
1
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

L. Pangionea, T. Ravensbergena, L. Zabeoa, P. De Vriesa, G. De Tommasib, c, M. Cinqueb, c, S. Rosiellob, c

Abstract— The Plasma Control System (PCS) for the first non-

active ITER operation phase will require simultaneous active
monitoring and control of many continuous and discrete
quantities. Considering the unique challenges ITER will face, all
the controllers will be integrated and deployed with very little
experimental time dedicated to PCS tuning and development.

In order to maximize the efficiency of the ITER PCS design, a
formal system engineering approach has been adopted. In a
simplified way, the design process starts with the definition of the
requirements. Functionalities are then designed and developed in
order to meet these requirements. As a last step in the design
process, it is important to assess that all the designed
functionalities meet the associated requirements and that all the
requirements are covered.

The many different control functions will be designed and
implemented in ITER PCS Simulation Platform by different
designing teams, both internal and external to ITER Organization.
Although each team will be responsible for the independent
assessment of the modules they deliver, an extra step is
nevertheless necessary to guarantee that all the modules still
continue to work when connected together. Therefore, integrated
assessments will be built from independent assessments and will
prove the controllers continue to meet the requirements.

For this reason, it is necessary to have a unified workflow for
the assessments performed by all the different designing teams. In
fact, in order to guarantee a smooth integration assessment, it is
important that all the assessments follow the same rules, use the
same tools, are provided with the correct information, and are
performed on the same platform.

In this paper, we present the proposed assessment workflow for
ITER PCS components and some early impressions gathered from
assessments of first delivered modules.

Index Terms—Integrated assessments, ITER, Plasma Control
System

I. INTRODUCTION
HE ITER Plasma Control System (PCS) for the first pre-
fusion power operation phase will monitor and control
many continuous and discrete plasma and device
quantities simultaneously. Considering the uniqueness

L Pangione, T. Ravensbergen, L. Zabeo and P. De Vries are with ITER
Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez
Durance Cedex, France.

G. De Tommasi, M. Cinque and S. Rosiello are with Dipartimento di
Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli
Studi di Napoli Federico II, Napoli, Italy and with Consorzio CREATE, via
Claudio 21, 80125 Napoli, Italia.
Corresponding author: Luigi.Pangione@iter.org
The views and opinions expressed herein do not necessarily reflect those of the
ITER Organization.

of the ITER project, where small margin is left for mistakes and
whose design challenges span decades, the PCS is designed
using a formal and systematic approach.
In this paper we focus on the final part of the design process in
which the functionalities are assessed, that is they are proven to
satisfy the corresponding requirements. We present a
framework, consisting of a set of rules and a collection of
software, to prepare and execute the assessments. The paper is
organized as follows: section II introduces the system
engineering approach which characterizes the design of the
ITER PCS. In section III, the focus is on the definition of the
assessment phase. In section IV, the assessment framework is
presented and explained in detail with section V providing some
final remarks.

II. SYSTEM ENGINEERING APPROACH

The design process of the ITER PCS has been organized as a
relatively linear chain of steps as shown in Figure 1. The design
begins with the System Requirements stating the high level
functionalities the PCS has to accomplish [1][2]. It then
continues with the refinement of these requirements into more
accurate functional and non-functional requirements,
respectively SYRs (System Requirements) and PERFs
(PERFormance requirements), so that a functional breakdown
is possible.

Figure 1. Flow diagram of the ITER PCS design process

Once the functionalities are designed and implemented in the
PCS Simulation Platform (PCSSP) [3], it is necessary to prove
that they meet the associated requirements. The assessment
process, namely to guarantee through simulations that the
associated SYRs and PERFs are satisfied, is, together with
commissioning, part of our Verification and Validation (V&V)
process.
Ultimately, the design is documented, defended in a formal

Workflow for the assessment of ITER Plasma
Control System design

T

mailto:Luigi.Pangione@iter.org

review process and finally approved. The whole process is
described in detail in [4].
The designed functionalities are assessed by simulating them in
representative challenging situations, called test cases, to
ultimately prove that the measurable performance requirements
(PERFs) are satisfied.
Clearly, feedback simulations require a model that mimics the
behavior of the quantities considered. The accuracy of the
model varies as function of the aspects of the assessed
functionality and therefore multiple versions of the same model
can exist with different performances and final scopes.
Nevertheless, the careful selection of the model is an important
part of the assessment and is therefore a crucial element of the
PCS design itself.
All the artifacts of the process described above, i.e.
requirements, functional blocks, models, test cases and their
results, are put into the PCS design database (PCSDB) [1],
which is a system engineering repository to store design
artifacts in the form of SysML [5] elements and diagrams. The
PCSDB is implemented using Enterprise Architect [6], a
commercial software which fully supports the system
engineering approach and includes SysML among the available
modeling languages. By linking properly the artifacts, it is
possible to have a complete traceability of each of the designed
functionalities. Figure 2 shows a very simplified example of the
graphical output extracted from the PCSDB.

Figure 2. Example of relationships between different artifacts as
produced by the PCSSDB.

In particular, it is possible to see how the functional block “A
Control Function” (pale orange) satisfies a (functional)
requirement “a SYR”, a (non-functional) performance
requirement “A performance requirement” and a (non-
functional) requirement “An exception requirement” necessary
to properly handle an exception. The requirements blocks are
shown in pale green rectangles. Non-functional requirements
are measurable and it is therefore possible to verify them in test
cases, represented by pale yellow rectangles.
It is interesting to note that each test case is associated with a
one-to-one relationship to its assessment. This represents the
valid assessment performed to be included in the final design.
Moreover, the example in Fig 2 highlights that the test case
“Test Case 1” makes use of a specific functional block
representing the model “A model” (pale orange). This is

extremely important to create a logical link between the
assessment process and the commissioning process, as will be
better explained later in section V.
It is also worth noticing that we decided not to include
elementary unit-tests concerning the implementation of the
designed functionalities in our in our design process. This is
because our SYRs and PERFs do not necessary reach the level
of details required for their code implementation. We still
perform unit-tests on the designed functionalities, but we
simply do not trace them back into the PCSDB.
To better manage the design process, all the PCS functionalities
are organized into independent tasks, following a reasonable
level of decoupling of the physical behaviors. For example,
magnetic control, fueling control, error field control and ELM
control belong to different tasks, and, based on the current
knowledge, they are known to be decoupled in a first iteration
of the design process. Each task is assigned to a specific PCS
design team either internal or external to ITER Organization,
and each team is fully responsible for the design of the
envisaged functionalities. As explained earlier, the design
process involves the definition of the requirements, both SYRs
and PERFs, the definition of the test cases and, ultimately, also
the execution of the corresponding assessments. These
assessments can involve a various number of designed
functionalities belonging to the same task.
Since all the functional blocks are assessed independently
within the scope of their tasks, this is not yet sufficient to
guarantee that they will meet the requirements when they will
act simultaneously. In fact, on the real machine, most of the
PCS functionalities will not be perfectly decoupled since they
are acting on the same physics phenomena by using the same
actuators. For this reason a separated task, responsible for the
integration of the functionalities and their assessment has been
established.

III. DESIGN ASSESSMENT

It is evident that the integrated assessments need to rely on the
quality of the assessments produced by the single tasks.
It is possible to imagine the assessments as a pyramid, shown
in Figure 3, where the width represents the number of tests,
while the height represents the level of integration. At a low
level, where a single functionality is assessed, it is possible to
perform a large number of simulations, but as the integration
increases, and the simulations become more complex and
computationally more expensive, the number of assessments is
reduced. In this picture, the integrated assessments remain of a
manageable number, while still being exhaustive.

Figure 3. Representation of the different levels of assessments as
defined for the ITER PCS design.

For the design of the ITER PCS, we decided to classify the
assessments into four categories:

 Atomic assessments – where only a single
functionality is assessed;

 Agglomerated assessments – where multiple
functionalities belonging to the same task are assessed;

 Integrated assessments – where multiple
functionalities belonging to different tasks are
assessed;

 ITER PCS assessments – where we aim to assess the
whole PCS, or at least most if its functionalities.

As is clear from the picture, each level of assessment must rely
on the quality of the level below. This is particularly important
when the responsibility is handed over from the design team to
those responsible for the integration (namely, from
‘Agglomerated assessment’ to ‘Integrated assessment’).
Obviously, the pyramid in Fig. 3 represents a simplification of
reality. In fact, due to the physical coupling described above, it
is not always possible to properly assess a single functionality
in isolation. It is therefore not always possible to have an
‘Atomic assessment’ below an ‘Agglomerated assessment’. In
addition, the boundaries between these layers are not always
well delimited and can become blurry. In fact, it is possible that
an ‘Integrated assessment’ fails even if all the associated
‘Agglomerated assessments’ and ‘Atomic assessments’ have
passed. This can happen for various reasons. For example,
because different models have been used during the
simulations, or because the ‘Integrated assessment’ challenges
the functionalities in a new way not tested before, or even, in
the worst case, that the functionalities present a problem not
highlighted before. These example situations require a certain
level of cooperation between teams, so that the level of
assessment becomes blurrier. A further important consideration
is that models used for integrated assessments can be derived in
different ways; for example, in some cases it will be possible to
have a single model that covers multiple behaviors, while in
other cases it will be necessary to connect together multiple
models each covering a single aspect.
Ultimately, the pyramid will present in reality multiple peaks
because the entire PCS cannot necessarily be tested
simultaneously. Instead, the whole functionalities are assessed
in a few simulations covering most of them.

IV. ASSESSMENT FRAMEWORK

Considering the heterogeneity of the PCS design teams and the
high number of assessments involved, it is clear that a formal
framework to perform the assessments is needed.
This framework must provide a unique way to perform all the
assessments independently of their level in the pyramid and
from the team that executes them.
In particular, it is extremely important that all the assessments
are written using the same tool in the same way. This reduces
ambiguity and increases reproducibility and readability. In fact,
even if assessments are not meant to be executed as frequently
as in a continuous integration approach, it should be always
possible to re-execute them while retaining a historical trace.
This can be useful, for example, if an improvement of the
design is made or if a further investigation is needed at a second
stage. Moreover, the assessments must be executed using a
single command invoked only when needed and without human
intervention during their execution.
Finally, the framework must be able to store and retrieve the
data produced by an assessment if required. Even if the ultimate
result of an assessment can be either pass or fail, there is extra
information, such as internal state values, waveforms and
commands produced during the simulation which are important
to store. These values are not part of the design assessment and
are therefore not supposed to be stored in the PCSDB, but they
should be accessible for later analysis.
As explained earlier, the proposed and implemented solution to
assess all the PCS functionalities is the ITER PCS assessment
framework. This consists of a set of rules and a collection of
software packages which allow all the developers involved in
the design of the PCS to assess the designed functionalities in a
simple and uniform manner, while keeping the level of
traceability required by the system engineering approach.
At the base of the PCS assessment framework is an in-house
MATLAB© custom plugin called the
PCSDB_assessment_plugin which extends the
functionalities of the standard MATLAB Test-Runner by
adding specific features to the runner itself. In particular, when
invoked, the plugin is responsible for:

 Checking that the assessments are correctly prepared;
 Building the output structure of the filesystem to store

generated results and data;
 Executing the appropriate assessments;
 Providing a light form of sandboxing to isolate the

execution of each assessment and of the data
generated;

 Capturing the results generated using the MATLAB
qualifications package;

 Generating the reports.
The process adopted to execute the assessment is summarized
in Figure 4. Starting from the left hand side of the figure, once
the design of some functionalities is completed, the design team
adds to its GIT commit a testing package containing all the
instructions necessary to execute the assessments.

Figure 4. Flow diagram representing the adopted assessment process.

The testing package consists of two parts. The first is the
MATLAB/PCSSP code implementing each assessment, for
which the main file is a MATLAB class, which extends the
default MATLAB TestCase class, and which contains a
method for executing each assessment. Naturally, the code will
also make use of additional functionalities implemented in
separated files such as Matlab scripts/functions and Simulink©
files. The assessment’s methods must follow a set of rules and
must be tagged as ‘Assessment’. The methods can also be
tagged with an additional task-specific string value, for example
‘ForceEstimator’, to allow the framework to restrict the
execution of the assessments.
The second part of the testing package is a cover sheet
supporting each assessment. This cover sheet contains extra
information to facilitate the readability of the simulation code.
In particular, the cover sheet contains:

 inputs and outputs of the assessment;
 the assessment’s prerequisites, i.e. what has to be true

for the assessment to be valid;
 the names of the variables being assessed;
 a list of files used during the simulation;
 the filename and the data saved at the end of the

assessment.
This information is required to facilitate the review of the
assessment by an independent audit. In order to keep the
framework light, only simple checks are performed on the
content of the test cover sheets. Whenever these checks fail, for
example the test cover sheet is missing or incomplete, the
assessment is performed anyway, but the result, either passed
of failed, is marked as ‘tainted’. The ‘tainted’ label does not
invalidate the assessment itself, but shows that some
information is missing.
Once the code for the assessment is stored in the ITER PCS GIT
repository, it is not automatically executed together with the
rest of the unit tests. In fact, as explained earlier, the assessment
of a functionality can potentially be performed multiple times,
but it does not require constant execution as it would be in a
continuous integration fashion.
The execution of the assessments is triggered by tagging the
GIT commit with a specific and unique tag, set by the designer
when the code is completed. To reduce the possibility of
mistakes the tag is automatically generated using a custom GIT
command. The assessment tag allows the ITER Bamboo server
to invoke the assessment pipeline in which the
PCSDB_assessment_plugin is executed. The first report
generated by the plugin is a global assessment output file which
contains all the assessment results, the commit hash to identify
the assessed code inside the GIT repository, the date of the
assessment and the user name of the user who launched the
assessment. All this information is then manually imported into

the PCSDB, by means of a dedicated Enterprise Architect
plugin, to “officially” include the assessment results into the
design. It is important to observe that this output file is
automatically generated by the framework without any
intervention of the design team. This guarantees homogeneity
in its structure and content.
A further report, available both in pdf and html formats, is also
automatically generated containing statistics on the assessment
execution, the figures generated and the output sent to the
MABLAB console. This information, together with the data
saved, can be used later for further analysis.

V. FINAL CONSIDERATIONS

The assessment framework being implemented, and described
here, has many advantages. It guarantees the level of
traceability required by the adopted system engineering
approach. In fact, once the results are imported in the PCSDB,
during a design review it is possible to uniquely link the
assessment results (passed or failed) with the execution of the
assessments (Bamboo job number), with the actual code used
during the assessment (GIT hash) and with the additional
information generated (reports and saved data). There is,
moreover, a clear distinction between the design environment,
which can be any machine, the environment which stores the
designed code, the GIT repository, and the environment which
executes the assessments and stores its results (the Bamboo
server). Note that this advantage does not limit the freedom of
the designer to being constantly connected with ITER network.
In fact, since MATLAB/PCSSP is available on different
platforms, the whole process can be performed on many other
machines. Nevertheless, only results obtained by running on the
Bamboo server are imported into the PCSDB. As such, the
assessments are always executed on the same platform, starting
from scratch and following the same steps every time. This is
beneficial to guarantee the correctness and the reproducibility
of the results.
The assessments are executed only when needed, avoiding
unnecessary waste of resources and, more importantly,
avoiding confusion on the “final design version” of the code
which shall be considered for the design of ITER’s PCS. An
example of the benefits which the traceability provided by the
combined use of the assessment framework and the PCSDB
brings is reported in Figure 5.

Figure 5. Example of benefits for the ITER PCS commissioning
generated by combined use of the assessment framework and the
PCSDB

Figure 5 shows how the commissioning process can benefit
from the assessment process, as already anticipated early in the
paper. In fact, some commissioning procedures will be the
repetition of some assessments, for example in the case we need
to validate a modelled assumption. Here the commissioning
procedure number 101 is directly connected with the test case
“Test Case 3”. This makes use of two models, named “CC
Converters” and “CS/PF Converters”, which represent,
respectively, the magnetic behavior of the Correction Coil (CC)
Converters and of the Central Solenoid and Poloidal Field
(CS/PF) coils converter. These models are also used in the test
case “Test Case 4”. If the commissioning procedure invalidates
one model, we can easily trace back to all the simulations (in
this case only “Test Case 4”), depending on the same model.
Since the test case will have an associated assessment, with the
whole chain of information it will be easy to pin down all the
affected functionalities and assess the impact of the model
mismatch.
At the time of writing, the first set of ‘Atomic’ and
‘Agglomerated’ assessments have been delivered and assessed
using the proposed framework. Thanks to the variety of the
designing teams involved and to the number of tests, the
framework has already evolved and reached the maturity level
required for the ‘Integrated assessment’ phase.

REFERENCES

[1] M. Cinque et al., “Management of the ITER PCS Design Using a System-
Engineering Approach,” IEEE Trans. Plasma Science, vol. 48, no. 6,
pp. 1768-1778, Jun. 2020, doi: 10.1109/TPS.2019.2945715.

[2] G. De Tommasi, M. Cinque, M. Mattei, D. Ottaviano, A. Pironti, S.
Rosiello, F. Villone, P. de Vries, T. Ravensbergen, L. Zabeo, "System-
Engineering Approach for the ITER PCS Design: the Correction Coils
Current Controller Case Study," Fusion Engineering and Design, vol. 185,
pp. 113317, December 2022.

[3] T. Ravensbergen, L Zabeo, P. de Vries, L. Pangione, W. Treutterer, G. De
Tommasi, W. Lee, T. Tak, A. Zagar, “Stragegy towards model-based
design and testing of the ITER Plasma Control System” Fusion
Engeneering and Design., vol. 188, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0920379623000248

[4] M. Cinque et al., "Management of the ITER PCS Design Using a System-
Engineering Approach," in IEEE Transactions on Plasma Science, vol. 48,
no. 6, pp. 1768-1778, June 2020, doi: 10.1109/TPS.2019.2945715.

[5] SysML Open Source Project—What is SysML? Who Created SysML?
Accessed: Sept. 7, 2023. [Online]. Available: https://sysml.org/

[6] Enterprise Architect. Accessed: Sept. 7, 2023. [Online]. Available:
https://sparxsystems.com/products/ea/

	I. INTRODUCTION
	II. System engineering approach
	III. Design assessment
	IV. Assessment framework
	V. Final considerations

