Sharp Hölder exponent for some elliptic equations in two variables

Tonia Ricciardi
Dipartimento di Matematica e Applicazioni
Università di Napoli Federico II
tonia.ricciardi@unina.it
http://cds.unina.it/~tonricci

Let Ω be a bounded open subset of \mathbb{R}^{2}. We consider weak solutions $u \in H_{\mathrm{loc}}^{1}(\Omega)$ to the equation:

$$
\begin{equation*}
\operatorname{div}(A(x) \nabla u)=0 \quad \text { in } \Omega . \tag{1}
\end{equation*}
$$

Here A is a 2×2 matrix whose entries are bounded, real measurable functions defined on Ω. Furthermore, we assume that A satisfies the following conditions:
ellipticity :

$$
\begin{align*}
& \lambda|\xi|^{2} \leq\langle A(x) \xi, \xi\rangle \leq \Lambda|\xi|^{2} \tag{2}\\
& A(x)=A(x)^{*} \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\text { unit determinant : } \quad \operatorname{det} A(x)=1 \tag{4}
\end{equation*}
$$

for all $x \in \Omega$, for all $\xi \in \mathbb{R}^{2}$ and for some $0<\lambda \leq \Lambda$. Condition (4) is relevant in the context of quasiconformal mappings, see [2].

It is well-known $[1,3,4]$ that assumption (2) implies the Hölder continuity of solutions to (1). More precisely, there exists $0<\alpha<1$ such that for every compact subset $K \Subset \Omega$ there holds

$$
\begin{equation*}
\sup _{x, y \in K, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}<+\infty . \tag{5}
\end{equation*}
$$

Here and in what follows, for every measurable function f we denote by sup f the essential upper bound of f. In [5] it is shown that the optimal value for α is $L^{-1 / 2}$, where $L=\Lambda / \lambda$ is the ellipticity constant. In [5] it is also shown that the optimal value of α increases if A is of the form $A=a(x) I$ for some bounded measurable function a.

These results motivate the following question:
Question: What is the optimal value of α in (5) under assumptions (2)-(3)-(4)?

In answer to the question above, in a recent note [6] we obtain a sharp integral estimate for α. More precisely, we establish the following

Theorem 1 ([6]). Let A satisfy (2), (3) and (4) in Ω and let $u \in H_{\mathrm{loc}}^{1}(\Omega)$ satisfy (1). Then the least upper bound for the admissible values of the Hölder exponent for u is given by

$$
\begin{equation*}
\bar{\alpha}=2 \pi\left(\sup _{x_{0} \in \Omega} \inf _{0<r_{0}<d\left(x_{0}\right)} \sup _{0<r<r_{0}} \int_{|\xi|=1}\left\langle A\left(x_{0}+r \xi\right) \xi, \xi\right\rangle\right)^{-1} . \tag{6}
\end{equation*}
$$

Here $d\left(x_{0}\right)=\operatorname{dist}\left(x_{0}, \partial \Omega\right)$. We note that under assumption (4), we may choose $\lambda=\Lambda^{-1}$ in (2) and therefore the ellipticity constant takes the value $L=\Lambda^{2}$. Hence, the estimate obtained in [5] yields in this case $\alpha=L^{-1 / 2}=$ Λ^{-1}. On the other hand, recalling that $\Lambda=\sup _{x \in \Omega} \sup _{|\xi|=1}\langle A(x) \xi, \xi\rangle$, it is clear that $\bar{\alpha} \geq \Lambda^{-1}$.

Theorem 1 is sharp, in the sense of the following
Example. Let $\Omega=B$ the unit ball in \mathbb{R}^{2}, let $\theta=\arg x$ and let

$$
\begin{equation*}
A(x)=\frac{1}{k(\theta)} I+\left(k(\theta)-\frac{1}{k(\theta)}\right) \frac{x \otimes x}{|x|^{2}} \quad \text { in } B \backslash\{0\}, \tag{7}
\end{equation*}
$$

where $k: \mathbb{R} \rightarrow \mathbb{R}^{+}$is smooth 2π-periodic function bounded from above and below away from 0 . Equivalently, setting $K(\theta)=\operatorname{diag}(k(\theta), 1 / k(\theta))$, we may write

$$
\begin{aligned}
A(x) & =J(\theta) K(\theta) J^{*}(\theta) \\
& =\left(\begin{array}{cc}
k(\theta) \cos ^{2} \theta+\frac{1}{k(\theta)} \sin ^{2} \theta & \left(k(\theta)-\frac{1}{k(\theta)}\right) \sin \theta \cos \theta \\
\left(k(\theta)-\frac{1}{k(\theta)}\right) \sin \theta \cos \theta & k(\theta) \sin ^{2} \theta+\frac{1}{k(\theta)} \cos ^{2} \theta
\end{array}\right),
\end{aligned}
$$

where

$$
J(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{8}\\
\sin \theta & \cos \theta
\end{array}\right)
$$

Clearly, $\operatorname{det} A(x) \equiv 1$. By a suitable choice of k, we may obtain that

$$
\bar{\alpha}=2 \pi\left(\int_{|\xi|=1}\langle A(r \xi) \xi, \xi\rangle\right)^{-1}=2 \pi\left(\int_{0}^{2 \pi} k\right)^{-1}
$$

On the other hand the function $u \in H^{1}(B)$ defined by

$$
\begin{equation*}
u(x)=|x|^{\bar{\alpha}} \cos \left(\bar{\alpha} \int_{0}^{\arg x} k\right) \tag{9}
\end{equation*}
$$

satisfies equation (1) with A given by (7). It is readily verified that the Hölder exponent of u is exactly $\bar{\alpha}$.

Sketch of the proof of Theorem 1. The point of the proof is to show that

$$
\begin{equation*}
\sup _{0<r<d\left(x_{0}\right)} r^{-2 \alpha} \int_{\left|x-x_{0}\right|<r}\langle A \nabla u, \nabla u\rangle<+\infty \tag{10}
\end{equation*}
$$

for every $x_{0} \in \Omega$ and for every $0<\alpha<\bar{\alpha}$. Once estimate (10) is established, Theorem 1 follows by the well-known regularity results of Morrey [3]. In order to derive (10), we exploit some ideas in [5]. We set

$$
g_{x_{0}}(r)=\int_{\left|x-x_{0}\right|<r}\langle A \nabla u, \nabla u\rangle .
$$

Then, by (1) and the divergence theorem:

$$
g_{x_{0}}(r)=\int_{S_{r}}(u-\mu)\langle A \nabla u, n\rangle=\int_{S_{r}}(u-\mu)\left\langle P \bar{\nabla} u, e_{1}\right\rangle,
$$

where $x=x_{0}+\rho e^{i \theta}, P=J^{*} A J, J$ is the rotation matrix defined in (8), $\bar{\nabla} u=\left(\partial_{\rho} u, \rho^{-1} \partial_{\theta} u\right), S_{r}$ is the circle of radius r centered at x_{0}, n is the outward normal to S_{r} and μ is any constant. By Hölder's inequality,

$$
g_{x_{0}}(r) \leq\left(\int_{S_{r}} p_{11}(u-\mu)^{2}\right)^{1 / 2}\left(\int_{S_{r}} \frac{\left\langle P \bar{\nabla} u, e_{1}\right\rangle^{2}}{p_{11}}\right)^{1 / 2}
$$

At this point, we observe that any 2×2 symmetric matrix B such that $b_{11} \neq 0$ satisfies the following identity:

$$
\begin{equation*}
\langle B \xi, \xi\rangle=\frac{\left\langle B \xi, e_{1}\right\rangle^{2}}{b_{11}}+\frac{\operatorname{det} B}{b_{11}}\left\langle\xi, e_{2}\right\rangle^{2} \tag{11}
\end{equation*}
$$

for any $\xi \in \mathbb{R}^{2}$. Let $C_{P}=C_{P}\left(x_{0}, r\right)>0$ be the best constant in the
weighted Wirtinger inequality :

$$
\begin{equation*}
\int_{0}^{2 \pi} p_{11}\left(x_{0}+r e^{i \theta}\right) w^{2}(\theta) \mathrm{d} \theta \leq C_{P} \int_{0}^{2 \pi} \frac{\operatorname{det} P}{p_{11}}\left(x_{0}+r e^{i \theta}\right) w^{\prime 2}(\theta) \mathrm{d} \theta \tag{12}
\end{equation*}
$$

where $w \in H_{\text {loc }}^{1}(\mathbb{R})$ is 2π-periodic function such that

$$
\int_{0}^{2 \pi} p_{11}\left(x_{0}+r e^{i \theta}\right) w(\theta) \mathrm{d} \theta=0
$$

(For ease of future reference, we do not use the assumption $\operatorname{det} P \equiv 1$ in the next few estimates). Then, by inequality (12) with

$$
w(\theta)=u\left(x_{0}+r e^{i \theta}\right)-\mu, \quad \mu=\frac{1}{2 \pi} \int_{0}^{2 \pi} p_{11}\left(x_{0}+r e^{i \theta}\right) u\left(x_{0}+r e^{i \theta}\right) \mathrm{d} \theta
$$

we derive

$$
g_{x_{0}}(r) \leq C_{P}^{1 / 2}\left(\int_{S_{r}} \frac{\operatorname{det} P}{p_{11}}\left(x_{0}+r e^{i \theta}\right)\left(\partial_{\theta} u\right)^{2}\right)^{1 / 2}\left(\int_{S_{r}} \frac{\left\langle P \bar{\nabla} u, e_{1}\right\rangle^{2}}{p_{11}}\right)^{1 / 2}
$$

Recalling that $\partial_{\theta} u / r=(\bar{\nabla} u)_{22}$ we obtain, in view of the elementary inequality $\sqrt{a b} \leq(a+b) / 2$ and the identity (11) with $B=P$ and $\xi=\bar{\nabla} u$:

$$
\begin{aligned}
g_{x_{0}}(r) & \leq C_{P}^{1 / 2} r\left(\int_{S_{r}} \frac{\operatorname{det} P}{p_{11}}\left(\frac{\partial_{\theta} u}{\rho}\right)^{2}\right)^{1 / 2}\left(\int_{S_{r}} \frac{\left\langle P \bar{\nabla} u, e_{1}\right\rangle^{2}}{p_{11}}\right)^{1 / 2} \\
& \leq C_{P}^{1 / 2} r\left(\int_{S_{r}} \frac{\operatorname{det} P}{p_{11}}(\bar{\nabla} u)_{22}^{2}\right)^{1 / 2}\left(\int_{S_{r}} \frac{\left\langle P \bar{\nabla} u, e_{1}\right\rangle^{2}}{p_{11}}\right)^{1 / 2} \\
& \leq \frac{C_{P}^{1 / 2} r}{2} \int_{S_{r}}\left(\frac{\operatorname{det} P}{p_{11}}(\bar{\nabla} u)_{22}^{2}+\frac{\left\langle P \bar{\nabla} u, e_{1}\right\rangle^{2}}{p_{11}}\right) \\
& =\frac{C_{P}^{1 / 2} r}{2} \int_{S_{r}}\langle P \bar{\nabla} u, \bar{\nabla} u\rangle=\frac{C_{P}^{1 / 2} r}{2} \int_{S_{r}}\langle A \nabla u, \nabla u\rangle .
\end{aligned}
$$

Recalling the definition of $g_{x_{0}}$, we have that the above inequality is equivalent to:

$$
g_{x_{0}}(r) \leq \frac{C_{P}^{1 / 2}\left(x_{0}, r\right) r}{2} g_{x_{0}}^{\prime}(r)
$$

for almost every $0<r<d\left(x_{0}\right)$. In turn, the above inequality implies that $\ln \left(r^{-2 / \gamma} g_{x_{0}}(r)\right)$ is non-decreasing, for every $\gamma \geq C_{P}^{-1 / 2}\left(x_{0}, r\right)$. At this point it is clear that (10) holds, with

$$
\bar{\alpha}^{-1}=\sup _{x_{0} \in \Omega} \inf _{0<r_{0}<d\left(x_{0}\right)} \sup _{0<r<r_{0}} C_{P}\left(x_{0}, r\right)^{-1 / 2}
$$

In order to conclude the proof, we note that when $\operatorname{det} P \equiv 1$, the sharp constant in the generalized Wirtinger inequality (12) is given by

$$
C_{P}\left(x_{0}, r\right)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} p_{11}\left(x_{0}+r e^{i \theta}\right) \mathrm{d} \theta\right)^{2}=\left(\frac{1}{2 \pi} \int_{|\xi|=1}\left\langle A\left(x_{0}+r \xi\right) \xi, \xi\right\rangle\right)^{2}
$$

This fact may be seen by a change of variables.

We note that
Remark 1. The functions of the form (9) may be of interest in the context of quasiconformal mappings.

Indeed, let $\kappa: \mathbb{R} \rightarrow \mathbb{R}$ be a 2π-periodic smooth function such that $\kappa \geq 1$. For $z \in \mathbb{C} \backslash\{0\}$ we define the mapping

$$
f(z)=|z|^{1 / \bar{\kappa}} \exp \left\{\frac{i}{\bar{\kappa}} \int_{0}^{\arg z} \kappa\right\}
$$

where $\bar{\kappa}=(2 \pi)^{-1} \int_{0}^{2 \pi} \kappa$. A computation shows that f satisfies the bounded distorsion equality

$$
\begin{equation*}
|D f(z)|^{2}=\kappa(\arg z) J_{f}(z) \tag{13}
\end{equation*}
$$

for all $z \in \mathbb{C} \backslash\{0\}$.
Part of these results is joint work with C. Sbordone.

References

[1] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Acc. Sci. Torino Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43.
[2] T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. I.H.P. 18 No. 5 (2001), 519-572.
[3] C.B. Morrey, On the solutions of quasi-linar elliptic partial differential equations, Trans. Am. Math. Soc. 43 No. 1 (1938), 126-166.
[4] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 No. 5 (1958), 931-954.
[5] L.C. Piccinini and S. Spagnolo, On the Hölder continuity of solutions of second order elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa 26 No. 2 (1972), 391-402.
[6] T. Ricciardi, A sharp Hölder estimate for elliptic equations in two variables, Proc. Roy. Soc. Edinburgh A, to appear. Preprint available on arXiv:math.AP/0406495.

