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Summary. We show that weak solutions to the elliptic equations (a;(z)uas, ;= (fi)e,

are differentiable almost everywhere when f; belongs to the Lorentz space L;;':{ﬂ}. It is

known that these solutions are continuous, but not necessarily Hélder continuous. Henee
this proves the conjecture of B. Bojarski saying that differentiability a.e. of weak solutions
is independent of their Hélder continunity.

1. Introduction. In 1987 Yu. G. Reshetnyak [6] considered a general
nonlinear elliptic equation, and he proved that its weak solutions are diffe-
rentiable almost everywhere. This result was a consequence of a theorem of
Serrin [7] asserting the Holder continuity of weak solutions. An analogous
theorem in the case of the linear equation (a;(z)uc,)s, = 0 was proved
independently by B. Bojarski [2]. Instead of Hélder continuity, he used a
weaker result on the local boundedness of solutions. Recently Hajlasz and
Strzelecki [5] simplified the proof of Reshetnyak adopting the Bojarski me-
thod. The authors of [2] and [5] stress that their idea of the proof does not
require the Hoilder continuity of solutions. Moreover, Bojarski conjectured
that the differentiability almost everywhere of weak solutions should be in-
dependent of their Hélder continuity (cf. [2, p. 5]). We are going to give an
answer to this conjecture. We construct a large class of elliptic equations,
which weak solutions are known to be continuous, differentiable a.e., but, in
general, nof Holder continuous.
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In this note we consider weak solutions to the equation

(]_j {az_g': '”f:r, x; = {f],}:[; in 12,
u € le:-r(ﬂjl
where 2 CR" (n = 3) is an open set. The functions a;;(x) (i,7 =1,...,n)

are bounded, measurable, and satisfy the uniform ellipticity Cm]dltmn
aii(z)él; = |€12  for all £ € R™ and for a.e. z € £2.

Here summation over repeated indices is understood. Our result reads as
follows.

THEOREM 1. Assume that u € HJ_(12) is a weak solution to the equation
(1) with f; € me (12). Then u is differentiable almost everywhere in (2.

Some comments on Theorem 1 are in order.
CGiven P C B® the Lorentz space LP?(D) with 0 < p,q £ oo consists of
all measurable functions g for which the quantity

+oo
ol =4 f (g* (£)t/2)9~1d1) /7 when 0 < ¢ < o0,
g p.0.0 = 0

SUPﬂﬂ{m{f”pﬂ*{ﬂ} when g = o0

iz finite. Here g*(t) = sup{s > 0 : |[{z € D : |g(z)| > s}| > t} denotes
the decreasing rearrangement of a measurable function g (for A C R", |A]
stands for its n-dimensional Lebesgue measure). Using the definition above,
it is possible to prove that L*?(D) coincides with the Lebesgue space LP(D),
and || - [lpp,0 = || - lp,p. Furthermore, the following inclusions hold

L"(D) ¢ L™(D) C L*(D) C L*"(P) c L*=(D) C LY(D)

whenever ) < g < » < v < oo and D is a bounded set. Other properties of the
Lorentz spaces can be ft:uund in [1]. Let x4 be the characteristic function of
a set A. In this paper, we use the local version of the Lorentz spaces Lml[!?}
consisting of all measurable functions g in f2 such that gx4 € L¥9(12) for
each compact set A C (2.

As it was said above, the Lorentz space L;}J: (12) used in Theorem 1 has
the property of being between L (f2) and all L] (f2) spaces with p > n.
It is well known that for f; € L] (£2) with p > n weak solutions to (1) are
Hélder continuous (cf. e.g. [8]) and differentiable a.e. (cf. [6, 2, 5]). On the
other hand, there is an example constructed in [4, p. 263], where a solution

to the problem

Au=37"(fi)s, on B(R)
u=10 on dB(R)
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is contimuous, but not Holder continuous for some f; € L™!(B(R)) such that
f; & L"**(B(R)) for each ¢ > 0. Now Theorem 1 asserts that u is always
differentiable a.e.

We formulate Theorem 1 in the simplest case (1). Divergence form of
equations with lower order terms can be treated in a similar way. One can

also replace the right hand side of the equation (1) by g € LI;‘:__E'I{I.?], and
the conclusion remains true. Since there are no essential novelties, we leave
the details to the interested reader.

In this note, the ball centered in xg, with radius R is denoted by B(zo, R)
or simply by B(R). We say also that a vector field f belongs to L*9(D) if

| f| does.

2. Auxiliary results. We are going to list some auxiliary results needed
to prove Theorem 1. We begin by the Stepanoff differentiability criterion
[11]. The statement presented here is taken from [9, Ch. VIII, Thm 3].

THEOREM 2. Let u: D — R be an arbitrary measurable function. Define
E = {a € D : limsup(|u(z) — u(a)|/|z — a]) < +oo},
=+

then E is Lebesgue measurable and u s differentiable a.e. in E.

The next two theorems include estimates of weak solutions to the elliptic
equation (1). The first of them is classical and states that weak solutions to
(1) with f; = 0 are locally bounded (in fact, they are Holder continuous)
(cf. e.g. [8, Thm 5.1]).

THEOREM 3. Assume that u € H (12) is a weak solution of the equation
(i;(z)uz,)z; = 0. Then for each R > 0 such that B(2R) C {2 there is a
positive C' > 0 independent of u such that

lullso.8(ry < Cllull2,B(2R)-
The second estimate we shall need was proved by V. Ferone [4]. It was

used to get continuity of weak solutions to (1) for the Dirichlet problem, in
the so-called limit case.

THEOREM 4 [4]. Assume that u € H}(2) is a weak solution to the equ-
ation (1). Suppose that f; € L™ (12). Then the estimate
[l oc,2 < Cllullni.0
holds, where C is independent of u.

We conclude this section with some considerations concerning a maximal
operator defined on the Lorentz spaces. Let us define for f € LI(D) the

loc
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operator
y 1
(Mf)(z) = lliljnupwllfﬂp,q,s{m,hh
forall z € D.

THEOREM 5. Let 1 < ¢ € p < oo. Suppose that f € LP9(D). Then
(M f)(z) is finite almost everywhere, and there is a constant C' > 0 such
that

(2) HzreD: (Mf)P(z) = A} <
for all A > 0.

IIfIMp

This theorem was formulated and proved by Chung et al [3]. They ge-
neralized an idea of Stein [10], where a particular case of Theorem 5 was
considered. Let us stress here that the assumption ¢ < p is crucial in the
proof of Theorem 5. We refer the reader to [3] for examples when (2) fails
for g > p.

Remark. Proceeding analogously as in the case of the classical maximal
operator (cf. [9, Ch. I]) and using Theorem 5 one can show that, in fact,

/!
(M])(z) anup wpen = (2) 11 @)

for a.e. x € D. However? we shall not need this result in the remainder of
this note.

3. Proof of Theorem 1. The differentiability of  follows from Theorem
2. To see this, fix £y € 2 and h > 0 such that B(zy, 2h) C 2. For X € B(2),
let us define the difference quotient
u(zg + hX) — u(zp)
n 2

This is well-defined function belonging to H'(B(2)). By the change of varia-
bles © = xy + AX and the definition of weak solutions of (1) one can prove
that vy (X) solves the equation

(ay(X)vx,)x, = (FH(X))x, in B(2),

where al'.(X) = a;;(zo + h,):_"] and FHX) = fi{:z.n + hX}
We decnmpn&e vy = v’ + v”, where the functions v' and v" are defined
as solutions to the problems

(3) {'[“’ (X )v)x, = (f1)x, in B(2),
v' € Hy(B(2)),

vp(X) =
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{ (a% (X% )x, =0  in B(2),
" —uy € Hy(B(2)).
Applying Theorems 4 and 3 respectively to v’ and v" we obtain

(4)

(5)  v'lleo.B(2) € Cllffllnnze and |[v"|lw,B@) € Cllv”|l2,502)
with some constants C' independent of xy. Moreover, using (5) we get

(6) |v"ll2,Br2) = llvn — v'll2,Br2) < llvnllz,Bz) + 1v']l2,8(2)
< llonllz.zezy + B0 oo, 8(2) € l1vnll2,B(2) + CU* lny1,B(2)-
Combining (5) and (6) we obtain the following estimate of the function v.

(7) llwallos.B(1) € 1V lloo,B(1) + 0" e, BO1) € < C(I1f ln,1,Be2) + lvallz,Bz))-
The proof will be completed by showing that the right hand side of (7)
remains bounded as b — 0 for almost all zq € 2.

To handle the first term, we observe that for p,g = 1
W

h
191 .80 = T Vo
by a simple change of variables. Here w, denotes the volume of the unit
n-dimensional ball. Theorem 5 now yields

limsup || ln,1,501) = wh!™(M f)(zo) < o0

for a.e. zp € §2.

To estimate the second term in (7)., we use theorem of Calderén and
Zygmund [9, Ch. VIII, Thm 1], which states that for w € H'(B(2)), h — 0,
and almost all zp € 12, the following function of X € B(2)

w(zo + hX) —ulze) du
h d

——(xo0) - Xi

tends to zero in L?(B(2)). Consequently, llmsuph_,ﬂ o™ ||2,8(2) < oo.
Now the proof of Theorem 1 is complete.

Acknowledgement. This work was completed while the first author visited
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Universita di
Napaoli “Federico II". G.K. is grateful to DMA for hospitality. He was also
partially supported by the KBN grant 0472/P3/94/07.

INSTITUTE OF MATHEMATICS, WROCELAW UNIVERSITY, PL. GRUNWALDZEKI 274, PL 50-3184
WROCEAW (GK)

(INSTYTUT MATEMATYCENY, UNIWERSYTET WROCLAWSKI)

E-mail: karch@math.oni.wrac.pl

DIPARTIMENTO DI MATEMATICA, UNIVERSITA DEGLI STUDI DELLA BASILICATA, VIA NAZA-
RIO SAURD, 85, 85100 POTENZA, ITALY (TR)

E-mail: triceiardi@unibas, it



116 . Karch, T. Riccardi

REFERENCES

1] C. Bennet, R. Sharpley, Interpolation of Operators, Pure and Appl.
Math. Vol. 129, Academic Press, New York 1988,

[2] B. Bojarski, Pointwise differentiabilily of weak solutions of elliptic diver-
genee type equations, Bull. Pol. Ac.: Math., 33 (1985) 1-6.

3] H M. Chung, R. A Hunt, D. 5 Kurtsz The Hordy-Litilewood mazimal
function on L(p,q) spaces with weights, Indiana Univ. Math. J., 31 (1952) 109-120.

[4] V. Ferone, Estimates and regularity for solutions of elliptic equations in o
limit case, Bolletino U.M.L, B-B (1994) 257-270.

[3] P. Hajtasz P. Strzelecki, On the differentiability of solutions of quasi-
linear elliptic equations, Collog. Math., 64 (1093) 287-201,

[6] Yu.G. Reshetnyak, Almost everywhere differentiability of solutions of el-
liptie eguations (in Russian), Sibirsk Mat. Zh., 28 (1087) 193-196.

[71 1. Serrin, Local behavior of solutions of quasilinear equations, Acta Math.,
111 (1964) 247-302.

8] G. Stampacchia, Le probléme de Dirichlet pour les dquations elliptiques
du second ordre 4 coefficients discontinus, Ann. Inst. Fourier, 15 (1965) 189-258.

[9] E.M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton 1970,

[10] E.M. Stein, The differentiability of functions in ™, Ann. Math,, 113 (1981)
383-385.
[11] V. Stepanoff, Sur les conditions de Ueristence de lo différentielle totale,

Mat. Sb., 32 (1925) 511-526.



