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Abstract— The Plasma Control System (PCS) for the first non-

active ITER operation phase will require simultaneous active 
monitoring and control of many continuous and discrete 
quantities. Considering the unique challenges ITER will face, all 
the controllers will be integrated and deployed with very little 
experimental time dedicated to PCS tuning and development. 

In order to maximize the efficiency of the ITER PCS design, a 
formal system engineering approach has been adopted. In a 
simplified way, the design process starts with the definition of the 
requirements. Functionalities are then designed and developed in 
order to meet these requirements. As a last step in the design 
process, it is important to assess that all the designed 
functionalities meet the associated requirements and that all the 
requirements are covered.  

The many different control functions will be designed and 
implemented in ITER PCS Simulation Platform by different 
designing teams, both internal and external to ITER Organization. 
Although each team will be responsible for the independent 
assessment of the modules they deliver, an extra step is 
nevertheless necessary to guarantee that all the modules still 
continue to work when connected together. Therefore, integrated 
assessments will be built from independent assessments and will 
prove the controllers continue to meet the requirements. 

For this reason, it is necessary to have a unified workflow for 
the assessments performed by all the different designing teams. In 
fact, in order to guarantee a smooth integration assessment, it is 
important that all the assessments follow the same rules, use the 
same tools, are provided with the correct information, and are 
performed on the same platform.  

In this paper, we present the proposed assessment workflow for 
ITER PCS components and some early impressions gathered from 
assessments of first delivered modules.

Index Terms—Integrated assessments, ITER, Plasma Control 
System

I. INTRODUCTION
HE ITER Plasma Control System (PCS) for the first pre-
fusion power operation phase will monitor and control 
many continuous and discrete plasma and device 
quantities simultaneously. Considering the uniqueness 
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of the ITER project, where small margin is left for mistakes and 
whose design challenges span decades, the PCS is designed 
using a formal and systematic approach.
In this paper we focus on the final part of the design process in 
which the functionalities are assessed, that is they are proven to 
satisfy the corresponding requirements. We present a 
framework, consisting of a set of rules and a collection of 
software, to prepare and execute the assessments. The paper is 
organized as follows: section II introduces the system 
engineering approach which characterizes the design of the 
ITER PCS. In section III, the focus is on the definition of the 
assessment phase. In section IV, the assessment framework is 
presented and explained in detail with section V providing some 
final remarks.

II. SYSTEM ENGINEERING APPROACH

The design process of the ITER PCS has been organized as a 
relatively linear chain of steps as shown in Figure 1. The design 
begins with the System Requirements stating the high level 
functionalities the PCS has to accomplish [1][2]. It then 
continues with the refinement of these requirements into more 
accurate functional and non-functional requirements, 
respectively SYRs (System Requirements) and PERFs 
(PERFormance requirements), so that a functional breakdown 
is possible. 

Figure 1. Flow diagram of the ITER PCS design process

Once the functionalities are designed and implemented in the 
PCS Simulation Platform (PCSSP) [3], it is necessary to prove 
that they meet the associated requirements. The assessment 
process, namely to guarantee through simulations that the 
associated SYRs and PERFs are satisfied, is, together with 
commissioning, part of our Verification and Validation (V&V) 
process.
Ultimately, the design is documented, defended in a formal 
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review process and finally approved. The whole process is 
described in detail in [4].
The designed functionalities are assessed by simulating them in 
representative challenging situations, called test cases, to 
ultimately prove that the measurable performance requirements 
(PERFs) are satisfied.
Clearly, feedback simulations require a model that mimics the 
behavior of the quantities considered. The accuracy of the 
model varies as function of the aspects of the assessed 
functionality and therefore multiple versions of the same model 
can exist with different performances and final scopes. 
Nevertheless, the careful selection of the model is an important 
part of the assessment and is therefore a crucial element of the 
PCS design itself.
All the artifacts of the process described above, i.e. 
requirements, functional blocks, models, test cases and their 
results, are put into the PCS design database (PCSDB) [1], 
which is a system engineering repository to store design 
artifacts in the form of SysML [5] elements and diagrams. The 
PCSDB is implemented using Enterprise Architect [6], a 
commercial software which fully supports the system 
engineering approach and includes SysML among the available 
modeling languages. By linking properly the artifacts, it is 
possible to have a complete traceability of each of the designed 
functionalities. Figure 2 shows a very simplified example of the 
graphical output extracted from the PCSDB. 

Figure 2. Example of relationships between different artifacts as 
produced by the PCSSDB.

In particular, it is possible to see how the functional block “A 
Control Function” (pale orange) satisfies a (functional) 
requirement “a SYR”, a (non-functional) performance 
requirement “A performance requirement” and a (non-
functional) requirement “An exception requirement” necessary 
to properly handle an exception. The requirements blocks are 
shown in pale green rectangles. Non-functional requirements 
are measurable and it is therefore possible to verify them in test 
cases, represented by pale yellow rectangles.
It is interesting to note that each test case is associated with a 
one-to-one relationship to its assessment. This represents the 
valid assessment performed to be included in the final design. 
Moreover, the example in Fig 2 highlights that the test case 
“Test Case 1” makes use of a specific functional block 
representing the model “A model” (pale orange). This is 

extremely important to create a logical link between the 
assessment process and the commissioning process, as will be 
better explained later in section V.
It is also worth noticing that we decided not to include 
elementary unit-tests concerning the implementation of the 
designed functionalities in our in our design process. This is 
because our SYRs and PERFs do not necessary reach the level 
of details required for their code implementation. We still 
perform unit-tests on the designed functionalities, but we 
simply do not trace them back into the PCSDB.
To better manage the design process, all the PCS functionalities 
are organized into independent tasks, following a reasonable 
level of decoupling of the physical behaviors. For example, 
magnetic control, fueling control, error field control and ELM 
control belong to different tasks, and, based on the current 
knowledge, they are known to be decoupled in a first iteration 
of the design process. Each task is assigned to a specific PCS 
design team either internal or external to ITER Organization, 
and each team is fully responsible for the design of the 
envisaged functionalities. As explained earlier, the design 
process involves the definition of the requirements, both SYRs 
and PERFs, the definition of the test cases and, ultimately, also 
the execution of the corresponding assessments. These 
assessments can involve a various number of designed 
functionalities belonging to the same task.
Since all the functional blocks are assessed independently 
within the scope of their tasks, this is not yet sufficient to 
guarantee that they will meet the requirements when they will 
act simultaneously. In fact, on the real machine, most of the 
PCS functionalities will not be perfectly decoupled since they 
are acting on the same physics phenomena by using the same 
actuators. For this reason a separated task, responsible for the 
integration of the functionalities and their assessment has been 
established. 

III. DESIGN ASSESSMENT

It is evident that the integrated assessments need to rely on the 
quality of the assessments produced by the single tasks.
It is possible to imagine the assessments as a pyramid, shown 
in Figure 3, where the width represents the number of tests, 
while the height represents the level of integration. At a low 
level, where a single functionality is assessed, it is possible to 
perform a large number of simulations, but as the integration 
increases, and the simulations become more complex and 
computationally more expensive, the number of assessments is 
reduced. In this picture, the integrated assessments remain of a 
manageable number, while still being exhaustive.



Figure 3. Representation of the different levels of assessments as 
defined for the ITER PCS design.

For the design of the ITER PCS, we decided to classify the 
assessments into four categories:

 Atomic assessments – where only a single 
functionality is assessed;

 Agglomerated assessments – where multiple 
functionalities belonging to the same task are assessed;

 Integrated assessments – where multiple 
functionalities belonging to different tasks are 
assessed;

 ITER PCS assessments – where we aim to assess the 
whole PCS, or at least most if its functionalities.

As is clear from the picture, each level of assessment must rely 
on the quality of the level below. This is particularly important 
when the responsibility is handed over from the design team to 
those responsible for the integration (namely, from 
‘Agglomerated assessment’ to ‘Integrated assessment’).
Obviously, the pyramid in Fig. 3 represents a simplification of 
reality. In fact, due to the physical coupling described above, it 
is not always possible to properly assess a single functionality 
in isolation. It is therefore not always possible to have an 
‘Atomic assessment’ below an ‘Agglomerated assessment’. In 
addition, the boundaries between these layers are not always 
well delimited and can become blurry. In fact, it is possible that 
an ‘Integrated assessment’ fails even if all the associated 
‘Agglomerated assessments’ and ‘Atomic assessments’ have 
passed. This can happen for various reasons. For example, 
because different models have been used during the 
simulations, or because the ‘Integrated assessment’ challenges 
the functionalities in a new way not tested before, or even, in 
the worst case, that the functionalities present a problem not 
highlighted before. These example situations require a certain 
level of cooperation between teams, so that the level of 
assessment becomes blurrier. A further important consideration 
is that models used for integrated assessments can be derived in 
different ways; for example, in some cases it will be possible to 
have a single model that covers multiple behaviors, while in 
other cases it will be necessary to connect together multiple 
models each covering a single aspect. 
Ultimately, the pyramid will present in reality multiple peaks 
because the entire PCS cannot necessarily be tested 
simultaneously. Instead, the whole functionalities are assessed 
in a few simulations covering most of them.

IV. ASSESSMENT FRAMEWORK

Considering the heterogeneity of the PCS design teams and the 
high number of assessments involved, it is clear that a formal 
framework to perform the assessments is needed.
This framework must provide a unique way to perform all the 
assessments independently of their level in the pyramid and 
from the team that executes them.
In particular, it is extremely important that all the assessments 
are written using the same tool in the same way. This reduces 
ambiguity and increases reproducibility and readability. In fact, 
even if assessments are not meant to be executed as frequently 
as in a continuous integration approach, it should be always 
possible to re-execute them while retaining a historical trace. 
This can be useful, for example, if an improvement of the 
design is made or if a further investigation is needed at a second 
stage. Moreover, the assessments must be executed using a 
single command invoked only when needed and without human 
intervention during their execution.
Finally, the framework must be able to store and retrieve the 
data produced by an assessment if required. Even if the ultimate 
result of an assessment can be either pass or fail, there is extra 
information, such as internal state values, waveforms and 
commands produced during the simulation which are important 
to store. These values are not part of the design assessment and 
are therefore not supposed to be stored in the PCSDB, but they 
should be accessible for later analysis.
As explained earlier, the proposed and implemented solution to 
assess all the PCS functionalities is the ITER PCS assessment 
framework. This consists of a set of rules and a collection of 
software packages which allow all the developers involved in 
the design of the PCS to assess the designed functionalities in a 
simple and uniform manner, while keeping the level of 
traceability required by the system engineering approach.
At the base of the PCS assessment framework is an in-house 
MATLAB© custom plugin called the 
PCSDB_assessment_plugin which extends the 
functionalities of the standard MATLAB Test-Runner by 
adding specific features to the runner itself. In particular, when 
invoked, the plugin is responsible for:

 Checking that the assessments are correctly prepared;
 Building the output structure of the filesystem to store 

generated results and data;
 Executing the appropriate assessments;
 Providing a light form of sandboxing to isolate the 

execution of each assessment and of the data 
generated;

 Capturing the results generated using the MATLAB 
qualifications package;

 Generating the reports.
The process adopted to execute the assessment is summarized 
in Figure 4. Starting from the left hand side of the figure, once 
the design of some functionalities is completed, the design team 
adds to its GIT commit a testing package containing all the 
instructions necessary to execute the assessments.



Figure 4. Flow diagram representing the adopted assessment process.

The testing package consists of two parts. The first is the 
MATLAB/PCSSP code implementing each assessment, for 
which the main file is a MATLAB class, which extends the 
default MATLAB TestCase class, and which contains a 
method for executing each assessment. Naturally, the code will 
also make use of additional functionalities implemented in 
separated files such as Matlab scripts/functions and Simulink© 
files. The assessment’s methods must follow a set of rules and 
must be tagged as ‘Assessment’. The methods can also be 
tagged with an additional task-specific string value, for example 
‘ForceEstimator’, to allow the framework to restrict the 
execution of the assessments.
The second part of the testing package is a cover sheet 
supporting each assessment. This cover sheet contains extra 
information to facilitate the readability of the simulation code. 
In particular, the cover sheet contains:

 inputs and outputs of the assessment; 
 the assessment’s prerequisites, i.e. what has to be true 

for the assessment to be valid;
 the names of the variables being assessed;
 a list of files used during the simulation;
 the filename and the data saved at the end of the 

assessment.
This information is required to facilitate the review of the 
assessment by an independent audit. In order to keep the 
framework light, only simple checks are performed on the 
content of the test cover sheets. Whenever these checks fail, for 
example the test cover sheet is missing or incomplete, the 
assessment is performed anyway, but the result, either passed 
of failed, is marked as ‘tainted’. The ‘tainted’ label does not 
invalidate the assessment itself, but shows that some 
information is missing.
Once the code for the assessment is stored in the ITER PCS GIT 
repository, it is not automatically executed together with the 
rest of the unit tests. In fact, as explained earlier, the assessment 
of a functionality can potentially be performed multiple times, 
but it does not require constant execution as it would be in a 
continuous integration fashion.
The execution of the assessments is triggered by tagging the 
GIT commit with a specific and unique tag, set by the designer 
when the code is completed. To reduce the possibility of 
mistakes the tag is automatically generated using a custom GIT 
command. The assessment tag allows the ITER Bamboo server 
to invoke the assessment pipeline in which the 
PCSDB_assessment_plugin is executed. The first report 
generated by the plugin is a global assessment output file which 
contains all the assessment results, the commit hash to identify 
the assessed code inside the GIT repository, the date of the 
assessment and the user name of the user who launched the 
assessment. All this information is then manually imported into 

the PCSDB, by means of a dedicated Enterprise Architect 
plugin, to “officially” include the assessment results into the 
design. It is important to observe that this output file is 
automatically generated by the framework without any 
intervention of the design team. This guarantees homogeneity 
in its structure and content.
A further report, available both in pdf and html formats, is also 
automatically generated containing statistics on the assessment 
execution, the figures generated and the output sent to the 
MABLAB console. This information, together with the data 
saved, can be used later for further analysis.

V. FINAL CONSIDERATIONS 

The assessment framework being implemented, and described 
here, has many advantages. It guarantees the level of 
traceability required by the adopted system engineering 
approach. In fact, once the results are imported in the PCSDB, 
during a design review it is possible to uniquely link the 
assessment results (passed or failed) with the execution of the 
assessments (Bamboo job number), with the actual code used 
during the assessment (GIT hash) and with the additional 
information generated (reports and saved data). There is, 
moreover, a clear distinction between the design environment, 
which can be any machine, the environment which stores the 
designed code, the GIT repository, and the environment which 
executes the assessments and stores its results (the Bamboo 
server). Note that this advantage does not limit the freedom of 
the designer to being constantly connected with ITER network. 
In fact, since MATLAB/PCSSP is available on different 
platforms, the whole process can be performed on many other 
machines. Nevertheless, only results obtained by running on the 
Bamboo server are imported into the PCSDB. As such, the 
assessments are always executed on the same platform, starting 
from scratch and following the same steps every time. This is 
beneficial to guarantee the correctness and the reproducibility 
of the results. 
The assessments are executed only when needed, avoiding 
unnecessary waste of resources and, more importantly, 
avoiding confusion on the “final design version” of the code 
which shall be considered for the design of ITER’s PCS. An 
example of the benefits which the traceability provided by the 
combined use of the assessment framework and the PCSDB 
brings is reported in Figure 5.



Figure 5. Example of benefits for the ITER PCS commissioning 
generated by combined use of the assessment framework and the 
PCSDB

Figure 5 shows how the commissioning process can benefit 
from the assessment process, as already anticipated early in the 
paper. In fact, some commissioning procedures will be the 
repetition of some assessments, for example in the case we need 
to validate a modelled assumption. Here the commissioning 
procedure number 101 is directly connected with the test case 
“Test Case 3”. This makes use of two models, named “CC 
Converters” and “CS/PF Converters”, which represent, 
respectively, the magnetic behavior of the Correction Coil (CC) 
Converters and of the Central Solenoid and Poloidal Field 
(CS/PF) coils converter. These models are also used in the test 
case “Test Case 4”. If the commissioning procedure invalidates 
one model, we can easily trace back to all the simulations (in 
this case only “Test Case 4”), depending on the same model. 
Since the test case will have an associated assessment, with the 
whole chain of information it will be easy to pin down all the 
affected functionalities and assess the impact of the model 
mismatch.
At the time of writing, the first set of ‘Atomic’ and 
‘Agglomerated’ assessments have been delivered and assessed 
using the proposed framework. Thanks to the variety of the 
designing teams involved and to the number of tests, the 
framework has already evolved and reached the maturity level 
required for the ‘Integrated assessment’ phase.
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