European project named Robin [69] for formal verification
purposes. The objective is to develop a semantic compiler in or-
der to provide denotational semantics for C++ which includes
all the C++ primitive data types of NOVA hypervisor.

The seL4 [70, 71] is a formal-verified microkernel designed
to be used in security- and safety-critical systems. In particular,
sel4 is functionally correct against a formal model enforcing
both integrity and confidentiality; timing channels proofs are
still under assessment [72]. seL4 uses a priority-based schedul-
ing policy and implements scheduling-context capabilities for
assigning CPU time in the context of mixed-criticality systems
[73]. In particular, a component can only obtain CPU time if
it holds the scheduling-context capability, which specifies also

the amount of CPU time that can be used. A scheduling context
consists of a time budget (i.e., a time slice) and a time period
that determines how often the budget can be used. A thread
will not get more time than one budget per period. Further,
sel4 leverages both ARM and x86 virtualization extensions to
provide interfaces to support running virtual domains, which
are implemented in user space. These interfaces compose the
VMM, which initializes memory and provides exception han-
dlers for emulated device drivers. The VMM was recently re-
designed from a simply sel4 application to a set of CAmkES
(Component Architecture for Micro-Kernel-based Embedded
Systems) components [74]. sel4 is provided with a WCET anal-
ysis that results in determinist upper bounds for system calls
and interrupt latencies [75, 76]. In particular, Blackham et al.
[75] provided an evaluation of seL4 and obtained that sel4 pro-
vides a guaranteed interrupt response time of around 500 µs on
a BeagleBoard-xM platform with an ARM Cortex-A8 core. In
open systems (arbitrary code can execute on the system), the
interrupt response time is about 2 ms. Finally, different efforts
are made to enhance sel4 with fault-tolerance capabilities. In
particular, researchers proposed a mechanism to provide both
task backup and recovery, as well as two checkpoint-based op-
timization strategies [77, 78].

Separation Kernel

Separation kernels are designed to provide high levels
of isolation coupled with dependability support. However,
these solutions are not meant to be deployed on cloud plat-
forms.

The development of separation kernels is often strictly
related to the certification process. About testing, some
studies provide an evaluation of the overhead due to virtu-
alization, assessment of the isolation and recovery mecha-
nisms.

Microkernel

Microkernels used as hypervisors are mainly designed to
reduce at the maximum the trusted computing base com-
pared to classical full virtualization solutions, providing
high security.

Since microkernels are lightweight solutions, they are
well suited for formal verification and testing activities,
which makes easy the certification process.

Microkernels (like sel4) provides real-time capability
with memory protection, for security, as well as part of
its support for mixed-criticality systems.

4.2. General-purpose Hypervisors
In the last decades, Xen and KVM hypervisors were among

the most used solutions in server virtualization. Xen is a type-1
hypervisor that provides paravirtualization technologies. It was
the first attempt to overcome the performance penalty due to
the dynamic binary translation [21]. On the other side, KVM
is one of the most used hardware-assisted virtualization solu-
tions, which exploits hardware extensions provided by modern
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CPUs. For example, the Intel VT-x enables the CPU to execute
in two modes, i.e., the non-root mode used to run guest OSes
code, and the root mode used to run the hypervisor. As soon as
a VM attempts to execute privileged instructions (prohibited in
non-root mode), CPU switches to root mode in a trap-like way
to properly handle the instruction [79]. KVM is by definition a
type-2 hypervisor since it requires the Linux kernel, but in prac-
tice, it acts as a type-1 hypervisor since it takes full control of
the underlying hardware. It uses QEMU to provide I/O device
emulation.

Despite both Xen and KVM are general-purpose hypervi-
sors, they are currently used as tailored and working solutions
for embedded systems and real-time clouds, if properly tuned
[80, 81, 82, 83, 84], as described in the following.

� Xen. In Xen, the main approach has been to optimize
the scheduling algorithms of the virtual CPUs and to improve
the interrupt handling [85, 86, 87, 88, 89]. By default, Xen
adopts the Credit scheduler, which is a (weighted) proportional
fair share virtual CPU scheduler. The user could tune the CPU
share for each domain. Furthermore, the scheduler load bal-
ances the workload among vCPUs. RT-Xen [85, 86] is one of
the most important examples of using Xen for real-time pur-
poses by providing a hierarchical real-time scheduling frame-
work for Xen. In [85], the authors provided an empirical study
on fixed-priority hierarchical scheduling in Xen, focusing on
four real-time schedulers: Deferrable Server, Periodic Server,
Polling Server, and Sporadic Server. They demonstrate that
Deferrable Server is more suitable for soft real-time applica-
tions, while Periodic Server is the worst under the overloaded
scenario. RT-Xen is at 2.2 version (last update in 2015), sup-
porting both RM and EDF scheduling policy. The develop-
ers re-implemented the RM scheduling policy inside the RTDS
scheduler in Xen 4.6 (RTDS is still an in-development feature).
This effort is to improve the efficiency of the implementation of
the RM scheduling policy and synchronize RT-Xen with the lat-
est Xen version. Further, developers implemented also the null
scheduler, which makes Xen a partitioning hypervisor, by stat-
ically assigning a single vCPU to a specific pCPU, removing
any scheduling decision. Recently, Xen was used as a building
block for Xilinx embedded systems [90]. Xilinx chooses Xen
due to several motivations: (i) it is a robust and reliable solution;
(ii) recent developments of Xen takes full advantage of ARMv8
and his virtualization extension (around 30KLOC for specific
hardware configuration), as well as all the support for the ARM
System Memory Management Unit (SMMU); (iii) it is provided
with a free-of-use license and has an active user and developer
community. In years, Xen developed the Xen Test Framework
(XTF) [91], a framework for both creating microkernel-based
tests and a suite of tests built using the framework itself: pre-
built tests include assessment of specific security vulnerabil-
ity, sanity checks, and functional tests. Further, Xen developed
also CI platform called OSSTest [92], to run automatically test
cases and leverage CI tools. Finally, Xen brings various efforts
for safety certification aspects, such as the DornerWorks Xen-
based hypervisor named ARLX, which is ARINC653 compli-
ant [93]. Recently, the Xen FuSa Special Interest Group (FuSa

SIG), which includes the Xen Project community together with
industry vendors and safety assessors, provided objectives and
high-level agreements to build and certify safety-critical sys-
tems (mainly in the automotive domain) based on mainline Xen
hypervisor codebase [94]. In [81], Abeni et al. run the cyclictest
as stress load in scenarios with non–real-time and real-time ker-
nels used at guest and Dom0 level. In particular, they used
the default Xen scheduler and assign dedicated pCPUs to the
DomUs. The results show that using Xen’s HVM virtualiza-
tion mechanism can result in very high latencies in presence of
some load in Dom0 (in the order of seconds), leading to unus-
ability of Xen in the real-time domain. However, this issue can
be avoided by using PV or PVH modes. Indeed, Xen allows
reaching latencies in the order of 100 and 200 µs for PV and
PVH modes respectively.

� KVM. KVM-based solutions are mainly based on patch-
ing the host Linux kernel or improving KVM itself in order
to comply with real-time constraints. The PREEMPT RT [95]
is a set of patches of the Linux kernel, which provide real-
time guarantees (e.g., predictability, low latencies) still using
a single-kernel approach, against co-kernel model [16]. The
main idea behind the co-kernel approach is to have another OS
working as a layer between the hardware and the GPOS kernel,
which intercepts interrupts and route them to real-time tasks
or to GPOS tasks. Then, the scheduler must guarantee that
real-time tasks do not miss deadlines. Instead, the PREEMPT RT
patch provides several mechanisms like high-resolution timers,
threaded interrupt handlers, priority inheritance implementa-
tion, Preemptible Read-Copy-Update (RCU), real-time sched-
ulers, and a memory allocator.

Kiszka et al. [96] developed a para-virtualized scheduler
at the task level, which allows the scheduler to cooperate with
KVM via two new hypercalls, in order to manage threads at
different priorities. They use KVM as a real-time hypervisor
by assigning higher priorities to real-time threads within a VM,
while lower priorities to threads running at the host layer. Cu-
cinotta et al. [97] developed a scheduling algorithm by extend-
ing the Linux cgroups interface [98]. The authors proposed a
variant of the CBS (Constant Bandwidth Server)/EDF sched-
uler to be used for inter-VM scheduling (at hypervisor level),
and a fixed-priority scheduler within each VMs. In [99], the
same authors focused on I/O issues. The idea was to group
in the same reservation both VM threads and KVM threads
and kernel threads needed for I/O virtualization (e.g., network
or disk). Zhang et al. [100] applied various real-time tuning
to Linux host by using the PREEMPT RT patch. They focused
on a dual-guest scenario, in which they consolidated an RTOS
and GPOS on the single KVM instance. Recently, KVM was
supported in automotive industrial scenarios by the Automo-
tive Grade Linux (AGL), which is a collaborative open-source
project to accelerate the development of the connected car [84].
Regardless of all the solutions based upon PREEMPT RT, cur-
rently, this patch is accompanied by several test cases provided
by the Linux Test Project (LTP) [101], and benchmarks about,
among others, worst-case latency scenarios, latency debugging
with tracing, approximating application performance, schedul-
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ing attributes tests, and tests against classic three-way priority
inversion deadlock. In [81], the authors analyzes the ability of
KVM to serve real-time workloads. The results show that KVM
causes worst-case latencies smaller than 100 µs. In general, the
authors suggest using real-time kernels both at guest and host
level.

General-purpose Hypervisors

Could be adapted for real-time purposes through patches
and re-design of specific critical components like CPU em-
ulation.

They are a good choice when there are requirements re-
lated to cloud computing, like VM migration, orchestra-
tion, and high-availability mechanisms.

KVM- and Xen-based hypervisor solutions should be
carefully tuned to prevent higher latencies introduced by
the scheduling approach and emulation (CPU and I/O)
mechanisms.

Explicit support for testing is available, and certification
aspects have been started to be a primary focus, especially
in Xen.

4.3. ARM TrustZone-assisted Virtualization

In order to increase the isolation of virtual domains, the re-
search community explored the possibility of leveraging hardware-
assisted solutions for security purposes in the safety-critical do-
main. ARM with TrustZone [102] and Intel with SGX [103]
provide the most used architectures. Normally, these solutions
enable a so-called Trusted Execution Environment (TEE) and
provide confidentiality and integrity.

In literature, there were very few studies that leverage Intel
SGX extensions to design real-time mixed-criticality systems.
One study that is worth mentioning is provided with a position-
ing paper by De Simone et al. [104], which explored the possi-
bility of using the SGX to enforce the isolation among critical
tasks running on top of unikernel-based hypervisor [105, 106].
The most explored approach has been to use the security fea-
tures of ARM TrustZone. This technology supports two vir-
tual execution states (i.e. “secure” and “non-secure”) and pro-
vides time and spatial isolation between the two environments
[107, 108, 109, 110, 111]. In particular, for virtualization pur-
poses, the non-secure world and the secure world are used for
running different VMs that are managed by the hypervisor soft-
ware that runs in the monitor mode. Mostly, researchers used
ARM TrustZone with a dual-guest OS configuration for run-
ning side by side a general-purpose OS (GPOS) within the non-
secure world and a real-time OS (RTOS) in the secure-world
having higher privileges. This way, critical tasks running on
top of the RTOS are isolated from non-critical tasks.

� LTZvisor/RTZvisor. One of the most representative
TrustZone-assisted virtualization solutions is LTZvisor that is
designed mainly for mixed-criticality systems [109]. LTZVi-
sor implements the dual-guest OS scenario, in which the RTOS
and GPOS share the same physical processor, but the GPOS is
scheduled only when RTOS is idle. An improved version of

LTZVisor [112] supports asymmetric multi-processing execu-
tion, in which the RTOS and hypervisor execute in one core
within the secure world, while another core runs the GPOS
within a non-secure world. In that case, the authors avoid star-
vation of GPOS tasks. The first version of LTZVisor consists of
less than 3KB of memory footprint and introduces a GPOS per-
formance degradation of around 2% for a 1-millisecond guest-
switching rate. In [109], the authors evaluate several latency-
sensite operations. In particular, i) partition-switch operations
take ∼ 20 µs, assuming no real-time tasks ready to run once the
RTOS is rescheduled; ii) the process of checking that no real-
time tasks are ready to run and then trigger the switch to the
non-secure world takes ∼ 12 µs; iii) switching from the RTOS
to the GPOS takes ∼ 3 µs; iv) the hypervisor guarantees ∼ 2
µs of interrupt latency in the case of serving FIQs (Fast Inter-
rupts, which are serviced first when multiple interrupts occur)
while GPOS is running, and a total of ∼ 5 µs to restore RTOS
execution.

The same authors proposed RTZVisor [113] and his suc-
cessor µRTZVisor [114] as a solution for multi-guest OS sce-
nario. In that case, the hypervisor software still runs in the
monitor mode, while each of the guest OSes can run switch-
ing between the non-secure and secure worlds. Specifically, the
active guest OS runs in the normal world, while the context of
inactive guests is preserved in the secure world. µRTZVisor
supports both coarse-grained partitions that run guest OSes on
the non-secure world, and user-level finer-grained partitions on
the secure side that are used for executing secure tasks imple-
menting kernel extensions. The adopted scheduler is based on
time domains, which are execution windows with a constant
and guaranteed bandwidth. At each time domain is assigned
an execution budget and each domain is scheduled according
to round-robin policy. Further, the scheduler allows assigning
partitions to the domain-0 time window, in which partitions are
scheduled in a priority-based, time-sliced manner. The domain-
0 can preempt partitions running in different domains. In [114],
Martins et al. evaluate time switching between guest partitions
and secure tasks or between secure tasks; the results show that
the switching process takes about 19.4 and 10.4 µs, respectively.
µRTZVisor provides in the worst case about 180 µs of interrupt
latencies. Finally, about IPC the authors evaluate both asyn-
chronous and synchronous communication. In particular, they
analyzed the time the running partition needs to perform the
Send, Receive and SendReceive hypercalls from a guest parti-
tion. Considering a 64-byte message size, the hypercall execu-
tion time is in the order of 5 µs for each operation.

� VOSYSMonitor. VOSYSmonitor [115, 116] is a low-
level closed-source software layer that executes in the monitor
mode of the ARM TrustZone architecture. It was conceived for
the automotive industry and it is compliant with the ASIL-C
requirements of the ISO 26262 standard [10]. VOSYSmonitor
enforces the RTOS, or safety-critical OS, to run on the secure
world, while multiple non-critical guests can run on the nor-
mal world, managed by a non-real-time hypervisor (e.g., Xen or
KVM). Non-critical guests can run only when the critical OS re-
leases the permission to run on the assigned core in the normal
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mode. Context switches are efficiently managed, through in-
terrupt handling, in the monitor mode. To achieve the required
level of certification, VOSYSmonitor implements several safety
features. Among them, we mention mechanisms for safe core
synchronization, runtime self-tests (e.g., to check memory and
I/O isolation properties, code integrity and performance moni-
toring), and the introduction of a safe state which is used to pre-
serve the proper execution of the critical OS in the secure world
in case a fault is detected by the runtime self-tests. Among
possible measures, the safe state includes the switching off of
appliances in the normal world and the migration of the secure
world from a core to another. In [116], the authors evaluate
VOSYSMonitor against the ARM Juno R1 and the Renesas R-
CarH3 platforms, by analyzing the context switch latency using
the ARMv8 Performance Monitoring Unit (PMU). The results
for the Juno board shows that VOSYSmonitor is ∼ 100% and
∼ 200% faster than ARM Trusted Firmware (ATF) [117] re-
spectively in VOSYSmonitor running on Cortex-A57 with in-
terrupt handler and almost in VOSYSmonitor running on an A-
53 core without interrupt handler, with overall latencies in the
order of 0.5-1 µs. Considering also the context switch includ-
ing the FIQs, VOSYSMonitor settles around 200ns for interrupt
latencies.

ARM TrustZone-assisted Virtualization

ARM TrustZone enables virtualization thanks to dual
world execution model.

TrustZone-based solutions are strictly linked to the spe-
cific ARM CPU architecture, thus they are not suitable for
supporting other platforms (e.g., PowerPC, Intel).

These solutions are provided with well-defined test suites
and performance analyses, as well as approaches for fail-
ure recovery.

4.4. Lightweight Virtualization
In some cases, the stringent footprint requirements of em-

bedded mixed-criticality systems call for a lightweight virtual-
ization approach. For this reason, lightweight solutions based
on OS-level virtualization with containers and unikernels are
starting to be explored in industrial domains.

Adopting OS-level or container-based virtualization in real-
time domain is a recent trend. The goal is to leverage contain-
ers in lieu of VMs to achieve isolation with small footprint in
mixed-criticality systems [118]. In many cases, it is indeed not
necessary to replicate an entire OS within a VM, especially if
specific OS functionalities are not needed. The key idea is to
enhance the abstractions of OS processes (called containers),
by extending the (host) OS kernel. For example, Linux lever-
ages the namespace process isolation mechanisms [119] and
cgroups that provides resource management capabilities [98].
A container will have its virtual CPU and virtual memory (like
in traditional OS processes), but also virtual filesystem (i.e., the
container perceives a filesystem structure that is different than
the host’s), virtual network (i.e., the container sees a different
set of networking interfaces), IPC, PIDs, and users manage-
ment. These virtual resources are distinct for each container

in the system. The approach is gaining popularity also in the
context of consolidated real-time platforms, such as VxWorks
by WindRiver, now featuring a container engine compliant with
OCI (Open Container Initiative - opencontainers.org).

In the literature, Linux-based real-time container solutions
mainly adopt two approaches: (i) the use of co-kernels, and (ii)
the modification of the Linux scheduler.

� RT-CASE. RT-CASE [120] is built using the co-kernel
approach. Indeed, the real-time tasks run within real-time con-
tainers (named rt-case) and will be scheduled by the co-kernel.
That approach exploits co-kernels that are known to provide
better real-time performance and functionalities, while keeping
all the mechanisms and tools provided by a container engine.
Each rt-case is assigned with a criticality level, and tasks with a
lower criticality level must not interfere with tasks with a higher
criticality level. RT-CASE architecture includes container man-
agement tools and libraries, and a feasibility checker that is re-
sponsible for admitting a new container on a compute node ac-
cording to already running real-time containers. At the kernel
level, RT-CASE leverages the dual-kernel approach, by using a
co-kernel like RTAI or Xenomai. The co-kernel makes the host
kernel fully preemptable, thus both general-purpose containers
and host tasks will be preemptable by real-time tasks and con-
tainers. The rt-lib is a key component in RT-CASE, and it pro-
vides the mapping between real-time tasks on real-time CPUs
according to the container criticality level. Furthermore, rt-lib
provides standard primitives to run non-modified tasks within
real-time containers. Finally, RT-CASE is designed to migrate
on-demand real-time containers on nodes within a large-scale
cloud platform.

� Hierarchical scheduling of containers. Abeni et al.
[121] proposed the use of real-time containers by modifying
the Linux scheduling mechanism to provide two levels of hier-
archical scheduling. First level Earliest Deadline First sched-
uler selects the container to be scheduled on each CPU. Sub-
sequently, the second level Fixed Priority scheduler selects a
task in the container. CPU reservation (run-time quota and pe-
riod) is assigned to each of the containers. In [121], Abeni et al.
provide a Real-Time Schedulability Analysis proving that using
the proposed hierarchical scheduler the all the tasks running at
guest level consume all the runtime assigned to the vCPUs of
the VM. Further, they perform an experiment to show the ad-
vantages of using the proposed scheduler for the management
of a real-time JACK audio processing workflow. Cucinotta et
al. [122, 123] leveraged this hierarchical real-time scheduler for
providing preliminary results of an ongoing project about using
a container-based solution in Network Function Virtualization
infrastructures [124]. The authors proposed a mechanism to
reduce temporal interferences among concurrent real-time ser-
vices deployed on containers, and evaluated the proposed ap-
proach by using LXC containers [125]. The results show stable
performance of deployed services, enabling the possibility to
apply sound performance modeling, analysis, and control tech-
niques. Also in that case, the authors provide a schedulabil-
ity analysis using a hierarchical real-time scheduler, which pro-
vides predictable QoS and can be used for real-time workloads.
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OS-level Virtualization

Gained popularity in recent years due to the provision of
lightweight isolation solutions in embedded systems, by
leveraging the host OS as a hypervisor.

Solutions exploit built-in dependability mechanisms like
container migration and load balancing, as well as con-
tainer recovery (e.g., restart), at the expense of lower secu-
rity.

Despite the use of CI tools and well-defined test suites,
these solutions require more analysis and studies in the in-
dustrial context, especially in the view of certification and
isolation testing tasks.

In order to increase isolation, performance, and security it is
possible to run a single application in its virtual domain. Such
a model is known as unikernel or library OS, in which the full
software stack of a system, including OS components, libraries,
language runtime, and applications, are compiled into a single
VM that runs directly on a general-purpose hypervisor (e.g.,
Xen). This approach introduces benefits such as a high perfor-
mance, small code base, and a reduced certification effort, due
to the low amount of software to be verified. However, stronger
isolation proofs to be reported to certifiers are still lacking. Fur-
ther, the attack surface of unikernel instances is small, as they
lack the variety of functions provided by standard OSes, as well
as the tools used to exploit them (no shells, utilities, etc.).

A fundamental drawback of unikernels is that developers
must manually port target applications to the underlying mini-
mal OS. This brings significant engineering effort since it takes
a considerable amount of time and needs experts with high
knowledge of underlying OS details. HermiTux [126, 127] is a
solution that tries to mitigate porting issues in unikernel-based
systems. In particular, HermiTux emulates OS interfaces at
runtime accordingly to the Linux ABI, and runs a customized
hypervisor-based ELF loader to run a Linux binary side-by-side
with a minimal kernel in a single address space VM. All the
system calls made by a program are redirected to the imple-
mentations the unikernel provides. Hermitux supports multi-
threading and SMP, as well as, checkpoint/restart and migra-
tion, which are crucial for orchestration purposes. Another
relevant example for circumventing issues mentioned before is
Unikraft [128], which provides a highly-configurable unikernel
code base for speeding-up development.

Despite existing several unikernel solutions most suitable
for cloud computing scenarios [129, 130, 131, 132], represen-
tative examples include ClickOS and HermiCore.

� ClickOS. ClickOS [133] is an example of using uniker-
nel model in the industry. NEC Ltd. proposed this solutions
for consolidating several high-performance virtualized network
middleboxes on top of Xen [133]. In particular, ClickOS is
based on MiniOS unikernel [134] and brings a number of op-
timizations to the Xen’s network I/O sub-system in order to per-
form fast networking for traditional VMs; in particular, ClickOS
includes (i) replacing Open vSwitch back-end switch with a
high-speed ClickOS switch, (ii) removing the netback [135]
driver from the pipe, still used as control plane driver to perform

actions such as communicating ring buffer addresses (grants) to
the netfront driver, and (iii) changing the VM netfront driver to
map the ring buffers into its memory space.
� HermitCore. HermitCore [136] is a unikernel solution

designed for High-performance Computing (HPC) scenarios and
particularly for NUMA architectures. This solution leverages a
library OS alongside Linux to run NUMA nodes within Her-
mitCore instances which manage all the resources. Further,
developers implemented a fast message passing interface real-
izing an inter-kernel communication between the HermitCore
instances. Recently, the authors enables HermitCore to both
run (as unikernel) within a VM but also as bare-metal applica-
tions [137]. In this case, HermitCore could be exploited to run
real-time and cloud workloads, since reduced memory footprint
and reduced pressure on cache system can provide more pre-
dictable behaviors. Further, the authors extended HermitCore
to support also many-core architectures. In [137], the authors
evaluate HermitCore to reveal the overhead induced on the tar-
get system. They leveraged Hourglass benchmark [138, 139] to
determine the gaps in the execution time caused by Linux and
HermitCore. The results show that HermitCore provides the
smallest noise, consequently could be used for real-time sce-
narios.

Unikernels

Fast boot and migration time, low memory footprint,
high density, high performance, and an effortless (theoret-
ically) certification process.

Leverage the underlying host hypervisor to provide
strong security.

Applications need to be manually ported to the underly-
ing unikernel.

More analysis and studies are needed to assess the fea-
sibility of adoption of these solutions in mixed-criticality
real-time systems, especially concerning dependability
support and certification.

5. Discussion

Table 1 shows a summary of the main features of each solu-
tion. We considered three classes for hypervisor size according
to Lines of Code (LOC), namely, Small (less than 10kLOC),
Medium (less than 100kLOC) and Large (greater than 100kLOC)
classes. Further, Table 1 reports for each solution the license
and the supported hardware and guest OS to ease out the port-
ing of existing legacy systems in the virtualization world. Then
the table summarizes the dependability features, the availabil-
ity of test-suites, and the compliance of the product with indus-
try safety and security standards to aid industry practitioners to
choose the most appropriate virtualization technology accord-
ing to their domain needs. In order to aid industry practition-
ers to choose an appropriate solution to migrate existing legacy
systems to a virtualization paradigm, we reported in Table 1,
for each solution, the kind of license, the supported hardware
architectures, and the explicit support to guest OS.
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Table 1: Comparison between virtualization solutions features through industry dimensions

Solution Features Reuse of legacy Dependability Certification & Testing

Category Name Hypervisor
Type/Support Size Latest

Release License
Supported
Hardware

architectures

Supported
Guest OS/
Application

Security, reliability and
fault-tolerance features

Test suites, test reports and
compliance to standards

VxWorks
MILS Type-1, Static Small

N/A
(supersed

by
VxWorks

653)

Closed
ARMv7, ARMv8,
MIPS, PowerPC,
SH, Hitachi H8

VxWorks
Guest OS,
WindRiver

Linux Guest

Protection from interference and
tampering, enforces a Least

Privilege Abstraction Partitioned
Information Flow Policy (PIFP),
supports runtime secure state
verification, resource isolation,

trusted initialization, trusted
delivery, trusted recovery, and

audit capabilities

ARINC 653-compliant, MILS support,
proven in DO-178C, EUROCAE

ED-12, and IEC 61508, Common
Criteria with SKPP profile

PikeOS Type-1, Dynamic Small v5.0, Feb
2020 Closed

Intel x86, ARMv8,
PowerPC, SPARC
V8/LEON, MIPS

Linux,
Android,

RT-POSIX,
ARINC653,

RTEMS

Resource isolation, built-in Health
Monitoring Function which

implements all features described
in the ARINC-653 standard,
Hardware support for voting

(SAFe-VX Architecture)

Compliant to ARINC 653, RTCA
DO-178B/C, ISO 26262, IEC 62304,

EN 50128, IEC 61508, Common
Criteria, SAR, MILS (three security
levels). Verification of microkernel

system calls [55], intransitive
noninterfernce properties [53]

NOVA Type-1, Dynamic Medium
Latest

commit Jul
2021

GPL
Intel x86, x86-64,

ARMv8-based
boards

Linux Protection against VMM attacks,
guest attacks

Formal verification analysis[69],
performance testing and overhead

analysis [68]

sel4 Type-1, Dynamic Small
Latest

commit Oct
2021

GPL
Intel x86, x86-64,
ARMv7/v8-based
boards, RISC-V

Linux

Time and space partitioning [73].
Proofs of security enforcement

[140].
Task backup and recovery

mechanisms, and
checkpoint-based optimization

strategies [77, 78]

Implementation correctness
formal-verified. WCET analysis

provided in [75, 76]. Certifiable in
theory.

Xtratum Type-1, Static Small v1.0.8, Jan
2019

Both
GPL and
closed

Intel x86,
SPARCv8 (Leon2,

Leon3, Leon4),
ARMv7 (Cortex

R4, R5, A9),
PowerPC

Linux,
RTEMS,
ORK+,

LITHOS
RTOS,
Partikle
RTOS+

Temporal and spatial isolation
provided. Xtratum was also used
as a basis for a hypervisor-based

fault tolerant architecture for
space applications, providing

error detection mechanism via
task-level duplication [61].

A solution which includes Xtratum and
the RTOS ORK+, has been certified

to be compliant to the standard
ARINC 653.

Separation kernel
and Microkernel

Jailhouse Type-1, Static Small v0.12, Oct
2021 GPL

Intel x86, ARMv7
and ARMv8 (32

and 64 bit)

Linux, L4
Fiasco.OC,
FreeRTOS,

Erika
Enterprise
RTOS v3

Resource isolation, deadlock
detection and automatic restart

Released applying CI and static code
analysis tools. No certification was

done; within the SELENE project [67]
researchers are working on IEC

61508 compliance.

Xen/RT-Xen Type-1, Dynamic

Large
(x86,

x86-64)
Medium
(ARM)

Xen v4.15,
Apr 2021 -

RT-Xen
latest

commit Jan
2016

GPL Intel x86, x86-64,
ARMv8

Linux,
Windows

Resource isolation, high
availability support with
proprietary tools (Citrix)

Xen Test Framework (XTF) [91] with
assessment of specific security
vulnerability, sanity checks, and
functional tests. OSSTest [92] to

leverage CI tools. Safety certification
efforts provided by FuSa SIG [94].

General-purpose

KVM Type-1, Dynamic Large

Latest
commit Oct

2021,
integrated
with Linux

kernel
v5.14

GPL Intel x86, x86-64
Linux, BSD,

QNX,
Windows

Resource isolation, high
availability support with
proprietary tools (oVirt)

PREEMPT RT is accompanied with
real-time test cases within LTP, and
benchmarks for worst-case latency
scenarios, performance analysis,
scheduling attributes tests, priority

inversion deadlock test.

LTZVisor
Type-1, Dynamic

(DUAL OS
RTOS+ GPOS)

Small
Latest

commit Oct
2017

GPL
ARMv7-A,

ARMv8-A and
ARMv8-M

Linux,
FreeRTOS

Spatial and temporal isolation
enfornced by security hardware
extensions, for mixed-criticality

applications

Test suites for functional testing and
performance analysis [109, 112]

RTZVisor/
µRTZVisor Type-1, Dynamic Small N/A Closed

ARMv7-A,
ARMv8-A and

ARMv8-M

Linux,
FreeRTOS

Spatial and temporal isolation
enfornced by security hardware
extensions, for mixed-criticality

applications

Test suites for functional testing and
performance analysis [113, 114]

ARM
TrustZone-assisted

VOSYSmonitor Type-1, Dynamic Small

Last
website
update
2021

Closed ARMv7-A,
ARMv8-A

Automotive
grade Linux,

Andorid,
AUTOSAR

Spatial and temporal isolation
enfornced by security hardware
extensions, fault detection and

safe software migration.

ISO 26262 compliant at ASIL-C level.
Self tests for run-time functional

testing and performance analysis.

Linux
Containers /

RT-Case

Process
Containers,

Dynamic
Medium

Docker
latest

commit Oct
2021

RT-Case
latest

commit
Sept. 2021

GPL
Intel x86 and

x86-64, ARM and
many others

Linux
applications

Resource isolation, high
availability support through

Docker tools. Security support
inherited from Linux (SELinux
and AppArmor frameworks,

sandboxing support, Mandatory
Access Control).

Docker is provided with Unit test and
API Integration test suites. LXC is

provided with a continuous security
analysis framework. Docker and LXC

are released through CI tools.

ClickOS
Unikernel Xen-based Small

Latest
commit Oct

2017.
Forked

from click
repo, latest
commit Oct

2020

GPL Inherit from Xen
supported CPUs

Several Click
[141]

middleboxes

Strong isolation and security due
to unikernel-based design, but no

evidence is provided in [133].

Mention to the certification procesess,
but no evidence is provided in [133].

Lightweight
Virtualization

HermitCore
Unikernel

uhyve
(KVM-based),
KVM, QEMU

Medium
Latest

commit Jul
2020

GPL
Inherit from
hypervisors

supported CPUs

Applications
built via the

provided
cross

toolchain

Strong isolation and security due
to unikernel-based design, with
some empirical results provided

in [136, 126].

Released applying CI/CD tools.

Indeed, the hypervisor selection is a crucial task in the in-
dustrial domain, and it should comply with dimensions we pro-
vided in Table 1 in order to properly migrate to virtualization-
based systems. As relevant examples, the HERCULES [3],
SELENE [67], and HERMES [142] H2020 European projects
involved several industry partners (e.g., Airbus, Thales Alenia
Space, STMicroelectronics, etc.) which cooperate with academia

to leverage virtualization technologies in different domain rang-
ing from the railway to aerospace. In that case, the hypervisor
selection follows specific requirements that are easily mapped
(in some cases directly) to Table 1.

In the following, we provide some points of discussion for
state-of-the-practice solution categories reviewed in Section 4,
highlighting the current industrial and scientific trends in virtu-
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alization.

B Separation kernels and microkernels: the current trend.
The majority of industry solutions for virtualization fall into
the separation kernel and microkernel classes. Also, static ap-
proaches to virtualization (aka partitioning) are preferred over
dynamic solutions. This is a clever choice since industry sce-
narios must ensure the highest level of isolation between vir-
tualized domains due to strict requirements that must be met
by safety standards clauses. Proprietary solutions (i.e., Vx-
Works, PikeOS, VOSYSmonitor) support the majority of fea-
tures required by a safe and secure environment (e.g., run-time
secure state verification, health monitoring, trust recovery, etc.).
PikeOS also supports the SAFe-VX architecture for voting, which
eases the development of reliable applications in safety-critical
domains. While open ARM TrustZone-based solutions inherit
isolation and security from the underlying hardware, general-
purpose and OS-level solutions can take advantage of existing
tools developed for supporting high-availability mechanisms in
cloud applications (i.e., Citrix HA for Xen, Red Hat oVirt for
KVM and Docker tools for the Linux containers).

As one would expect, the most advanced solutions, in terms
of certification, are proprietary. VxWorks, PikeOS, VOSYS-
monitor are examples of certified solutions, i.e., compliant with
the industry safety and security standards, such as ARINC-653,
DO-178C, Common criteria, ISO26262, etc... However, recent
initiatives in open-source projects are trying to reduce the gap.
For instance, Xtratum, with the RTOS ORK+ as a Guest OS,
has been certified to be compliant with the ARINC-653 stan-
dard.

B General-purpose real-time hypervisors: a new opportunity.
Also for general-purpose open-source solutions (e.g., KVM,
Xen), widely adopted in cloud computing scenarios, we are as-
sisting to a proliferation of projects that are trying to delineate
guidelines with tools and methodologies supporting the safety
certification process also for these open-source platforms.

For example, the FuSa Special Interest Group (SiG) is ana-
lyzing the possibilities of using Xen as a basis for safety-critical
virtualized systems. Indeed, Xen currently provides real-time
support for scheduling (ARINC, RTDS, and Null schedulers),
a minimal size (less than 30KSLOC) for ARM-based hardware
environments, paravirtual and GPU mediation for rich I/O, TEE
virtualization support [94]. Xen developers provided the Dom0-
less patch since Xen v4.12 [94, 143, 144]. This crucial feature
enables Xen to create a set of unprivileged domains at boot
time, passing information about these VMs to the hypervisor
via the Device Tree (a tree data structure with nodes that de-
scribe the physical devices in Linux-based systems). Indeed,
Xen developers extended the older Device Tree to allow for
multiple domains to be passed to Xen. Actually, the Dom0 is
still required to manage the DomUs, but the hypervisor can cre-
ate additional VMs in parallel without any interactions with the
control domain. Practitioners can also omit the definition of
Dom0 into the Device Tree without specifying the Dom0 ker-
nel obtaining a “true Dom0-less” system, but having a Dom0
environment can still be convenient for monitoring and man-
agement purposes. “True Dom0-less” configurations fit well

scenarios with higher security (reduced attack surface) or to im-
prove resource utilization (shorten boot times). Further, there
are several efforts to break into privileged service domains the
Dom0 (aka Dom0 disaggregation) to improve security, reliabil-
ity, and isolation of Xen [145, 146, 147]. Open-source virtual-
ization solutions are also gaining popularity in the automotive
domain, thanks to vertical initiatives such as the Automotive
Grade Linux (AGL) project. AGL is considering hypervisors
(including Xen, but also OS-level virtualization like Docker) to
create a safety-critical execution environment for workloads in
software-defined vehicle architecture according to ISO 26262
[84]. Further, the recent ELISA project [148] promises to im-
plement a certifiable Linux kernel, which (indirectly) impacts
KVM applicability for safety use cases.

As mentioned at the beginning, general-purpose solutions
fully support cloud computing infrastructures, with several frame-
works for the management and orchestration of VMs, which in-
clude migration, balancing, and high-availability mechanisms.
By leveraging this kind of hypervisors in embedded systems we
can easily support the implementation of solutions for orches-
trating tasks at different criticality running on different RTOSes
and GPOSes within different hardware boards. In the context
of the LF Edge foundation [149], whose goal is to aid the de-
velopment of industrial IoT and edge devices, Xilinx is cur-
rently developing a lightweight solution called RunX, which
exploits Xen to both run containers as VMs, either with the pro-
vided custom-built Linux-based kernel with a Busybox-based
ramdisk, or with container-specific kernel/ramdisk.

B TEE-based virtualization: exploiting hardware-driven in-
novations. ARM TrustZone-based solutions are gaining big
momentum today because several embedded system providers
build their products on top of ARM CPUs (e.g., Xilinx). How-
ever, this kind of virtualization reduces the reuse of legacy soft-
ware for platforms powered by other CPU vendors like Intel,
LEON, and others. In this regard, Intel is supporting the ACRN
project, which is an open-source hypervisor with a focus on in-
dustrial IoT scenarios and edge device use cases [150].

B Lightweight virtualization: a promising new trend. Con-
cerning lightweight virtualization solutions, they are gaining
traction for mixed-criticality systems. Especially in the telco
industry, we are witnessing the trend to softwarize hardware-
based network elements towards so-called virtual network func-
tions [124], for which real-time and mixed-criticality are strin-
gent requirements. Since this kind of virtualization allows de-
livering low-latency, bandwidth-efficient, and resilient services
they fit well use cases like autonomous vehicles, smart cities,
and augmented reality, which are common scenarios in indus-
trial IoT [151]. However, technological questions remain for
ensuring reliability and security, but also the timeliness required
both for telecommunication networks and mixed-criticality sys-
tems. By using container-based virtualization, the main advan-
tages come with the easy use of built-in orchestration mecha-
nisms (e.g., Docker Swarm) and platforms (e.g., Kubernetes).
Containers reduce the overhead affecting VMs and better scale
when a larger number of applications of different criticalities
are in place with built-in orchestration capabilities. However,
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containers reduce isolation, threatening the practicability of OS-
level virtualization under strict real-time and safety requirements.
For example, in [152] the authors presented an architecture for
a multipurpose industrial controller deployed via containers. In
[153], the authors provide a performance evaluation that aims
to show the strengths and weaknesses of different low-power
devices when handling container-virtualized instances.

Instead, since unikernel-based solutions do not share the un-
derlying host kernel (each unikernel has its own kernel), they
are mainly used to enhance security; furthermore, since uniker-
nels are minimalistic OSes, with image size less than 5 MBS
and memory footprint of 8 MBs on average [151], this kind
of virtualization is a good candidate to ease the certification
process for safety-critical mixed-criticality systems. Currently,
researchers are exploring unikernel-based solutions in the con-
text of industrial IoT (IIoT) scenarios, which impose critical re-
quirements like determinism, safety certification, isolation, and
flexibility. In [151], the authors try to understand if unikernels
can be exploited for deploying IoT edge architectures and en-
vironments, like vehicular cloud computing, edge computing
for smart cities, and augmented reality. In [154], the authors
discuss how to leverage unikernel-based virtualization in the
context of NFV IoT gateways. They highlight how the use of
containers for NFV could negatively impact security and isola-
tion due to the shared host kernel.

B Hypervisor certification directions. Generally, certifying a
hypervisor includes several burdensome tasks (e.g., rigorous
documentation, test suites, verification tools, and so on) that
lead to an increased overall cost of developing safety-critical
systems. However, safety standards like EN 50128 and ISO
26262, consider the possibility of integrating pre-existing soft-
ware or into systems being certified. Thus, an interesting re-
search direction is considering a hypervisor as a library to be
integrated into a system already certified at some SIL level.

Despite the great maturity of safety-related standards, today
there is still a need of facing security certification in the context
of new industry movements like IIoT and Industry 4.0. This
brings cybersecurity aspects in mixed-criticality systems devel-
opment, which are not considered in the past. When certifying
security with safety there is a need to identify properly the over-
lap between standards processes and ensure that all security and
safety requirements are included, still keeping the overall cost
of certification low. These issues are today exacerbated if we
consider virtualized mixed-criticality systems.

Further, the use of Machine Learning (ML)/Artificial In-
telligence (AI) for bringing autonomy in mixed-criticality ap-
plications, where software development shifts from traditional
coding to example-based training, introduces new issues. In-
deed, several industry domains, especially in automotive and
healthcare, currently leverage or plan to use ML/AI techniques
for critical decision-making components. Clearly, this leads the
developed systems to be ready to co-locate on the same hard-
ware platform non-critical applications (e.g., dashboards, mon-
itoring functions) with highly complex AI components. The
SELENE project [67] is a real example of how research and in-
dustry are envisioning to apply virtualization technologies (in

this specific case, they chose the Jailhouse partitioning hyper-
visors) to quantify and assess the reliability level that can be
reached by placing AI components in a safety-critical system.

Curating the training process, operating and integrating ML
models, and achieving confidence in the ML models through
new forms of verification and validation and through ”explain-
able AI” (XAI) techniques, are some of the tasks to be per-
formed. In that case, is crucial to understand how to certify
these systems since in safety-related standards it is common
to explicitly not recommend using artificial intelligence for al-
most all safety integrity levels. However, there are improve-
ments in that direction since ISO/IEC provides standards like
the ISO/IEC DTR 24029-1 [155], which focuses on the robust-
ness of neural networks, and the ISO/IEC WD TS 4213 [156]
(under-development), which focuses on the assessment of ma-
chine learning classification performance.

B Hybrid virtualization solutions. Finally, regardless of the
virtualization approaches and solutions analyzed in this paper,
we are witnessing trends in adopting hybrid solutions that try
to satisfy both real-time and general-purpose needs, simulta-
neously. This is the case, for instance, of the IoT domain in
which there is a need for high portability and adaptability, with
a rich set of I/O virtualization capabilities. Virtualization will
be extensively used also in high-performance computing (HPC)
platforms, which offer the power needed by the modern indus-
trial systems and edge computing architectures by using devices
like GPUs, FPGAs, and other kinds of accelerators. No solu-
tions are available yet, capable to face such heterogeneous envi-
ronments while guaranteeing easy porting, isolation, and real-
time properties. Containers are a promising solution for these
contexts, combining flexibility and scalability, but they are not
mature yet for full adoption in industrial domains.

6. Conclusion

This survey analyzed the most important virtualization ap-
proaches and related solutions proposed in the last years target-
ing the real-time and/or safety-critical domains. In particular,
we analyzed existing solutions along three fundamental dimen-
sions, which reflect the most common requirements in mixed-
criticality domains: Certification & Testing, Reuse of legacy
systems, and Dependability support.

We observed that separation kernel solutions are designed
to comply with safety certification, and with a high level of iso-
lation, whereas microkernels approach provides strong secu-
rity and effective verification by reducing at the minimum the
Trusted Computing Base (TCB). Although the previous consid-
erations, general-purpose solutions are still a good choice for
real-time purposes, and recent initiatives are emerging, to foster
their adoption in safety-critical scenarios. Hardware-assisted
solutions, based on ARM TrustZone, leverages security features
from the hardware and provide well-defined test suites, perfor-
mance analysis tools, and failure recovery mechanisms. These
solutions raise the portability problem on other platforms, and
migrating legacy applications may require non-negligible costs.
Finally, lightweight solutions are a recent trend, particularly
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promising to overcome footprint issues while assuring the iso-
lation required for mixed-criticality. However, their adoption in
industrial domains, apart from telecommunication networks, is
still far to be established.

More research efforts are needed in several directions. Re-
garding testing and certification, many safety and security stan-
dards provide guidelines for testing activities, which encompass
fault injection testing, robustness testing, and performance test-
ing, along with the classical testing activities. However, we still
witness a lack of shared benchmarks and effective test suites
that could help to produce evidence to support the certification
process, especially concerning novel trends, such as the use of
lightweight virtualization or the certification of systems based
on machine learning and artificial intelligence. Finally, given
the evolution of existing security standards, like ISO 62443
and its derivative EN 50701 for the railway, a good portion of
mixed-criticality systems will also require security and privacy
certification, which is neglected by most of the current non-
commercial solutions.
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