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Let Q be a bounded open subset of R?. We consider weak solutions
u € HL () to the equation:

div (A(x)Vu) =0 in Q. (1)

Here A is a 2 x 2 matrix whose entries are bounded, real measurable func-
tions defined on (). Furthermore, we assume that A satisfies the following
conditions:

ellipticity : MEP? < (A()g,€) < Af¢f? (2)
symmetry : A(z) = A(x)”
unit determinant : det A(z) =1 (4)

for all z € Q, for all £ € R? and for some 0 < A < A. Condition (4) is
relevant in the context of quasiconformal mappings, see [2].

It is well-known [1, 3, 4] that assumption (2) implies the Hélder continuity
of solutions to (1). More precisely, there exists 0 < a < 1 such that for every
compact subset K & €2 there holds

u(x) ~ u(y) 5

sup @ —F———F— < +00.
z,y€ K,x#y |5E - y|a
Here and in what follows, for every measurable function f we denote by sup f
the essential upper bound of f. In [5] it is shown that the optimal value for
o is L7Y/2 where L = A/) is the ellipticity constant. In [5] it is also shown
that the optimal value of « increases if A is of the form A = a(x)I for some
bounded measurable function a.



These results motivate the following question:

Question: What is the optimal value of a in (5) under assumptions (2)—
(3)-(4)?

In answer to the question above, in a recent note [6] we obtain a sharp integral
estimate for . More precisely, we establish the following

Theorem 1 ([6]). Let A satisfy (2), (3) and (4) in Q and let u € HL _(Q)

satisfy (1). Then the least upper bound for the admissible values of the Héolder
exponent for u is given by

G = or (sup inf sup /|§ (Ao r9e g>) o (6)

20€0 0<ro<d(z0) 0<r<r

Here d(z) = dist(xg, 92). We note that under assumption (4), we may
choose A = A™! in (2) and therefore the ellipticity constant takes the value
L = A2, Hence, the estimate obtained in [5] yields in this case a = L™Y/2 =
A~'. On the other hand, recalling that A = sup,cq supg—; (A(),§), it is
clear that @ > A~'.

Theorem 1 is sharp, in the sense of the following

Example. Let = B the unit ball in R?, let # = arg x and let

1 1 TR x .
A(z) = @I + (k‘(@) — @) W in B\ {0}, (7)

where k£ : R — R* is smooth 27-periodic function bounded from above and
below away from 0. Equivalently, setting K (0) = diag(k(#),1/k(0)), we may
write

Alx) =J(0)K(0)J*(0)
k(0) cos? 0 + k(G sin? 6 (k:(@) k(G)) sin 0 cos 6
(k:(@) k(e)) sinfcos®  k(f)sin®6 + k(e cos? 6

J(@):( cos 0 ‘Sine). (8)

Y

where

sin 6 cos 0

Clearly, det A(x) = 1. By a suitable choice of k, we may obtain that

o ([ ) —ae([71)
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On the other hand the function u € H*(B) defined by

u(z) = |z|* cos (a /0 o k:) 9)

satisfies equation (1) with A given by (7). It is readily verified that the
Holder exponent of u is exactly a.

Sketch of the proof of Theorem 1. The point of the proof is to show that

sup 7’_2‘1/| | (AVu, Vu) < o0, (10)
r—xo|<T

0<7‘<d(m0)

for every xg € 2 and for every 0 < o < &. Once estimate (10) is established,
Theorem 1 follows by the well-known regularity results of Morrey [3]. In
order to derive (10), we exploit some ideas in [5]. We set

G (1) :/ (AVu, Vu).
|z—zo|<T
Then, by (1) and the divergence theorem:

) = [ (= (AT ) = / (=) (P,

where x = zo + pe?, P = J*AJ, J is the rotation matrix defined in (8),
Vu = (Oyu, p~tdu), S, is the circle of radius r centered at xo, n is the
outward normal to S, and p is any constant. By Holder’s inequality,

o (1) < (/Tpll(U—u)z)l/z (/ @%ﬁz)m

At this point, we observe that any 2 x 2 symmetric matrix B such that by # 0
satisfies the following identity:

(B¢, e1)?  detB

+ (€ e2)?, (11)

(B, &) = b b

for any £ € R Let Cp = Cp(zo,7) > 0 be the best constant in the
weighted Wirtinger inequality :

2 ) 27 d tP
/ p11(zo + re®)w?(0) do < Cp/ ©
0 0

P11

(zo +re®)w?(0)do,  (12)



where w € H} _(R) is 27-periodic function such that

21
/ p11(zo + re®)w(6) do = 0.
0

(For ease of future reference, we do not use the assumption det P = 1 in the
next few estimates). Then, by inequality (12) with

) 1 21
w(®) = u(wo+re’) — p,

b= — p11(zo + re®)u(zo + re'®) do,
2m Jo
we derive

1/2 = 2\ 1/2
Gz (7’) < 0113/2 (/ d;jlp (Io + T’ew)(aeu)z) (/ 7(PVU, 61> ) .

P11

Recalling that dpu/r = (V)22 we obtain, in view of the elementary inequality
Vab < (a+ b)/2 and the identity (11) with B = P and ¢ = Vu:

2\ 1/2 = 9 1/2
() <CHPr ( [ (o ) ([ ey
T pll p T

P11

det P — o\ "2 PVu,e)?\ "
SC}D/zT’ (/ ;11 (Vu)zg) (/ < Vu>‘5’1> )

P11

C%r det P ,— 2 (PVu,e;)?
<G V), + )
2 /Sr ( P11 ( u)22

J4!
0113/ 2y

o o2,
/ (PVu, Vuy = < / (AVu, V).

T

Recalling the definition of g,,, we have that the above inequality is equivalent
to:

c *(20, 7)1
geo(r) < LT 1),
for almost every 0 < r < d(xp). In turn, the above inequality implies that

In(r=2/7g,,(r)) is non-decreasing, for every v > C’;l/z(ato, r). At this point it
is clear that (10) holds, with

~—1

a” = sup inf sup Cp(zq, ) Y2
20€Q 0<ro<d(wo) 0<r<rg

In order to conclude the proof, we note that when det P = 1, the sharp
constant in the generalized Wirtinger inequality (12) is given by

1

27 2
) 1
Cp(zo,7) = (—27T/ P11($0+Tele)d9) (
0

B (A(zo +18)E, ) 2'
27T/|§|=1 )

O

This fact may be seen by a change of variables.
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We note that

Remark 1. The functions of the form (9) may be of interest in the context
of quasiconformal mappings.

Indeed, let k : R — R be a 27-periodic smooth function such that x > 1.
For z € C\ {0} we define the mapping

fo = e { £ [Tl

where k = (2r) ™! fo% k. A computation shows that f satisfies the bounded
distorsion equality

[Df(2)* = w(arg z)J5(2), (13)
for all z € C\ {0}.

Part of these results is joint work with C. Sbordone.
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