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We consider the mean field equation arising in the high-energy
scaling limit of point vortices with a general circulation constraint,
when the circulation number density is subject to a probability
measure. Mathematically, such an equation is a non-local elliptic
equation containing an exponential nonlinearity which depends
on this probability measure. We analyze the behavior of blow-up
sequences of solutions in relation to the circulation numbers. As an
application of our analysis we derive an improved Trudinger–Moser
inequality for the associated variational functional.
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1. Introduction

Mean field equations for many point vortices have been extensively studied in recent years from
both the physical and the mathematical points of view, see [14,22,11,9,15,4,5,23,17]. Following ideas
introduced by Onsager [21], the vortex system is first formulated as a Hamilton system, and then a
mean field equation is derived by making use of tools from equilibrium statistical mechanics theory.
The propagation of chaos is achieved furthermore, if this mean field equation admits a unique solu-
tion. Various mean field equations have been obtained according to different constraints, such as the
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mono- or the opposite-signed circulations. The mathematical analysis concerning the existence and
the uniqueness of solutions has also been widely performed, see [16,28,1,7,6].

If general constraints are considered assuming that the circulation number density is subject to a
probability measure, then a new mean field equation arises in the high-energy scaling limit, that is
as the number of vortices goes to infinity, the statistical energy remains bounded, and the statistical
inverse temperature is proportional to the number of vortices. In this article we are interested in the
mathematical analysis of this new equation, which in the case of zero boundary conditions is given
by

⎧⎪⎨
⎪⎩

−�v = λ

∫
[−1,1]

αeαv∫
Ω

eαv dx
P(dα) in Ω,

v = 0 on ∂Ω.

(1)

Here, P = P(dα), α ∈ [−1,1], is a probability measure determining the relative circulation number
density, Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω , v = v(x) is the mean field limit
stream function, λ � 0 is a constant associated with the inverse temperature. A formal derivation of
(1) is provided in [24]. If P = δ1, that is in the case where every vortex has the same circulation, we
obtain from (1)

⎧⎨
⎩

−�v = λ
ev∫

Ω
ev dx

in Ω,

v = 0 on ∂Ω.

(2)

Eq. (2) is mathematically justified by the minimizing free energy method in the canonical formulation
[4,15], and its mathematical analysis has revealed the quantized blow-up mechanism of sequences of
solutions, see, e.g., [29–31] and the references therein. In the other case where P is given by

P = n+δ1 + n−δ−1, (3)

we obtain

⎧⎨
⎩−�v = λ

(
n+ev∫
Ω

ev dx
− n−e−v∫

Ω
e−v dx

)
in Ω ,

v = 0 on ∂Ω.

(4)

Thus each vortex has the circulation ±1, and n± ∈ [0,1], n+ + n− = 1 indicate the ratios of the point
vortex numbers, see [14,22].

In the case where the relative circulations of the vortices are independent and identically dis-
tributed random variables subject to a common probability measure N = N (dγ ), γ ∈ [−1,1], the
corresponding mean field equation takes the form

⎧⎨
⎩−�v = λ

∫
[−1,1] γ eγ v N (dγ )∫

[−1,1]
∫
Ω

eγ v dxN (dγ )
in Ω,

v = 0 on ∂Ω.

(5)

It is derived in [17] using the minimizing free energy method in the canonical formulation. The dif-
ference between (5) and (1) becomes evident by substituting

1

2
δ−1 + 1

2
δ+1
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for P and N . Indeed, essentially different equations

⎧⎨
⎩−�v = λ · ev − e−v∫

Ω
ev + e−v dx

in Ω ,

v = 0 on ∂Ω

(6)

and
⎧⎨
⎩−�v = λ

2

(
ev∫

Ω
ev dx

− e−v∫
Ω

e−v dx

)
in Ω ,

v = 0 on ∂Ω

(7)

are derived from (5) and (1), respectively. Eq. (7) is the neutral mean field equation derived in [14,22].
The variational functionals associated to (1) and (5), on the other hand, are given by

Jλ(v) = 1

2
‖∇v‖2

2 − λ

∫
[−1,1]

log

( ∫
Ω

eαv dx

)
P(dα) (8)

and

Kλ(v) = 1

2
‖∇v‖2

2 − λ log

( ∫
Ω

dx

∫
[−1,1]

eγ v N (dγ )

)

defined for v ∈ H1
0(Ω), respectively. A rigorous derivation of Eq. (1) will be carried out in a forthcom-

ing article.
Throughout this paper we shall consider the analog of (1) in the case where Ω is a compact

orientable Riemannian surface without boundary. That is, we study

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�v = λ

∫
[−1,1]

α

(
eαv∫

Ω
eαv dx

− 1

|Ω|
)

P(dα) in Ω ,

∫
Ω

v dx = 0,

(9)

where (Ω, g) is a two-dimensional compact orientable Riemannian manifold, P(dα) is a Borel prob-
ability measure on [−1,1] and dx denotes the volume element on Ω . We note that Eq. (9) is the
Euler–Lagrange equation of the functional

Jλ(v) = 1

2
‖∇v‖2

2 − λ

∫
[−1,1]

log

( ∫
Ω

eαv dx

)
P(dα)

defined on the space

E =
{

v ∈ H1(Ω)

∣∣∣
∫
Ω

v = 0

}
,

equipped with the norm ‖v‖E = ‖∇v‖2. As already mentioned, here we are concerned with the blow-
up analysis for (9). Such an analysis is motivated by the results in [20] for the special case where
P is given by (3). In this case, it was noticed in [20] that the blow-up masses satisfy a quadratic
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identity. See also [13,8] for further results in this direction. From such a property, an improved sharp
Trudinger–Moser inequality was derived. Our blow-up analysis for (9) provides the natural analog of
such a quadratic identity, see Theorem 2.2(iii) below. However, due to the presence of the general
probability measure P , in order to carry out our blow-up analysis we need to consider measures
defined on the product space I × Ω , taking an approach which appears to be new. Similarly as in [20],
our analysis combined with arguments from [12] yields as an application an improved Trudinger–
Moser inequality involving P , which is also sharp in some special cases not contained in [20].

This paper is organized as follows. In Section 2 we outline our main results. In Section 3 we
provide a preliminary blow-up analysis, showing that the blow-up set is finite. In Section 4 we refine
such a blow-up analysis on the product space I × Ω . In Section 5 we derive the above mentioned
quadratic identity for blow-up masses. In Section 6 we apply our blow-up analysis in order to prove
a Trudinger–Moser inequality. Finally, in Section 7 we conclude with some remarks on sharpness.

2. Main results

We consider solution sequences {vn}n∈N , λn → λ0, to

−�vn = λn

∫
[−1,1]

α

(
eαvn∫
Ω

eαvn
− 1

|Ω|
)

P(dα),

∫
Ω

vn = 0. (10)

As usual, we define the blow-up sets

S± = {
p ∈ Ω

∣∣ there exists p±,n ∈ Ω, p±,n → p such that vn(p±,n) → ±∞}
and we denote S = S+ ∪ S− . We define the measures ν±,n ∈ M(Ω) by setting

ν±,n = λn

∫
I±

|α|eαvn∫
Ω

eαvn
P(dα), (11)

where we denote I+ = (0,1] and I− = [−1,0). Since
∫
Ω

ν±,n � λn
∫

I |α|P(dα) � λn , we may assume

that ν±,n
∗
⇀ ν± for some measures ν± ∈ M(Ω). Our first result states that, similarly to the well-

known case P = δ1, the blow-up set is finite and that a “minimum mass” is necessary for blow-up to
occur.

Theorem 2.1. Let {vn} be a solution sequence to (10) with λn → λ0 . Then, the following alternative holds.

(i) Compactness, lim supn→∞ ‖vn‖∞ < +∞: There exist v ∈ E and a subsequence {vnk } such that vnk → v
in E .

(ii) Concentration, lim supn→∞ ‖vn‖L∞(M) = +∞: The sets S± are finite and S = S+ ∪ S− 
= ∅. Moreover,
we have 0 � s± ∈ L1(Ω) such that

ν± = s± dx +
∑

p∈S±
n±,pδp

with n±,p � 4π for all p ∈ S .

Our main result is a finer description of the “blow-up masses” depending on α. To this end, it is
convenient to consider the following measures defined on the product space I × Ω . For every fixed
α ∈ I we define μn

α ∈ M(Ω) by setting

μn
α(dx) = λn

eαvn∫
Ω

eαvn
dx.
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We consider the following sequence of measures μn = μn(dα dx) ∈ M(I × Ω) defined by

μn = μn
α(dx)P(dα) = λn

eαvn∫
Ω

eαvn
P(dα)dx. (12)

Since, in view of Fubini’s theorem, for large values of n we have

μn(I × Ω) =
∫ ∫
I×Ω

λn
eαvn∫
Ω

eαvn
P(dα)dx = λn � λ0 + 1,

upon extracting a subsequence, we may assume that μn
∗
⇀ μ for some Borel measure μ = μ(dα dx) ∈

M(I × Ω). The following results hold.

Theorem 2.2. Suppose that P is a Borel probability measure on [−1,1]. Then:

(i) the limit measure μ has the form

μ(dα dx) =
[ ∑

p∈S
m(α, p)δp(dx) + r(α, x)dx

]
P(dα), (13)

where m(·, p) ∈ L∞(I,P) for all p ∈ S , δp denotes the Dirac mass on Ω centered at p and r ∈ L1(I ×Ω);
(ii) for every p ∈ S we have

sup
α∈I

m(α, p) � λ0 =
∑
p∈S

∫
I

m(α, p)P(dα) +
∫ ∫
I×Ω

r(α, x)P(dα)dx; (14)

(iii) for every fixed p ∈ S , the following relation is satisfied by m(α, p):

8π

∫
I

m(α, p)P(dα) =
{∫

I

αm(α, p)P(dα)

}2

; (15)

(iv) we have

∫
I±

|α|m(α, p)P(dα) = n±,p,

∫
I±

|α|r(α, x)P(dα) = s±(x),

with n±,p and s±(x) defined in Theorem 2.1. Furthermore m(α, p) ≡ 0 for every p ∈ S± \S∓ and α ∈ I∓ .

Finally, we apply our blow-up analysis in order to derive an improved Trudinger–Moser inequality
for the variational functional associated to (10).

Theorem 2.3. Let P be a Borel probability measure on I = [−1,1]. Then, Jλ(v), v ∈ E , defined by (8) is
bounded below if

λ � 8π

max{∫I+ α2 P(dα),
∫

I− α2 P(dα)} . (16)
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An interpretation of (16) may be as follows. We recall the classical Trudinger–Moser inequality in
the sharp form due to Fontana [10]:

∫
Ω

ev � CTM exp

{
1

16π
‖∇v‖2

2

}
, v ∈ E, (17)

where CTM > 0 is a constant determined by Ω . It is not difficult to check that by rescaling (17) we
obtain boundedness below of Jλ for all

λ � 8π∫
[−1,1] α2 P(dα)

,

see Lemma 6.1 below. Hence, (16) emphasizes the fact that “the positively supported part of P and
the negatively supported part of P do not interact”.

We now compare (16) with previously known results. In the special case P = δ1, the Dirac measure
on [−1,1] concentrated at α = 1, Jλ reduces to

Jλ(v) = 1

2
‖∇v‖2

2 − λ log
∫
Ω

ev .

Condition (16) yields boundedness below of Jλ|P=δ1 when λ � 8π . This condition is equivalent
to (17). In the other case where P is given by (3), Eq. (9) is related to (4) with n+ = τ , n− = 1 − τ .
Then it holds that

Jλ(v) = 1

2
‖∇v‖2

2 − λ

(
τ log

∫
Ω

ev + (1 − τ ) log
∫
Ω

e−v
)

.

This functional was derived by [14,22]. In this case, condition (16) yields boundedness below of
Jλ|P=τδ1+(1−τ )δ−1 when

λ � 8π

max{τ ,1 − τ } . (18)

The above is exactly the improved sharp Trudinger–Moser inequality recently derived in [26,20].
We conclude by some remarks on sharpness. It is not difficult to check that (16) is also a necessary

condition if P is of the form

P = τδα + (1 − τ )δ−β, α,β, τ ∈ [0,1],

thus providing an extension of the optimal result in [20]. However, in general the sharpness of (16)
may not be expected for every choice of P , and the derivation of an inequality which is sharp for
every choice of P , if at all possible, seems to require an altogether different method. Some further
remarks on sharpness are contained in Section 7.

3. Proof of Theorem 2.1

In order to prove Theorem 2.1, we need some lemmas. The first is a direct analogy of Corollary 4,
p. 1234 in [2]. Let D ⊂ R2 be a bounded domain and for every a ∈ R let a+ = max{a,0} be the
positive part of a. Recall that I+ = (0,1].
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Lemma 3.1. Suppose that {un} is a solution sequence to

−�un =
∫
I+

Wα,neαun P(dα) in D,

where ‖Wα,n‖Lp(D) � C1 , p ∈ (1,∞], ‖u+
n ‖L1(D) � C2 . Suppose that for every n we have

∫ ∫
D×I+

|Wα,n|eαun P(dα)dx � ε0 <
4π

p′ ,

where p′ = p/(p − 1) is the conjugate exponent to p. Then, {u+
n } is bounded in L∞

loc(D).

Proof. Without loss of generality, we may assume D = B R . Split un = w1,n + w2,n , where w1,n satis-
fies

−�w1,n =
∫
I+

Wα,neαun P(dα) in D, w1,n = 0 on ∂ D. (19)

Then, �w2,n = 0 in Ω . By the mean value theorem for harmonic functions, we have

∥∥w+
2,n

∥∥
L∞(B R/2)

� C
∥∥w+

2,n

∥∥
L1(B R )

� C
(∥∥u+

n

∥∥
L1(B R )

+ ∥∥w+
1,n

∥∥
L1(B R )

)
� C3.

Now recall that, setting ϕn = ∫
I+ Wα,neαun P(dα), we have by assumption

‖ϕn‖L1(D) � ε0 < 4π/p′.

In view of Theorem 1, p. 1226 in [2], we have

∫
D

exp

{
4π(1 − η)

‖ϕ‖1
|w1,n|

}
dx � π

η
(diam Ω)2, η ∈ (0,1).

Let ζ0 ∈ (0,1) be such that ε0 = 4π(1 − ζ0)/p′ and η0 ∈ (0, ζ0). Then, we have

4π(1 − η0)

‖ϕn‖1
� 4π(1 − η0)

ε0
= 1 − η0

1 − ζ0
p′ > p′.

Putting δ = p′(ζ0 − η0)/(1 − ζ0), we have

∫
D

e(p′+δ)|w1,n| dx �
∫
D

exp

{
4π(1 − η0)

‖ϕ‖1
|w1,n|

}
dx � C4.

Therefore, {ew1,n } is bounded in L p′+δ(Ω) and consequently {eun } is bounded in L p′+δ(B R/2) for some
δ > 0. In view of Fubini’s theorem and of Hölder’s inequality, it follows that:
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∫
B R/2

∣∣∣∣
∫
I+

Wα,neαun P(dα)

∣∣∣∣
r

dx �
∫

B R/2

P(I+)r−1
∫
I+

∣∣Wα,neαun
∣∣r P(dα)dx

�
∫ ∫

I+×B R/2

∣∣Wα,neαun
∣∣r

dxP(dα)

�
∫ ∫

I+×B R/2

|Wα,n|rer|un| dxP(dα)

�
∫
I+

‖Wα,n‖r
L p(Ω)

( ∫
B R/2

e(pr/(p−r))|un|
)(p−r)/p

P(dα)

=
∫
I+

‖Wα,n‖r
L p(Ω)

∥∥eun
∥∥r

L p′+δ(B R/2)
P(dα),

where r ∈ (1, p) is chosen to satisfy pr/(p − r) = p′ + δ. By elliptic estimates, we conclude that w1,n

is bounded in L∞(B R/4). Therefore, {un} is bounded in L∞(B R/4). �
Now we show the following result for equations defined on manifolds using some ideas from [19],

Lemma 3.2, p. 188. Let (Ω, g) be a Riemannian surface. We consider solution sequences {un} to the
equation

−�un =
∫
I+

Wα,neαun P(dα) + fn on Ω (20)

and set

σn =
∫
I+

|Wα,n|eαun P(dα).

Lemma 3.2. Suppose that un is a solution sequence to (20), with ‖Wα,n‖p � C5 , ‖ fn‖∞ � C6 , ‖u+
n ‖1 � C7 .

Suppose that σn
∗
⇀ σ and σ({x0}) < 4π/p′ for some x0 ∈ Ω . Then, there exists a neighborhood U ⊂ Ω of x0

such that

lim sup
n→∞

∥∥u+
n

∥∥
L∞(U )

< +∞.

Proof. We take a local isothermal chart (U ,ψ) around x0 such that ψ(x0) = 0, g = eξ(X)(dX2
1 + dX2

2).
Then, un(X) = un(ψ−1(X)) satisfies

−�X un =
( ∫

I+

Wα,neαun P(dα) + fn

)
eξ in D = ψ(U ).

Let hn be defined by

−�X hn = fneξ in D, hn = 0 on ∂ D.
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It follows that ‖hn‖L∞(Ω) � C8, and ũn = un − hn satisfies

−�X ũn = eξ

∫
I+

Wα,neαhn eαũn P(dα) in D

with

∥∥eξ Wα,neαhn
∥∥

L p(D)
� e‖hn‖L∞(D)+‖ξ‖L∞(Ω)‖Wα,n‖L p(Ω) � C9,∥∥ũ+

n

∥∥
L1(D)

�
∥∥u+

n

∥∥
L1(Ω)

+ |D|‖hn‖L∞(D) � C10.

We have

∫
D

eξ

∫
I+

|Wα,n|eαhn eαũn P(dα)dX =
∫ ∫

I+×D

|Wα,n|eαun eξ P(dα)dX

=
∫ ∫

I+×U

|Wα,n|eαun P(dα)dx = σn(U ).

From the assumptions, we derive that there exists U ′ ⊂ U such that

∫ ∫
I+×U ′

|Wα,n|eαun P(dα)dx � ε0 <
4π

p′ .

Now the conclusion follows from Lemma 3.1. �
Now we return to the analysis of Eq. (10). We denote by G = G(x, y) the Green’s function associ-

ated to −� on Ω . Namely, G is defined by

⎧⎪⎪⎨
⎪⎪⎩

−�xG(x, y) = δy − 1

Ω
in Ω,∫

Ω

G(x, y)dx = 0.

For every solution vn to (10) we define a “positive part” ũ+,n and a “negative part” ũ−,n by setting
ũ±,n = G � ν±,n , where ν±,n is defined in (11). Then, vn = ũ+,n − ũ−,n and furthermore,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�ũ±,n = λn

∫
I±

|α|
(

e|α|(ũ±,n−ũ∓,n)∫
Ω

e|α|(ũ±,n−ũ∓,n)
− 1

|Ω|
)

P(dα),

∫
Ω

ũ±,n = 0.

(21)

Then, Theorem 2.1 is proven by the blow-up analysis to ũ±,n .

Proof of Theorem 2.1. Let

Sũ+ = {
p ∈ Ω

∣∣ ν+
({p}) � 4π

}
.
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Since

ν+,n(Ω) = λn

∫
I+

αP(dα) → ν+(Ω) = λ0

∫
I+

αP(dα) < +∞,

it holds that �Sũ+ < +∞. Writing (21) in the form

−�ũ+,n =
∫
I+

Vα,n eαũ+,n P(dα) − λn

|Ω|
∫
I+

αP(dα)

with

Vα,n = λn
αe−αũ−,n∫

Ω
eαvn

,

first, we have
∫
Ω

eαvn � |Ω| by Jensen’s inequality. Next, we have

ũ−,n � −λnC11

∫
I−

|α|P(dα) � −C12

because G(x, y) is bounded below, and consequently,

‖Vα,n‖L∞(Ω) � C13

uniformly for α ∈ I+ . If Sũ+ = ∅, we have

lim sup
n→∞

∥∥ũ++,n

∥∥
L∞(Ω)

< +∞

by Lemma 3.2 with p = +∞ and the compactness of Ω . Then, by elliptic estimates,

lim sup
n→+∞

∥∥ũ++,n

∥∥
W 2,r(Ω)

< +∞, r ∈ [1,+∞),

and therefore we may extract a subsequence {ũ+,nk } such that ũ+,nk → ũ+ , for some ũ+ ∈ E . Similarly,
if Sũ− = ∅, then there exists a subsequence ũ−,nl → ũ− for some ũ− ∈ E , where

Sũ− = {
q ∈ Ω

∣∣ ν−
({q}) � 4π

}
.

In the case of Sũ+ 
= ∅, we have

lim sup
n→+∞

∥∥ũ++,n

∥∥
L∞(ω)

< +∞

for every ω � Ω \ Sũ+ , and therefore, there exists s+ ∈ L∞
loc(Ω \ Sũ+ ) such that ν+,n|ω → s+ in L p(ω)

for all p ∈ [1,∞). It follows that ν+|ω = s+ dx, while the singular part of ν+ is supported on Sũ+ .
Hence,

ν+ = s+ +
∑

p∈Sũ+

n+,pδp
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for some n+,p � 4π , and similarly,

ν− = s− +
∑

q∈Sũ−

n−,qδq,

where n−,q � 4π . Finally, we claim

Sũ+ = S+, Sũ− = S−. (22)

To show the first equivalence, let p0 /∈ Sũ+ . Then, in view of Lemma 3.2 there exists a neighbor-
hood U ⊂ Ω of p0 such that

lim sup
n→∞

∥∥ũ++,n

∥∥
L∞(U )

< +∞.

Recall that vn = ũ+,n − ũ−,n � ũ+,n + C12. It follows that

lim sup
n→∞

∥∥v+
n

∥∥
L∞(U )

< +∞

and consequently, p0 /∈ S+ . We have thus S+ ⊂ Sũ+ . To show the reverse relation, we note that Sũ+
coincides with the singular support of ν+ , and consequently the sequence of functions

ν+,n = λn

∫
I+

αeαvn∫
Ω

eαvn
P(dα)

is L∞-unbounded near p0 ∈ Sũ+ . We derive that, for every r > 0:

+∞ = lim
n→∞ sup

B(p0,r)
ν+,n = lim

n→∞ sup
x∈B(p0,r)

λn

∫
I+

αeαvn∫
Ω

eαvn
P(dα)

� lim
n→∞ sup

B(p0,r)
λn

evn

|Ω| .

In particular,

lim
n→∞ sup

B(p0,r)
vn = +∞

and hence p0 ∈ S+ . The proof for S− is analogous. �
4. Proof of Theorem 2.2, parts (i), (ii), (iv)

We begin with some lemmas. Let

μ̃±,n(dx) = λn

∫
I±

eαvn∫
Ω

eαvn
P(dα)dx.

Since μ̃±,n(Ω) = λnP(I±) � λn , upon extracting a subsequence we may assume μ̃±,n
∗
⇀ μ̃± for some

Borel measures μ̃± = μ̃±(dx) ∈ M(Ω).



Author's personal copy

H. Ohtsuka et al. / J. Differential Equations 249 (2010) 1436–1465 1447

Lemma 4.1. There exist s̃± ∈ L1(Ω) ∩ L∞
loc(Ω \ S±) and m̃±(p) � 4π , p ∈ S± , such that

μ̃± = s̃± +
∑

p∈S±
m̃±(p)δp . (23)

Proof. By definition of S± , for every ω � Ω \ S± there exists C14 = C14(ω) such that supω vn � C14
for all n ∈ N. It follows that, for any measurable E ⊂ ω

μ̃±,n(E) = λn

∫
E

dx

∫
I±

eαvn∫
Ω

eαvn
P(dα) � λneC14

|Ω| |E|

by Jensen’s inequality. Thus, the singular parts of μ̃± are contained in S± and therefore, we have (23)
for some s̃± ∈ L1(Ω) ∩ L∞

loc(Ω \ S±) and for some m̃±(p) > 0, p ∈ S± . Since μ̃±,n � ν±,n , where ν±,n

is the measure defined in (11), we conclude that m̃(p) � n±,p � 4π . �
Recall from Section 2 that

μn(dα dx) = λn
eαvn∫
Ω

eαvn
P(dα)dx

and that μn
∗
⇀ μ.

Lemma 4.2. There exist ζp ∈ M(I) and r ∈ L1(I × Ω), r � 0, such that

μ(dα dx) =
∑
p∈S

ζp(dα)δp(dx) + r(α, x)P(dα)dx.

Proof. It suffices to show that the singular part of μ is supported on I × S . To see this, we take
A � I × (Ω \ S). Then there exists C15 = C15(A) such that ‖αvn‖L∞(A) � C15. Hence, for large n we
obtain

λn
eαvn∫
Ω

eαvn
� (λ0 + 1)

eC15

|Ω| ,

and therefore, μn does not concentrate on A. �
Lemma 4.3. For every p ∈ S and for every Borel set η ⊂ I , there holds that ζp(η) � λ0P(η). In particular,
ζp is absolutely continuous with respect to P .

Proof. Given η ⊂ I and ε > 0, we have a compact set κ ⊂ I and an open set ω ⊂ I such that κ ⊂
η ⊂ ω and P(ω) � P(κ) + ε because of the regularity properties of Borel measures. Let ψ ∈ C(I) be
such that ψ ≡ 1 on κ , suppψ ⊂ ω, 0 � ψ � 1, and for ρ > 0 sufficiently small let ϕ ≡ 1 on Bρ(p),
suppϕ ⊂ B(p,2ρ), 0 � ϕ � 1. Then,

∫ ∫
I×Ω

ψ(α)ϕ(x)μn(dα dx) = λn

∫ ∫
I×Ω

ϕ(x)ψ(α)
eαvn∫
Ω

eαvn
P(dα)dx

� λn

∫ ∫
I×Ω

ψ(α)
eαvn∫
Ω

eαvn
P(dα)dx = λn

∫
I

ψ(α)P(dα)

� λnP(ω) � λn
(P(κ) + ε

)
� λn

(P(η) + ε
)
.
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Taking limits, it follows that

∫ ∫
I×Ω

ψ(α)ϕ(x)μ(dα dx) � λ0
(P(η) + ε

)
.

On the other hand, we have

∫ ∫
I×Ω

ψ(α)ϕ(x)μ(dα dx) =
∫ ∫
I×Ω

ψ(α)ϕ(x)

[∑
q∈S

ζqδq + r(α, x)P(dα)dx

]

=
∫
I

ψ(α)ζp +
∫ ∫
I×Ω

ψ(α)ϕ(x)r(α, x)P(dα)dx � ζp(κ).

Hence, we derive that

ζp(κ) � λ0
(P(η) + ε

)
.

By Borel regularity of ζp , we obtain

ζp(η) = sup
{
ζp(κ)

∣∣ κ compact, κ ⊂ η
}

� λ0
(P(η) + ε

)
.

Finally, since ε > 0 is arbitrary, we conclude that

ζp(η) � λ0P(η)

and the statement follows. �
Proof of Theorem 2.2. Proof of (i) and (ii). In view of Lemma 4.3, for every p ∈ S there exists
m(α, p) ∈ L1(I,P) such that ζp = m(α, p)P(dα). Moreover, for every η ⊂ I we have

1

P(η)

∫
η

m(α, p)P(dα) � λ0.

Now, (13) and (14) follow from the Lebesgue differentiation theorem.
Proof of (iv). Let ϕ ∈ C(Ω), ψ ∈ C(I), 0 � ψ(α) � 1, ψ ≡ 1 on I+ , ψ ≡ 0 on [−1,−ε], for some

fixed ε > 0. We have

∫ ∫
I×Ω

|α|ϕ(x)ψ(α)μn(dα dx)

=
∫
Ω

ϕ(x) ν+,n(dx) + λn

∫
[−ε,0]

|α|ψ(α)

∫
Ω

ϕ(x)eαvn∫
Ω

eαvn
dxP(dα). (24)

Taking limits on the left-hand side of (24) as n → ∞, we have in view of (i)
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∫ ∫
I×Ω

|α|ϕ(x)ψ(α)μn(dα dx)

→
∑
p∈S

∫
I

|α|ψ(α)m(α, p)P(dα)ϕ(p) +
∫ ∫
I×Ω

|α|ϕ(x)ψ(α)r(α, x)P(dα)dx.

Furthermore,

∫
I

|α|ψ(α)m(α, p)P(dα) =
∫
I+

|α|m(α, p)P(dα) +
∫

[−ε,0]
|α|ψ(α)m(α, p)P(dα)

and

∫ ∫
I×Ω

|α|ϕ(x)ψ(α)r(α, x)P(dα)dx

=
∫ ∫

I+×Ω

|α|ϕ(x)r(α, x)P(dα)dx +
∫ ∫

[−ε,0]×Ω

|α|ϕ(x)ψ(α)r(α, x)P(dα)dx.

In view of (ii), we have

0 �
∫

[−ε,0]
|α|ψ(α)m(α, p)P(dα) � εP([−ε,0])λ0 � ελ0.

Moreover,

∣∣∣∣
∫ ∫

[−ε,0]×Ω

|α|ϕ(x)ψ(α)r(α, x)P(dα)dx

∣∣∣∣ � ε‖ϕ‖∞
∫ ∫
I×Ω

r(α, x)P(dα)dx.

Similarly, taking limits on the right-hand side of (24), we have

∫
Ω

ϕν+,n →
∑

p∈S+
n+,pϕ(p) +

∫
Ω

s+ϕ.

Furthermore, for large values of n,

λn

∫
[−ε,0]

|α|ψ(α)

∫
Ω

ϕ(x)eαvn∫
Ω

eαvn
dxP(dα) � λn‖ϕ‖∞ε � (λ0 + 1)‖ϕ‖∞ε.

Therefore, we conclude from (24) and the estimates above that

∑
p∈S+

n+,pϕ(p) +
∫
Ω

s+ϕ + b1ε‖ϕ‖∞

=
∑
p∈S

∫
I+

|α|m(α, p)P(dα)ϕ(p) +
∫ ∫

I+×Ω

ϕ(x)r(α, x)|α|P(dα)dx + b2ε‖ϕ‖∞,
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where b1, b2 are quantities which are uniformly bounded with respect to ε > 0. Letting ε ↓ 0, we
obtain

∑
p∈S+

n+,pϕ(p) +
∫
Ω

s+ϕ

=
∑
p∈S

∫
I+

|α|m(α, p)P(dα)ϕ(p) +
∫ ∫

I+×Ω

|α|r(α, x)ϕ(x)P(dα)dx. (25)

Now let ϕ ∈ C(Ω) be such that suppϕ ⊂ Ω \ S . We derive

∫
Ω

s+ϕ =
∫
Ω

ϕ(x)

{∫
I+

|α|r(α, x)P(dα)

}
dx

and consequently

s+ =
∫
I+

|α|r(α, x)P(dα)

for a.e. x ∈ Ω since S is null set with respect to dx. Therefore (25) becomes

∑
p∈S+

n+,pϕ(p) =
∑
p∈S

∫
I+

|α|m(α, p)P(dα)ϕ(p). (26)

Now fix p0 ∈ S+ and let ϕ ∈ C(Ω) be such that ϕ(p0) = 1 and suppϕ ⊂ Bρ(p0), with Bρ(p0)∩S =
{p0}. We conclude that

n+,p0 =
∫
I+

|α|m(α, p0)P(dα)

for all p0 ∈ S+ .
Finally, for p0 ∈ S− \ S+ , let ϕ ∈ C(Ω) as above. Then we get

0 =
∫
I+

|α|m(α, p0)P(dα)

from (26) and consequently we have m(α, p0) ≡ 0 for α ∈ I+ since m(·, p) � 0 a.e. and m(·, p) ∈
L1(I,P).

The proof of (iv) in the “I− case” is analogous. �
5. Proof of Theorem 2.2, part (iii)

We first need a lemma.

Lemma 5.1. Let Πn ∈ M(I2 × Ω2) be the measure defined by

Πn
(
dα dα′ dx dx′) = μn(dα dx)μn

(
dα′ dx′),
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where μn is the measure defined in (12). Then Πn
∗
⇀ Π , where Π ∈ M(I2 × Ω2) is given by

Π =
[ ∑

p,q∈S
m(α, p)m

(
α′,q

)
δp(dx)δq

(
dx′) +

( ∑
p∈S

m(α, p)δp(dx)

)
r
(
α′, x′)dx′

+
(∑

q∈S
m

(
α′,q

)
δq

(
dx′))r(α, x)dx + r(α, x)r

(
α′, x′)dx dx′

]
P(dα)P(

dα′).

Proof. Let ϕ = ϕ(α, x), ψ = ψ(α′, x′) ∈ C(I × Ω). Then,

∫ ∫ ∫ ∫

I2×Ω2

ϕ(α, x)ψ
(
α′, x′)Πn(dα dα′ dx dx′)

=
∫ ∫
I×Ω

ϕ(α, x)μn(dα dx)

∫ ∫
I×Ω

ψ
(
α′, x′)μn

(
dα′ dx′).

Therefore, as n → ∞ we have

∫ ∫ ∫ ∫

I2×Ω2

ϕ(α, x)ψ
(
α′, x′)Πn

(
dα dα′ dx dx′)

→
∫
I

[ ∑
p∈S

m(α, p)ϕ(α, p) +
∫
Ω

r(α, x)ϕ(α, x)dx

]
P(dα)

×
∫
I

[∑
q∈S

m
(
α′,q

)
ψ

(
α′,q

) +
∫
Ω

r
(
α′, x′)ψ(

α′, x′)dx′
]
P(

dα′)

=
∫ ∫

I2

[ ∑
p,q∈S

m(α, p)m
(
α′,q

)
ϕ(α, p)ψ

(
α′,q

)

+
∑
p∈S

m(α, p)ϕ(α, p)

∫
Ω

r
(
α′, x′)ψ(

α′, x′)dx′

+
∑
q∈S

m
(
α′,q

)
ψ

(
α′,q

) ∫
Ω

r(α, x)ϕ(α, x)dx

+
∫ ∫

Ω2

r(α, x)r
(
α′, x′)ϕ(α, x)ψ

(
α′, x′)dx dx′

]
P(dα)P(

dα′).

Since the linear combinations of functions of the type ϕ , ψ above are dense in C(I2 × Ω2), the
asserted representation of Π = Π(dα dα′ dx dx′) follows. �

Given a solution v ∈ E to (9), for every α ∈ I we define

μα = λ
eαv∫
Ω

eαv
. (27)
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Let uα ∈ E be defined by

uα(x) = G � μα(x) =
∫
Ω

G
(
x, x′)μα

(
x′)dx′,

where G denotes the Green’s function (see Section 3). Then,

v =
∫
I

αuα P(dα)

and (uα)α∈I satisfies the “Liouville system”:

−�uα = λ

(
exp{α ∫

I α
′uα′ P(dα′)}∫

Ω
exp{α ∫

I α
′uα′ P(dα′)} − 1

|Ω|
)

,

∫
Ω

uα = 0, α ∈ I. (28)

In order to prove part (iv) in Theorem 2.2 we use the “symmetrization method” introduced in [25,18,
29]. Such a method in turn exploits the symmetry of the Green’s function, namely

G
(
x, x′) = G

(
x′, x

)
, ∀x, x′ ∈ Ω, (29)

as well as a differentiation property of μα . More precisely, we use the fact that

∇μα = λ
αeαv∫
Ω

eαv
∇v = αμα∇v = αμα∇

∫
I

α′uα′ P(
dα′)

= αμα

∫
I

α′∇uα′ P(
dα′) = αμα

∫
I

α′(∇G) � μα′ P(
dα′). (30)

Let χ be a C1-vector field over Ω , and define

ρχ :Ω2 \ {(
x, x′) ∈ Ω2

∣∣ x = x′} → R

by

ρχ

(
x, x′) = 1

2

[
χ(x) · ∇xG

(
x, x′) + χ

(
x′) · ∇x′ G

(
x, x′)]. (31)

Since |∇xG(x, x′)| = O (dist(x, x′)−1), ρχ (x, x′) is a bounded function.

Lemma 5.2 (“Symmetrization”). Let v be a solution to (9), and define μα by (27). Then,

∫ ∫
I×Ω

(divχ)μα P(dα)dx = −
∫ ∫

I2

αα′ P(dα)P(
dα′)∫ ∫

Ω2

ρχ

(
x, x′)μαμα′ dx dx′.
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Proof. In view of (30), we have

−
∫
I

P(dα)

∫
Ω

μα(divχ)dx

=
∫ ∫

I2

P(dα)P(
dα′)∫ ∫

Ω2

αα′μα(x)μα′
(
x′)χ(x) · ∇xG

(
x, x′)dx dx′ =: A. (32)

Then we “symmetrize” this A. That is, re-labeling x, x′ and α,α′ , we derive from (29):

A =
∫ ∫

I2

αα′ P(dα)P(
dα′) ∫ ∫

Ω2

μα(x)μα′
(
x′)χ(x) · ∇xG

(
x, x′)dx dx′

=
∫ ∫

I2

αα′ P(dα)P(
dα′) ∫ ∫

Ω2

μα(x)μα′
(
x′)χ(

x′) · ∇x′ G
(
x′, x

)
dx dx′

=
∫ ∫

I2

αα′ P(dα)P(
dα′) ∫ ∫

Ω2

μα(x)μα′
(
x′)χ(

x′) · ∇x′ G
(
x, x′)dx dx′.

Addition of the first and the last terms yields:

A =
∫ ∫

I2

αα′ P(dα)P(
dα′) ∫ ∫

Ω2

ρχ

(
x, x′)μα(x)μα′

(
x′)dx dx′.

Thus, the proof is completed. �
Proof of Theorem 2.2(iv). Let {vn} be a solution sequence to (10) with λ = λn → λ0. For every α ∈ I
and for every n, let

μn
α = λn

eαvn∫
Ω

eαvn
.

In view of Lemma 5.2 we have, for any C1-vector field χ :

∫ ∫
I×Ω

(divχ)μn
α P(dα)dx

= −
∫ ∫

I2

αα′ P(dα)P(
dα′)∫ ∫

Ω2

ρχ

(
x, x′)μn

α(x)μn
α′

(
x′)dx dx′.

Recalling the definitions of the measures μn = μn(dα dx) from (12) and Πn = Πn(dα dα′ dx dx′) from
Lemma 5.1, the above is equivalent to

∫ ∫
I×Ω

(divχ)μn(dα dx) = −
∫ ∫

I2

∫ ∫

Ω2

αα′ρχ

(
x, x′)Πn

(
dα dα′ dx dx′). (33)

If χ is such that ρχ is continuous on Ω2, then taking limits in (33) and using Lemma 5.1, we obtain:
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∑
p∈S

∫
I

(divχ)(p)m(α, p)P(dα) +
∫ ∫
I×Ω

(divχ)(x)r(α, x)P(dα)dx

=
∫ ∫

I2

[ ∑
p,q∈S

m(α, p)m
(
α′,q

)
ρχ (p,q) +

∑
p∈S

m(α, p)

∫
Ω

r
(
α′, x′)ρχ

(
p, x′)dx′

+
∑
q∈S

m
(
α′,q

) ∫
Ω

r(α, x)ρχ (x,q)dx

+
∫ ∫

Ω2

r(α, x)r
(
α′, x′)ρχ

(
x, x′)dx dx′

]
P(dα)P(

dα′). (34)

The continuity of ρχ is achieved by the modified second moment used in [18]. That is, we fix p0 ∈ S
and take an isothermal coordinate chart (ψ, U ) satisfying ψ(p0) = 0, g(X) = eξ (dX2

1 + dX2
2), and

ξ(0) = 0. Let B(p0,2r) ⊂ U and B(p0,2r) ∩ S = {p0}. We identify functions defined on ψ(U ) with
their pullbacks to U . Then, the Green’s function may be written in the following form:

G
(

X, X ′) = − 1

2π
ln

∣∣X − X ′∣∣ + ω
(

X, X ′),
∇X G

(
X, X ′) = − 1

2π

X − X ′

|X − X ′|2 + ∇Xω
(

X, X ′),

∇X ′ G
(

X, X ′) = 1

2π

X − X ′

|X − X ′|2 + ∇X ′ω
(

X, X ′),
with ω satisfying

‖ω‖L∞(B(p0,2r)2) + ‖∇Xω‖L∞(B(p0,2r)2) + ‖∇X ′ω‖L∞(B(p0,2r)2) = O (1)

as r → 0. Let ϕ ∈ C(Ω) be a cut-off function such that ϕ ≡ 1 in B(p0, r) and ϕ ≡ 0 in Ω \ B(p0,2r).
We choose χ(X) = 2Xϕ . With this choice of χ we may write:

ρχ

(
X, X ′) =

(
− 1

2π
+ η

)
ϕ,

where η(X, X ′) is a continuous function on Ω2. Moreover, we have

divχ(X) = |g|−1/2∂X j

(|g|1/2(χ) j) = 4 + O (X).

Consequently, we may expand each term in (34), as r ↓ 0:

∑
p∈S

∫
I

(divχ)(p)m(α, p0)P(dα) → 4
∫
I

m(α, p0)P(dα);

∣∣∣∣
∫ ∫
I×Ω

(divχ)(x)r(α, x)P(dα)dx

∣∣∣∣

�
(
4 + o(1)

) ∫ ∫
I×B(p0,2r)

r(α, x)P(dα)dx = o(1);
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∫ ∫

I2

∑
p,q∈S

m(α, p)m
(
α′,q

)
ρχ(p,q)P(dα)P(

dα′)

→ − 1

2π

∫ ∫

I2

m(α, p0)m
(
α′, p0

)P(dα)P(
dα′);

∫ ∫

I2

∑
p∈S

m(α, p)

∫
Ω

r
(
α′, x′)ρχ

(
p, x′)dx′ P(dα)P(

dα′)

=
∫ ∫

I2

m(α, p0)P(dα)P(
dα′) ∫

B(p0,2r)

r
(
α′, x′)(− 1

2π
+ O (1)

)
dx′

= o(1).

Similarly,

∫ ∫

I2

∑
q∈S

m
(
α′,q

) ∫
Ω

r(α, x)ρχ (x,q)P(dα)P(
dα′) = o(1),

∫ ∫

I2

∫ ∫

Ω2

r(α, x)r
(
α′, x′)ρχ

(
x, x′)dx dx′ P(dα)P(

dα′)

=
∫ ∫

I2

∫ ∫

B(p0,2r)2

r(α, x)r
(
α′, x′)(− 1

2π
+ O (1)

)
dx dx′ P(dα)P(

dα′)

= o(1).

Now the asserted identity (iv) follows, and Theorem 2.2 is completely established. �
6. Proof of Theorem 2.3

The basic ideas of the proof of Theorem 2.3 are the following. Let

Λ =
{
λ ∈ [0,+∞)

∣∣∣ inf
v∈E

Jλ(v) > −∞
}

and

λ̄ = 8π

max{∫I+ α2 P(dα),
∫

I− α2 P(dα)} . (35)

In order to prove Theorem 2.3 we show [0, λ̄] ⊂ Λ. Setting

λ0 = supΛ,

the proof is reduced to showing that

λ0 � λ̄ (36)
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and

inf
E

Jλ0 > −∞ if λ0 = λ̄. (37)

To get (36) we show the existence of a blow-up sequence of solutions vn to (10) with λn → λ0 by an
argument attributed to Ding (see [12] or [20]). Then, the lower bound (36) for λ0 follows from the
mass identity (15). Next, we show (37) by the following splitting argument for Jλ . We take λn ↑ λ0.
We have the boundedness below and coercivity of Jλn for all n. Let vn ∈ E satisfy Jλn (vn) = infE Jλn .
Then vn is a solution to Eq. (9) with λ = λn . Recall from Section 3, Eq. (21), that

ũ±,n(x) = λn

∫ ∫
I±×Ω

G
(
x, x′) |α|eαvn(x′)∫

Ω
eαvn

P(dα)dx′

and that vn = ũ+,n − ũ−,n and ũ±,n � −C12 for n. We may estimate:

Jλn (vn) � J+,λn (ũ+,n) + J−,λn (ũ−,n) −
∫
Ω

∇ũ+,n · ∇ũ−,n − C16, (38)

where we have set

J±,λ(v) = 1

2

∫
Ω

|∇v|2 − λ

∫
I±

log

( ∫
Ω

eαv
)

P(dα) (39)

for all v ∈ E . By rescaling the standard Moser–Trudinger inequality (17), the functionals J±,λ are both
bounded below if λ satisfies (16), see Lemma 6.1 below. Therefore, the main issue in proving (37) is
to control the cross-term

∫
Ω

∇ũ+,n · ∇ũ−,n . Integrating by parts, we have

∫
Ω

∇ũ+,n · ∇ũ−,n = λn

∫ ∫
I+×Ω

ũ−,n
αeαvn∫
Ω

eαvn
P(dα)dx.

Hence, we are reduced to showing that ũ−,n and vn cannot be both unbounded above at a given
point p ∈ Ω . That is, we have to show that “two-sided blow-up” does not occur when λ0 = limn→∞ λn

satisfies (16). This property will follow from Theorem 2.2.
We now proceed towards the detailed proof of Theorem 2.3. We begin by rescaling the Moser–

Trudinger inequality (17).

Lemma 6.1. The functional Jλ is bounded below if

λ � 8π∫
[−1,1] α2 P(dα)

. (40)

Proof. From (17), it follows that

∫
Ω

eαv � CTM exp

{
α2

16π
‖∇v‖2

2

}
(41)
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for every α ∈ I , and therefore,

1

2
‖∇v‖2

2 � 8π

α2
log

∫
Ω

eαv − 8π

α2
log CTM.

It follows that

Jλ(v) =
∫
I

(
1

2
‖∇v‖2

2 − λ log
∫
Ω

eαv
)

P(dα)

=
∫
I

{
λα2

8π

(
1

2
‖∇v‖2

2 − 8π

α2
log

∫
Ω

eαv
)

+ 1

2

(
1 − λα2

8π

)
‖∇v‖2

2

}
P(dα)

� 1

2

(
1 − λ

8π

∫
I

α2 P(dα)

)
‖∇v‖2

2 − λ log CTM

and hence the conclusion. �
Next, we derive an estimate for supα∈I m(α, p), using the mass identity (15).

Lemma 6.2. Let {vn} be a solution sequence for (10) and let p ∈ S = S+ ∪ S− be a blow-up point. Then,

sup
α∈I

m(α, p) � λ̄,

where we recall that λ̄ is defined in (35). Moreover,

sup
α∈I

m(α, p) > λ̄

for all p ∈ S+ ∩ S− .

Proof. Since p ∈ S is fixed, throughout this proof we put m(α, p) = mα . Since mα � 0, we have

∣∣∣∣
∫
I

αmα P(dα)

∣∣∣∣ =
∣∣∣∣
∫
I+

αmα P(dα) −
∫
I−

|α|mα P(dα)

∣∣∣∣

� max

{∫
I+

|α|mα P(dα),

∫
I−

|α|mα P(dα)

}
. (42)

By Hölder’s inequality, we have

( ∫
I±

αmα P(dα)

)2

�
∫
I±

α2 P(dα)

∫
I±

m2
α P(dα) � sup

I±
mα

∫
I±

α2 P(dα)

∫
I±

mα P(dα)

� sup
I

mα ·
∫
I

mα P(dα) ·
∫
I±

α2 P(dα). (43)
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From (42)–(43) we derive:

( ∫
I

αmα P(dα)

)2

� sup
α∈I

mα ·
∫
I

mα P(dα) · max

{∫
I+

α2 P(dα),

∫
I−

α2 P(dα)

}
.

Inserting this into the mass identity (15), we obtain

8π

∫
I

mα P(dα) � sup
α∈I

mα ·
∫
I

mα P(dα) · max

{∫
I+

α2 P(dα),

∫
I−

α2 P(dα)

}

and hence the first asserted estimate follows.
Now we suppose p ∈ S+ ∩ S− and we recall from Theorem 2.2(iv) that n±,p = ∫

I± |α|mα P(dα),
where n±,p � 4π are the masses defined in Theorem 2.1. Thus, the mass identity (15) may be written
in the form

8π

∫
I

mα P(dα) = (n+,p − n−,p)2.

The strict inequality

|n+,p − n−,p| < max{n+,p,n−,p}

is obvious. The same argument as above yields, keeping the strict inequality:

8π

∫
I

mα P(dα) < max
{
n2+,p,n2−,p

}

= max

{( ∫
I+

|α|mα P(dα)

)2

,

( ∫
I+

|α|mα P(dα)

)2}

� max

{∫
I+

α2 P(dα),

∫
I−

α2 P(dα)

}
·
∫
I

mα P(dα) · sup
α∈I

mα.

We conclude that

sup
α∈I

mα >
8π

max{∫I+ α2 P(dα),
∫

I− α2 P(dα)} = λ̄

for all p ∈ S+ ∩ S− , as desired. �
In order to prove (36) we need the following.

Proposition 6.3. There exist a sequence λn → λ0 and a solution sequence {vn} ⊂ E to (10) such that ‖vn‖ →
+∞.
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We observe that

inf
E

Jtλ0 > −∞, for all t ∈ (0,1),

inf
E

Jtλ0 = −∞, for all t > 1.

Following ideas in [12,20], for every ε ∈ (0,1) we introduce a “modified functional”:

Iε(v) = J (1−ε)λ0(v) − F

(
1

2
‖v‖2

)
= 1

2
‖v‖2 − (1 − ε)λ0G(v) − F

(
1

2
‖v‖2

)
,

where

G(v) =
∫
I

(
ln

∫
Ω

eαv dx

)
dP

and F is a suitable smooth function to be defined below. We shall prove that

inf
E

I0 = −∞, (44)

inf
E

Iε = Iε(vε) > −∞ for some vε ∈ E . (45)

The function F is defined using the following lemma from [12]:

Lemma 6.4. (See [12, Lemma 4.4].) For any two sequences of non-negative real numbers {an} and {bn} satis-
fying

lim
n→∞an = +∞, lim

n→∞
bn

an
� 0

there exists a smooth concave function F : [0,+∞) → R such that 0 < F ′(t) < 1, F ′(t) → 0 as t → +∞ and
bnk − F (ank ) → −∞ as k → ∞ for some subsequence k.

Though it is not mentioned in [12, Lemma 4.4] that F (t) is concave, it is clear from the proof.
We shall apply Lemma 6.4 with an = ‖vn‖2/2 and bn = Jλ0 (vn) for some suitable sequence vn , as

defined in the following.

Lemma 6.5. There exists a sequence {vn} ⊂ E such that:

(i) limn→∞ ‖vn‖ = +∞,
(ii) limn→∞ Jλ0 (vn)/‖vn‖2 � 0.

Proof. The proof is a consequence of the definition of λ0, and of the general form of J . We first note
that for every 0 < δ < 1 and for every C > 0 there exists v ∈ E such that

Jλ0(v) <
δ

2
‖v‖2 − C .

Indeed, if not, there exist δ̄ ∈ (0,1) and C̄ > 0 such that

Jλ0(v) � δ̄

2
‖v‖2 − C̄ ∀v ∈ E .
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The above is equivalent to

1

2
(1 − δ̄)‖v‖2 − λ0G(v) � −C̄ ∀v ∈ E,

that is,

Jλ0/(1−δ̄)(v) � − C̄

1 − δ̄
∀v ∈ E .

Since λ0/(1 − δ̄) > λ0, this contradicts the definition of λ0. Now let vn ∈ E satisfy

Jλ0(vn) <
1

2n
‖vn‖2 − n.

Note in particular that we have (ii).
Next we claim (i). Again, this is a consequence of the definition of λ0. We fix t ∈ (0,1) and denote

C(t) := inf
E

Jtλ0 > −∞.

We have

Jλ0(vn) = 1

t
Jtλ0(vn) + 1

2

(
1 − 1

t

)
‖vn‖2 � 1

t
C(t) − 1 − t

2t
‖vn‖2.

Recalling the definition of vn , it follows from the above that

1

2n
‖vn‖2 − n >

1

t
C(t) − 1 − t

2t
‖vn‖2.

That is,

1

2

(
1 − t

t
+ 1

n

)
‖vn‖2 > n + 1

t
C(t),

and the unboundedness of ‖vn‖ follows. �
At this point we set an = ‖vn‖2/2, bn = Jλ0 (vn), where vn is the sequence defined in Lemma 6.5,

and correspondingly we fix a function F , as given in Lemma 6.4. Here we recall that our F is concave
and t − F (t) is monotone non-decreasing. Therefore Iε is weakly lower semi-continuous in E . Now
we prove the asserted properties (44)–(45) of Iε .

Lemma 6.6. The functional Iε satisfies (44)–(45).

Proof. Property (44) follows readily from the definition of F . Indeed, we have I0(vnk ) = bnk −
F (ank ) → −∞, where {nk}k is the subsequence defined in Lemma 6.4. In order to prove (45), we
fix σ ∈ (0, ε). We note that in view of the properties of F there exists C > 0 such that F (t) � σ t + C
for all t � 0. Then,

Iε(v) � 1

2
‖v‖2 − (1 − ε)λ0G(v) − σ

2
‖v‖2 − C = (1 − σ) J (1−ε)λ0/(1−σ )(v) − C .
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Since (1 − ε)λ0/(1 − σ) < λ0, it follows that Iε is coercive and bounded below. Therefore we get a
minimizer since Iε is weakly lower semi-continuous. �
Proof of Proposition 6.3. Let εn → 0 and let vn ∈ E be a minimizer of Iεn . We note that vn satisfies
Eq. (9) with λ = λn , where

λn = 1 − εn

1 − en
λ0,

and

en = F ′
(

1

2
‖vn‖2

)
.

We claim that

‖vn‖ → +∞. (46)

Indeed, if not, there exists v∞ ∈ E such that vn ⇁ v∞ weakly in E , strongly in L p for all p � 1 and a.e.
Since Iε(v) is monotone non-decreasing in ε for fixed v ∈ E and I0 is weakly lower semi-continuous
in E , it holds that

lim inf
n→∞ Iεn (vn) � lim inf

n→∞ I0(vn) � I0(v∞) > −∞.

Since I0 is unbounded below, there exists v ∈ E such that I0(v) < I0(v∞). Set σ = I0(v∞) − I0(v).
Then for some large n, it follows that

Iεn (v) = I0(v) + εnλ
0G(v) < I0(v∞) − σ

2
� Iεn (vn).

This contradicts the minimizing property of vn , and therefore (46) is established. On the other hand,
if (46) holds, then en → 0 and λn → λ0. �
Proof of Theorem 2.3. As outlined in the beginning of this section, we divide the proof into showing
two steps (36) and (37). The existence of a sequence of solutions obtained in Proposition 6.3 guaran-
tees (36). Indeed from the property ‖vn‖ → ∞, the solution sequence {vn} cannot be compact in E .
Therefore the blow-up set S for this sequence is not empty in view of Theorem 2.1. Let p ∈ S . We
have

λ0 � sup
α∈I

m(α, p) � λ̄

from (14) and Lemma 6.2. Therefore we have

λ0 � λ̄ = 8π

max{∫I+ α2 dP,
∫

I− α2 dP} ,

and (36) is established.
In order to prove (37), we note that Jtλ0 is coercive on E if t ∈ (0,1). Indeed, we choose ε > 0

such that t/(1 − ε) < 1. Then, it holds that
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Jtλ0(v) = 1

2
‖v‖2

E − tλ0G(v) = ε

2
‖v‖2

E + (1 − ε)

[
1

2
‖v‖2

E − t

1 − ε
λ0G(v)

]

= ε

2
‖v‖2

E + (1 − ε) Jtλ0/(1−ε)(v) � ε

2
‖v‖2

E + (1 − ε) inf
E

Jtλ0/(1−ε)

and hence Jtλ0 is coercive. Therefore, given λn ↑ λ0, we obtain vn ∈ E such that

Jλn (vn) = inf
E

Jλn

by standard arguments. This {vn} is a solution sequence for (10). Let ν±,n be the measures defined
in (11) with v = vn and denote by ũ±,n the “positive” and the “negative” parts of vn , namely ũ±,n =
G � ν±,n . We have

Jλn(vn) = 1

2

∫
Ω

|∇ũ+,n|2 + 1

2

∫
Ω

|∇ũ−,n|2 −
∫
Ω

∇ũ+,n · ∇ũ−,n

− λn

∫
I+

log

( ∫
Ω

eα(ũ+,n−ũ−,n)

)
P(dα)

− λn

∫
I−

log

( ∫
Ω

e|α|(ũ−,n−ũ+,n)

)
P(dα).

Since G(x, x′) is bounded below, it follows that

Jλn(vn) � 1

2

∫
Ω

|∇ũ+,n|2 + 1

2

∫
Ω

|∇ũ−,n|2 −
∫
Ω

∇ũ+,n · ∇ũ−,n

− λn

∫
I+

log

( ∫
Ω

eα(ũ+,n+C12)

)
P(dα)

− λn

∫
I−

log

( ∫
Ω

e|α|(ũ−,n+C12)

)
P(dα)

� J+,λn (ũ+,n) + J−,λn(ũ−,n) −
∫
Ω

∇ũ+,n · ∇ũ−,n − C16

with J±,λ(v) defined by (39). Since we are assuming λ0 = λ̄ and λn ↑ λ0, we have λn � 8π∫
I± α2 P(dα)

.

Therefore,

J±,λn(v) � −C17, v ∈ E,

similarly to Lemma 6.1. The proof is thus reduced to

∣∣∣∣
∫
Ω

∇ũ+,n · ∇ũ−,n

∣∣∣∣ � C18. (47)
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In view of Lemma 6.2, S+ ∩S− = ∅ since λ0 = λ̄. Now, we take r > 0 such that
⋃

p∈S+ B(p, r) ∩S− =
∅. We have ‖ν±,n‖1 � λ0 + 1 and ‖ũ±,n‖W 1,q(Ω) � C19 by the L1-estimate, see [3], and also {ν±,n} and
{ũ±,n} are locally uniformly bounded in Ω \ S± by (22). Writing

∫
Ω

∇ũ+,n · ∇ũ−,n =
∫
Ω

ũ−,nν+,n

=
∫

⋃
p∈S+ B(p,r)

ũ−,nν+,n +
∫

Ω\⋃p∈S+ B(p,r)

ũ−,nν+,n,

we obtain (47) and the proof of (37) is complete. Hence, Theorem 2.3 is completely established. �
7. Remarks on sharpness

As already mentioned, Theorem 2.3 is optimal when P = τδα + (1 − τ )δ−β , τ ,α,β ∈ [0,1]. In
general, however, we cannot expect Theorem 2.3 to be sharp for every P , in view of the following
result which is derived using some dual inequalities from [26,27]. Such a result leads us to conjecture
that condition (48) below should be optimal for every choice of P .

Theorem 7.1 (Discrete case). If P(dα) is a finite sum of delta functions, then Jλ(v) defined by (8) for v ∈ E is
bounded below if

λ � inf

{
8πP(K±)

(
∫

K± αP(dα))2

∣∣∣ K± ⊂ I± ∩ suppP
}

(48)

when P 
= δ0 and for all λ > 0 if P = δ0 , where I− = [−1,0) and I+ = (0,1].

Proof. We rewrite

P = m0δ0 +
∑
αi 
=0

miδαi . (49)

The assertion is obvious if m0 = 1. For the moment, we take the case m0 = 0 because we can use

Jλ(v) = 1

2
‖∇v‖2

2 − λ(1 − m0)

∫
[−1,1]\{0}

(
log

∫
Ω

eαv
) P(dα)

1 − m0
− λm0 log |Ω| (50)

for the other case. Thus we assume

m0 = 0, −1 � α1 � · · · � αL < 0 < αL+1 � · · · � αN � 1, (51)

mi > 0, 1 � i � N,

N∑
i=1

mi = 1 (52)

in (49).
Let

J (w) = 1

2

∑
i, j∈B

aij

∫
Ω

∇wi · ∇w j −
∑
i∈B

Mi log
∫
Ω

exp

(∑
j∈B

aij w j

)
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be given, where B = {1, . . . , N}, w = (wi), and wi ∈ E . We assume that aij = a ji for i, j ∈ B, B is a
disjoint union of B� for � = 1, . . . ,k, and aij � 0 for i, j ∈ B� , � = 1, . . . ,k. We assume, furthermore,
aij � 0 for i ∈ B� , j ∈ Bm , � 
= m, 1 � �,m � k. For this functional, the following facts are known. If
(aij) is positive definite, then J is bounded below if and only if (i) AK � 0 for ∅ 
= K ⊂ B� , where
� = 1, . . . ,k and

AK = 8π
∑
i∈K

Mi −
∑

i, j∈K
aij Mi M j,

and (ii) in case AK = 0 it holds that aii + AK\{i} > 0 for each i ∈ K. Furthermore, the “if” part of
the above assertion is valid even when (aij) is only non-negative definite. These results are proven
for Ω = S2 in [26] but are also valid in the general case of Ω in view of the facts shown in the
subsequent article [27] concerning the case aij � 0 for every i and j.

Given (49) with (51)–(52), we see that B = {1, . . . , N} is a disjoint union of B1 = {1, . . . , L} and
B2 = {L + 1, . . . , N}, and A = (aij), aij = αiα j satisfies the above requirement with k = 2. Putting

wi = v/(αi N), Mi = λmi,

furthermore, we have J (w) = Jλ(v). Then the above defined control functional AK , K ⊂ A ∩ I± ,
takes the form

AK = 8πλ
∑
αi∈K

mi −
∑

αi ,α j∈K
aijλ

2mim j = 8πλP(K) − λ2
( ∫

K
αP(dα)

)2

,

and, therefore, it holds that AK � 0 by (48). The requirement aii + AK\{i} > 0, i ∈ K, for the resid-
ual case AK = 0 is always cleared because of aii = α2

i > 0. Inequality (48) thus guarantees all the
requirements of [26,27], and hence Jλ(v), v ∈ E , is bounded below.

Even in case m0 
= 0,1, we can apply the above result, using (50). Thus Jλ(v), v ∈ E , is bounded
below if

(1 − m0)λ � inf

{ 8π P(K±)
1−m0

(
∫

K± α P(dα)
1−m0

)2

∣∣∣ K± ⊂ I± ∩ suppP
}
.

This inequality is equivalent to (48) and the proof is complete. �
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