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Abstract

Our aim is to prove rigorously that the Chern-Simons model of Hong, Kim,
and Pac [13] and Jackiw and Weinberg [14] (the CS model) and the Abelian
Higgs model of Ginzburg and Landau (the AH model, see [15]) are unified by the
Maxwell-Chern-Simons theory introduced by Lee, Lee, and Min in [16] (MCS
model). In [16] the authors give a formal argument that shows how to recover
both the CS and AH models out of their theory by taking special limits for the
values of the physical parameters involved. To make this argument rigorous,
we consider the existence and multiplicity of periodic vortex solutions for the
MCS model and analyze their asymptotic behavior as the physical parameters
approach these limiting values. We show that, indeed, the given vortices ap-
proach (in a strong sense) vortices for the CS and AH models, respectively. For
this purpose, we are led to analyze a system of two elliptic PDEs with exponen-
tial nonlinearities on a flat torus.c© 2000 John Wiley & Sons, Inc.

Introduction

Our purpose is to study periodic multivortices (also known as “condensates”)
for a model introduced by Lee, Lee, and Min in [16]. Such a model provides a
self-dualfield theory inclusive of both the Maxwell and Chern-Simons terms and
where self-duality is attained by the presence of a neutral scalar field.

In gauge theory, a self-dual structure is always very advantageous, because it
permits the identification of a special class of (static) solutions (e.g., instantons,
monopoles, vortices, etc.) by solving appropriatefirst-orderequations, known as
the “Bogomol′ny̆ı equations” because of Bogomol′ny̆ı’s pioneer work in this direc-
tion (see [3]). From an analytical viewpoint, the Bogomol′ny̆ı equations allow a
reduction of the more complicatedsecond-orderequations of motion.

In the framework of superconductivity, a first self-dual situation was repre-
sented by the Abelian Higgs model (AH) of Ginzburg and Landau (see [15]) whose
self-dual vortices are completely characterized by the work of Taubes [23] in a full
space setting and Wang and Yang [25] in the periodic case. On the other hand,
if we wish to investigate anyonic superconductivity (high critical temperature) we
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need to consider a “charged” vortex theory and include the Chern-Simons term into
the model which, in principle, could spoil its self-dual properties.

In [16], self-duality was restored by virtue of a theory inclusive of a neutral
scalar field (MCS model). However, a first attempt to obtain a self-dual Chern-
Simons theory without the help of a neutral scalar field was considered by Hong,
Kim, and Pac [13] and Jackiw and Weinberg [14], who proposed a model (CS
model) whose electrodynamics were governed solely by the Chern-Simons term
and characterized by the presence of asixth-order potential in place of the usual
quadratic potential of Ginzburg and Landau.

Even though several results are now available for vortices in the “pure” CS
model [4, 18, 20, 21, 22, 24], it is still important to treat rigorously more complete
models that include the Maxwell term as well. For this reason we consider the
MCS model and show that it gives rise to a periodic vortex theory that in many
respects isequivalentto the “pure” Chern-Simons theory relative to the CS model.
Furthermore, in [16] (see also [10, pp. 113–115]) it is argued that, at least formally,
their model includes both the CS model and the AH model as limiting cases. Thus
in support of the formal arguments in [10, 16], we show rigorously that the periodic
vortices of the MCS model converge (in a suitably “strong” sense) to those of the
CS model and the AH model when taking the appropriate limits.

To be more precise, let us recall that the Lagrangean density for the MCS model
is defined in the(2+ 1)–Minkowski spaceR1+2 in terms of the (real-valued) po-
tential field A = Aα dxα, α = 0,1,2, the complex-valued Higgs fieldφ, and the
real-valued neutral scalar fieldN as follows:

L(A,φ,N) = − 1
4q2FαβFαβ +

µ

2q2εαβγAα∂βAγ −Dαφ(Dαφ)∗(0.1)

− 1
2q2 ∂αN∂αN−V(|φ|,N)

with self-dual potential

V(|φ|,N) = |φ|2
(

N− q2

µ

)2

+
q2

2

(
|φ|2− µ

q2N
)2

,(0.2)

covariant derivativeDA = Dα dxα, Dα = ∂α + iAα, α = 0,1,2, Maxwell fieldFA =
dA = 1

2Fαβdxα ∧dxβ , Fαβ = ∂αAβ −∂βAα, and where to lower or raise indices we
use the metric tensor diag(−1,1,1) in the usual way. The constantq > 0 denotes
the electric charge. The Chern-Simons term in the theory is represented by the
quantity (µ/2q2)εαβγAα∂βAγ , whereεαβγ is the totally skew-symmetric tensor
fixed so thatε012 = 1 andµ > 0 is the Chern-Simons mass scale.

Now if in L we let µ,q → +∞ while keeping fixed the ratioµ/q2 (the CS
limit), then, at least formally, both the Maxwell term forA (i.e., FαβFαβ) and the
kinetic term forN should drop out of the Lagrangean (0.1) whileN is forced to be
evaluated at(q2/µ)|φ|2.
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So, settingµ/q2 = κ and inserting the identityN = (q2/µ)|φ|2 into the potential
V in (0.2), we get a sixth-order potential and a “limiting” model that corresponds
exactly to the CS model, whose Lagrangean is given by

LCS(A,φ) =
κ

2
εαβγAα∂βAγ −Dαφ(Dαφ)∗− 1

κ2 |φ|2(|φ|2−1)2 .(0.3)

Similarly, if we let µ → 0 while keepingq fixed (the AH limit), then the Chern-
Simons term drops out of the Lagrangean (0.1) whileN is forced to satisfy

µ

q2N = 1(0.4)

at µ = 0. As above, by “formally” inserting this identity into the potentialV in
(0.2), we obtain the familiar double-well potential of Ginzburg-Landau and a “lim-
iting” Lagrangean that coincides with the following AH model:

LAH(A,φ) = − 1
4q2FαβFαβ −Dαφ(Dαφ)∗− q2

2
(|φ|2−1)2 .(0.5)

By now much is known about periodic vortices corresponding to both theories
described byLCS andLAH; see [4, 22, 25].

For instance, we mention that while the vortex points, corresponding to the
zeroes ofφ, uniquelycharacterize (up to gauge transformations) a periodic AH
vortex, on the contrary,multipleperiodic CS vortices with the same vortex points
can coexist; see [22].

However, in the class of all possible CS vortex solutions that share the same set
of vortex points, it is still possible to distinguish a “special” one that maximizes
the magnitude|φ|. Those have been identified by Caffarelli and Yang in [4] as the
“maximal vortices” relative to a prescribed configuration of vortex points. Such
a maximality notion has been extended by Chae and Kim in [6] to include the
MCS vortex solutions forL, and it proved useful in establishing some convergence
results. In fact, in [6] the authors show that a maximal vortex forL converges (in
a suitably strong sense) to the correspondingmaximalvortex forLCS and to the
uniquevortex forLAH when taking the appropriate limits.

Our goal here is to complete these results and prove that the MCS (periodic)
vortex theory forL is very much in line with the CS (periodic) vortex theory ofLCS.
Namely, in analogy withLCS, we establish the existence ofmultiple (periodic)
vortices for each assigned set of vortex points. In addition, regardless of their
maximality property, each of those vortices is shown to converge (in suitably strong
norms) to CS vortices forLCS after taking the CS limit indicated above. On the
contrary, concerning the AH limit, we show that only a particular one of those
MCS vortices survives the passage to the limit as suggested above, while the other
one diverges in a suitable sense.
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1 Preliminaries and Statement of the Main Results

Periodic vortices (or condensates) relative to (0.1) are defined as thestaticsolu-
tions (i.e., independent of thex0-variable) for the equations of motion correspond-
ing toL: 



1
q2 ∂βFαβ + µ

2q2 ε
αβγFβγ = Jα = −i(φ∗Dαφ− (Dαφ)∗φ)

DαDαφ = ∂V
∂φ∗

∂α∂αN = ∂V
∂N

(1.1)

whereJα is the relativistic current

subject to appropriate periodic boundary conditions. More precisely, in order to
account for the invariance of (1.1) with respect to the gauge transformations,

φ → φe−iω , Aα → Aα +∂αω, α = 0,1,2, N → N ,

for everyω = ω(x0,x1,x2) smoothly defined inR1+2, the boundary conditions are
specified as follows:

Given the periodic cell domain

Ω =
{
x∈ R

2 : x = s1a1 +s2a2, 0< s1,s2 < 1
}

with a1 anda2 linearly independent vectors inR2, let

Γk =
{
x∈ R

2 : x = skak, 0< sk < 1
}

, k = 1,2,

so that

∂Ω = Γ1∪Γ2∪{Γ1 +a2}∪{Γ2 +a1} .

For (A,φ,N) a static (i.e., independent of thex0-variable) solution of (1.1), we
require that there exist smooth functionsωk = ωk(x1,x2), k = 1,2, defined in a
neighborhood ofΓ1∪Γ2\Γk such that(A,φ,N) satisfies



Aj(x+ak) = Aj(x)+∂ jωk(x) , j,k = 1,2,

A0(x+ak) = A0(x) ,

φ(x+ak) = e−iωk(x)φ(x) ,

N(x+ak) = N(x) , k = 1,2,

(1.2)

for all x∈ Γ1∪Γ2\Γk, k = 1,2.
Sinceφ is required to be single-valued inΩ, setting

ωk(s1,s2) = ωk(s1a1,s2a2) , k = 1,2,

by virtue of (1.2) we have the compatibility condition

ω1(0,0+)−ω1(0,1−)+ω2(1−,0)−ω2(0+,0) = 2πn,(1.3)

satisfied for somen ∈ Z. The integern is called thevortex numberassociated to
the given periodic vortex, and it will permit us to distinguish between topologically
distinct periodic vortices.
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As a first consequence of (1.2) and (1.3), we find “quantized” values for both
the magnetic fluxΦ =

∫
Ω F12 and the electric chargeQ=

∫
Ω J0. In fact, we compute

Φ =
∫

Ω
F12 =

∫
Ω

∂1A2−∂2A1 =
∫

Γ2

∂2ω1−
∫

Γ1

∂1ω2 = −2πn.

In addition, by theα = 0 component of (1.1), we derive the Gauss law governing
the system. For static solutions this law takes the form

− 1
q2 ∂ jF

0 j +
µ

q2F12 = J0 = −2A0|φ|2(1.4)

and so

Q =
µ

q2 Φ = −2π
µ

q2n.

We can also use (1.4) to eliminate theA0-component ofA fromL and consequently
compute theenergy Efor a periodic vortex(A,φ,N) to find

E(A,φ,N) =
∫

Ω

{
1

2q2

2∑
j=1

(Fj0±∂ jN)2 +
∣∣∣∣
(

q2

µ
−N∓A0

)
φ

∣∣∣∣
2

+
1

2q2(±F12−q2|φ|2 +µN)2 + |(D1± iD2)φ|2
}

dx∓Φ .

In particular, if(A,φ,N) admits vortex numbern, then

E ≥ 2π|n| .(1.5)

Thus, for fixedn∈Z, in the class of periodicn-vortices, that is, vortices with vortex
numbern, we may identify the energy minimizers that attain equality in (1.5) as
the solutions of the following (first-order) equations:



∂ jN±Fj0 = 0

(q2

µ −N∓A0)φ = 0

±F12 = q2|φ|2−µN

(D1± iD2)φ = 0,

(1.6)

together with the Gauss law (1.4). Since in the static caseFj0 = ∂ jA0, in order
to obtain nontrivial solutions we reduce (1.4)–(1.6) to the following Bogomol′ny̆ı
equations: 



(D1± iD2)φ = 0

±F12 = q2|φ|2−µN

∓A0 = N− q2

µ

−∆A0 +µF12 = −2q2A0|φ|2 .

(1.7)

By direct computation one can rigorously show that solutions of (1.2)–(1.7) define
periodicn-vortices withΦ = (q2/µ)Q = −2πn andE = 2π|n|.
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To obtain solutions for (1.2)–(1.7), we notice first that the choice of the “upper”
or “lower” sign in (1.7) reflects upon the sign of the vortex number for the corre-
sponding solution. Indeed, if(A,φ,N) satisfies (1.7) with the “upper” sign (and,
of course, the boundary condition (1.2)), then we may rewrite the first equation
D1φ+ iD2φ = 0 equivalently as follows:

2i∂̄ lnφ = A1 + iA2(1.8)

and use thē∂-Poincaré lemma to find that, up to a nonvanishing multiple factor,
φ is holomorphic inΩ, and so it admits a finite number of zeroes with integral
multiplicity. In view of the periodicity conditions, we can arrange so that the degree
of φ at zero inΩ is well-defined, and by (1.2) and (1.3) we obtain

deg(φ,Ω,0) = n.

Hence, in this case, the vortex number isnonnegativesince it coincides with the
number of zeroes ofφ in Ω counted according to their multiplicities.

On the other hand, solutions of (1.7) with the “lower” sign may be derived from
solutions of (1.7) with the “upper” sign via the transformations

φ → φ∗ , A→−A, N → N ,

and so, without loss of generality, we shall limit our attention to the Bogomol′ny̆ı
equations (1.7) with the upper sign.

For prescribedn ≥ 0, in order to obtain a (self-dual) periodicn-vortex as a
solution for 



(D1 + iD2)φ = 0

F12 = q2|φ|2−µN

−A0 = N− q2

µ

−∆A0 +µF12 = −2q2A0|φ|2 ,

(1.9)

together with the boundary conditions (1.2), we follow Taubes [23]; in view of the
above discussion, we prescribe the zeroes ofφ in Ω and their multiplicities.

The casen = 0, whereφ nevervanishes inΩ, is easily solved by the constant
solution

(A,|φ|2,N) =
(

0,1,
q2

µ

)
.

For n > 0 we shall prove the following results:

THEOREM 1.1 For n∈ N, any periodic n-vortex(A,φ,N) solution for(1.2)–(1.9)
satisfies

|φ| < 1 and 0 < N <
q2

µ
in Ω .

Remark.Theorem 1.1 shows that the admissibility property introduced in [5, 6] is
in fact a general property of periodic vortices forL.
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THEOREM 1.2 Given n∈ N, the conditions

q2 >
2πn
|Ω| and 0 < µ <

1
2

√
|Ω|
πn

(
q2− 2πn

|Ω|
)

are necessary for the existence of a periodic n-vortex forL, the solution for(1.9).
Given p1,. . . , ps fixed points inΩ and n1,. . . ,ns ∈ N such that

∑s
j=1nj = n,

there exists a suitable constantκ∗ ∈ (0, 1
2

√|Ω|/(πn)) (depending on pj and nj ,
j = 1,. . . ,s) such that for every

0 < µ < κ∗
(

q2− 2πn
|Ω|

)

there exist at leasttwo gauge distinct periodic n-vortices(A,φ,N)±µ , solutions for
(1.9)–(1.2), with the following properties:

(i) φ vanishes exactly in p1,. . . , ps with multiplicities n1,. . . ,ns.
(ii) The energy E, the magnetic fluxΦ, and the electric charge Q satisfy

E = 2πn, Φ =
q2

µ
Q = −2πn.

Our next goal is to characterize the asymptotic behavior of the vortices as given
in Theorem 1.2 in terms of the CS limit and the AH limit. Concerning the CS limit,
note that as an immediate consequence of Theorem 1.2, we obtain the following:

COROLLARY 1.3 For fixed n∈ N, p1,. . . , ps ∈ Ω, n1,. . . ,ns ∈ N, with
∑s

j=1nj =
n and 0 < κ < κ∗, there existsµκ > 0 sufficiently large(depending onκ) such
that problem(1.9)–(1.2) with q2 = µ/κ andµ > µκ admits two distinct solutions
(A,φ,N)±µ satisfying(i) and (ii) of Theorem1.2.

We show that along a sequenceµ j → +∞, the periodic vortices(A,φ,N)±µ
converge to periodic vortices forLCS in the following sense:

THEOREM 1.4 For fixed n∈ N, p1,. . . , ps ∈ Ω, n1,. . . ,ns ∈ N :
∑s

j=1nj = n, and
0 < κ < κ∗ (κ∗ as given in Theorem1.2), there exist two periodic n-vortices for
LCS, denoted(Ã,φ̃)±κ , satisfying the analogous properties(i) and (ii) in Theo-
rem1.2with µ/q2 = κ and such that along a sequenceµ j → +∞ we have

(i) (A,φ,N)±µ j
→ ((Ã,φ̃)±κ , 1

κ |φ̃|2) as j → +∞, in [L2(Ω)]3 ×H1(Ω)× Lp(Ω)
and[L2(Ω)]3×C0(Ω)×Lp(Ω), ∀p≥ 1.

(ii) As κ → 0+, |φ̃+|2 → 1 in W1,q(Ω) ∀q ∈ [1,2), and uniformly on compact
subsets ofΩ\{p1,. . . , ps}, φ̃− → 0 Ck-uniformly,∀k≥ 0, provided n= 1.

Remark.The existence of periodicn-vortices forLCS with property (ii) was es-
tablished in [22]. Here we show that those vortices are in fact limits of the MCS
periodicn-vortices constructed in Theorem 1.2. Although it is believed that (ii)
should hold forφ̃− without the restrictionn = 1, so far only partial results have
been obtained in this direction; see [7, 8, 9, 18].
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For fixedq, recall that forLAH there exists a unique periodicn-vortex (A,φ)0

satisfying the corresponding properties (i) and (ii) in Theorem 1.2; see [25]. We
show that in the AH limit only(A,φ,N)+

µ converges to(A,φ)0 asµ → 0, while
(A,φ,N)−µ diverges, in the following sense:

THEOREM 1.5 Let n∈ N, q2 > 2πn/|Ω|, and p1,. . . , ps∈ Ω, n1,. . . ,ns∈ N :
∑s

j=1

nj = n. For µ > 0 small, denote by(A,φ,N)±µ the two periodic n-vortices of Theo-
rem1.2 and by(A,φ)0 theuniqueperiodic n-vortex forLAH satisfying the analo-
gous properties(i) and (ii) in Theorem1.2.

Asµ → 0+ we have

(i) (A,φ)+
µ → (A,φ)0, |∇N+|2 → 0, Ck-uniformly∀k≥ 0, µ

∫
N+ → q2.

(ii) φ− → 0, |∇A−
0 |2 = |∇N−|2 → 0, F−

12 → −2πn/|Ω|, Ck-uniformly ∀k ≥ 0,
µ
∫

N− → 2πn/|Ω| andµ
∫

A0 → q2−2πn/|Ω|.
(iii) For small values ofµ, (A,φ,N)±µ are theuniquesolutions for(1.2)–(1.9)

satisfying(i) and (ii) of Theorem1.2. Furthermore, they form smooth curves
parametrized byµ and belong to a connected solution set of(1.2)–(1.9).

In other words, Theorem 1.5 states that, for fixedq, there exists a set of solutions
of (1.2)–(1.9) along which the Higgs field connectsφ0 with φ ≡ 0 and theA0

component of the gauge potential connectsA0 ≡ 0 with∞.
Theorems 1.2 through 1.5 will be established by a further reduction of problem

(1.2)–(1.9) to a system of elliptic equations subject to periodic boundary condi-
tions. This approach has been introduced by Taubes in [23] for the AH model in
R

2, and it has been successfully adapted in several other self-dual Chern-Simons
theories; see, for example, [4, 5, 6, 20, 21, 22, 24].

The key ingredient for Taubes’s approach to apply is represented by the “self-
duality” equation(D1 + iD2)φ = 0 or its equivalent formulation (1.8). In fact,
as already observed, (1.8) gives that (up to a nonvanishing multiple factor)φ is
holomorphic and so, by its behavior near the zeroesp1,. . . , ps, φ can be written as

φ(x) = |φ(x)|exp


i

s∑
j=1

nj Arg
(

x− pj

|x− pj |
)
 , x∈ Ω\{p1,. . . , ps} .(1.10)

Using (1.10), it is possible to extend equation (1.8) smoothly through the zeroes of
φ and deriveA1 andA2 only in terms ofφ as follows:

A1 + iA2 = i(∂1 + i∂2) lnφ in Ω .(1.11)

As a consequence of (1.10) and (1.11) we obtain, in the sense of distributions,

∆ ln |φ|2 = 2F12+4π
s∑

j=1

njδpj ,(1.12)
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whereδpj denotes the Dirac measure with polepj , j = 1,. . . ,s. Thus, by (1.9) for
the unknownsu = ln |φ|2 andN, we are reduced to solving


∆u = 2q2eu−2µN+4π

∑s
j=1njδpj in Ω

∆N = (µ2 +2q2eu)N−q2(µ+ 2q2

µ

)
eu in Ω

u,N doubly periodic on∂Ω .

(1.13)

Clearly, for any(u,N)-solution of (1.13), we recover, up to a gauge transformation,
the whole periodicn-vortex(A,φ,N) solution of (1.2)–(1.9) by setting


φ(x) = exp{1

2u+ i
∑s

j=1nj Arg
(

x−pj

|x−pj |
)
}

A1 + iA2 = 2i∂̄ lnφ

−A0 = N− q2

µ .

(1.14)

Theorems 1.2 through 1.5 will be established by means of (1.13). Equivalently,
in view of the periodicity required on(u,N), we shall analyze (1.13) on the flat
2-torus, so with abuse of notation, we identifyΩ with the flat torus obtained as the
quotient ofR2 with respect to the lattice generated bya1 anda2.

Also, it will be convenient to set

2q2

µ
=: λ > 0 and N′ = 2N .(1.15)

With this change of variables, system (1.13) reduces to (omitting primes){
∆u = λµeu−µN+4π

∑s
j=1njδpj

∆N = µ(µ+λeu)N−λµ(µ+λ)eu ,
(1.16)

which sometimes it is convenient to consider as formed by the first equation in
(1.16) and the linear combination

∆
(

u+
N
µ

)
= λeu(N−λ)+4π

s∑
j=1

njδpj .

In this notation, the CS limit and the AH limit correspond to the analysis of so-
lutions for (1.16) asµ → +∞ with λ constant and asµ → 0 with λµ constant,
respectively.

We devote the next sections to the study of (1.16).

2 A Priori Estimates and the Proof of Theorem 1.1

We collect in this section all the necessary estimates for solutions to (1.16).
In the following, unless otherwise specified, all the integrals are taken overΩ,
identified with the flat 2-torus obtained as the quotient ofR

2 with respect to the
lattice generated bya1 anda2. Furthermore, using standard notation, we let‖ · ‖p

denote the norm inLp(Ω), 1≤ p≤∞, ‖ · ‖ denote the norm inH1(Ω), and
∫

Ω =
(1/|Ω|)∫Ω.
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We distinguish between the singular and regular part of a solutionu of (1.16)
by setting

u = u0 +v ,

with u0 theuniquesolution on the compact manifoldΩ for the problem{
∆u0 = 4π

∑s
j=1njδpj − 4πn

|Ω|∫
u0 = 0;

(2.1)

see [2]. Thus, for the unknowns(v,N) we are reduced to to the following elliptic
system overΩ: {

∆v = λµeu0+v −µN+ 4πn
|Ω|

∆N = µ(µ+λeu0+v)N−λµ(µ+λ)eu0+v ,
(2.2)

which, in particular, leads to

∆
(

v +
N
µ

)
= λeu0+v(N−λ)+

4πn
|Ω| .(2.3)

Remark.Notice that in (2.1) we have

u0(x) = ln |x− pj |2nj +γ j(x) asx→ pj(2.4)

with γ j regular overΩ, j = 1,. . . ,s (see [2]). Henceeu0 is smoothly defined overΩ
and vanishes exactly atpj with multiplicity 2nj , j = 1,. . . ,s. Moreover,eu0|∇u0|
can be continuously extended overΩ andeu0|∇u0|2 ∈ Lq(Ω) for all q∈ [1,2).

We start with the following:

LEMMA 2.1 Let(u,N) satisfy(1.16)overΩ; then0< N < λ and eu < 1 pointwise
in Ω.

PROOF: SinceN is smooth overΩ, let x∈ Ω : N(x) = minΩ N and so∆N(x) ≥
0. Evaluating atx the right-hand side of the second equation in (1.16) we im-
mediately find that minΩ N = N(x) ≥ 0. Therefore,N(x) ≥ 0 and (by (1.16))
∆N + hN ≤ 0 on Ω, with h(x) = −µ(µ + λeu) < 0 smooth inΩ. Thus, by the
“strong” maximum principle we conclude thatN > 0 in Ω, sinceN ≡ 0 is not
admissible as a solution for the second equation in (1.16).

Let x∈ Ω satisfyN(x) = maxΩ N > 0. Then∆N(x) ≤ 0 and

N(x) ≤ λ
(µ+λ)eu(x)

µ+λeu(x) .(2.5)

On the other hand, by (2.4),u(x) → −∞ asx → pj , j = 1,. . . ,s, sou attains its
maximum value at a pointy∈ Ω\{p1,. . . , ps}, where it satisfies

0≥ ∆u(y) = µ(λeu(y)−N(y)) , that is, λeu(y) ≤ N(y) .

Consequently,

λeu(x) ≤ λeu(y) ≤ N(y) ≤ N(x)(2.6)
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and we may insert (2.6) into (2.5) to derive

0 < N(x) ≤ µ+λ

µ+λeu(x) N(x) ,

which implieseu(x) ≤ 1 and, in turn, by (2.5)

max
Ω

N = N(x) ≤ λ.(2.7)

Thus

eu(y) < λ−1N(y) ≤ λ−1N(x) ≤ 1.

On the other hand, by (1.16) and (2.7), on any regular subsetΩ′ ⊂ Ω\{p1,. . . , ps},
u satisfies

∆u = µ(λeu−N) ≥ µλ(eu−1) , that is, ∆u+h(x)u≥ 0 in Ω′ , u≤ 0,

with h(x) = −µλ(eu−1)/u smooth overΩ′. Since we cannot takeu ≡ 0 as a
solution for (1.16), we conclude again by the “strong” maximum principle that
u < 0 on every regular subsetΩ′ ⊂ Ω\{p1,. . . , ps}. That is, by (2.1)

eu < 1 in Ω , which by (2.5) also implies max
Ω

N = N(x) < λ ,

and the conclusion follows.

PROOF OFTHEOREM 1.1: Recalling the transformations of (1.15), we obtain
Theorem 1.1 as a direct consequence of Lemma 2.1.

LEMMA 2.2 Letλ,µ > 0. The conditions

λµ >
4πn
|Ω| and µ <

1
4

√
|Ω|
πn

(
λµ− 4πn

|Ω|
)

are necessary to the existence of solutions for(1.16).

PROOF: Integrating (1.16) overΩ, we get the constraints

λµ

∫
eu−µ

∫
N+4πn = 0,(2.8)

λ

∫
eu(N−λ)+4πn = 0.(2.9)

Using the estimateN < λ on Ω (Lemma 2.1), we immediately get the first of the
necessary conditions

4πn≤ µ

∫
N−λµ

∫
eu < λµ|Ω| .

DecomposeN = S+
∫

N so that
∫

S= 0 and use (2.8) and (2.9) to obtain a
quadratic equation for

∫
eu as follows:

λ2
(∫

eu
)2

−λ

(
λ− 4πn

µ|Ω|
)∫

eu +
4πn
|Ω| +λ

∫
euS= 0.(2.10)
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Thus, the discriminant corresponding to (2.10) must be nonnegative, and we get

1
4

(
λ− 4πn

µ|Ω|
)2

≥ 4πn
|Ω| +λ

∫
euS.(2.11)

In order to determine the sign for the integral
∫

euS, we multiply byS the second
equation in (1.16) and integrate overΩ,

−1
µ
‖∇S‖2

2 = µ‖S‖2
2 +λ

∫
euNS−λ(µ+λ)

∫
euS(2.12)

= µ‖S‖2
2 +λ

∫
euS2 +λ

∫
euS
(∫

N−µ−λ

)
.

By Lemma 2.1,
∫

N < λ, so in view of (2.12) we must necessarily have∫
euS> 0.(2.13)

At this point, (2.11) and (2.13) imply

λµ− 4πn
|Ω| > 4µ

√
πn
|Ω|

and the desired conclusion follows immediately.

Recall that by (1.15) the asymptotic limits involved in Theorems 1.4 and 1.5
correspond to studying the behavior of solutions for (1.16) in the caseλ fixed and
µ → +∞ and the caseλµ fixed andµ → 0.

For this purpose we point out the following estimates:

LEMMA 2.3 There exists a constant C> 0 independent ofλ andµ such that any
solution(v,N) for (2.2)satisfies

(i) ‖∇v‖2 +‖∇N‖2 ≤Cλµ,
(ii) ‖∇v‖2 ≤C(1+λ2), and
(iii) |∫ v| ≤C(‖∇v‖2

2 + lnλ+1).

PROOF: In the sequel,C > 0 will denote a general constant independent ofλ
andµ, and may vary from line to line. Writev = w+

∫
v andN = S+

∫
N with∫

S= 0 =
∫

w.
Multiply the first equation of (2.2) byw and integrate overΩ; by means of

Lemma 2.1 we have

‖∇v‖2
2 = ‖∇w‖2

2 = −λµ

∫
eu0+vw+µ

∫
Nw(2.14)

≤ 2λµ

∫
|w| ≤Cλµ‖∇w‖2 .
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Analogously, multiply the second equation in (2.2) byN−λ and integrate overΩ:∫
|∇N|2 = −µ2

∫
(N−λ)2−µλ

∫
eu0+v(N−λ)2(2.15)

+λµ2
∫

(λ−N)−λµ2
∫

eu0+v(λ−N)

≤ |Ω|(λµ)2 .

Thus, estimate (i) is an immediate consequence of (2.14) and (2.15).
In order to obtain (ii), multiply (2.3) byw and integrate overΩ to obtain

‖∇v‖2
2 = ‖∇w‖2

2 = −
∫

∇N
µ
·∇w+λ

∫
eu0+v(λ−N)w(2.16)

≤ ‖∇N
µ
‖2‖∇w‖2 +λ2

∫
|w|

≤C
(
‖∇N

µ
‖2 +λ2

)
‖∇w‖2 .

Therefore, we get (ii) as a consequence of (i) and (2.16).
Finally, to obtain (iii) recall the Moser-Trudinger inequality (see [2, 11]):∫

ew ≤Cexp
(

1
16π

‖∇w‖2
2

)
, ∀w∈ H1(Ω) :

∫
w = 0,(2.17)

with C> 0 a suitable constant depending only onΩ. Integrating (2.3) overΩ yields

4πn
λ

=
∫

eu0+v(λ−N) ≤ λmax
Ω

eu0e
∫

v
∫

ew ≤ λCe
1

16π ‖∇w‖2
2e
∫

v ,

that is, ∫
v ≥−C(lnλ+‖∇w‖2

2 +1) .

On the other hand, by Lemma 2.1,∫
v ≤−

∫
u0 ≤ 0,

and we conclude estimate (iii).

As an immediate consequence of Lemmas 2.1 and 2.3, we have the following:

COROLLARY 2.4 Any solution(v,N) of (2.2)satisfies

‖v‖ ≤C((λµ)2 + lnλ+1) , ‖N‖ ≤Cλµ

(
1+

1
µ

)
,

with C> 0 a suitable constant independent ofλ andµ.
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3 A Multiplicity Result and the Proof of Theorem 1.2

The goal of this section is to prove an existence result for (2.2) that leads to the
conclusion of Theorem 1.2. To this purpose we solve forN the first equation in
(2.2) and obtain

N =
1
µ

(
λµeu0+v +

4πn
|Ω| −∆v

)
,

which we may insert into the second equation of (2.2) and derive the following
biharmonicequation forv:

λ

µ
∆eu0+v − 1

µ2 ∆2v =

(µ+λeu0+v)
(

λeu0+v +
4πn|Ω|−1−∆v

µ

)
−λ(µ+λ)eu0+v .

Using the fact thateu0∆u0 = −(4πn/|Ω|)eu0 (in the sense of distributions) and
performing straightforward calculations, we get

(3.1)
1
µ2 ∆2v− λ

µ

[
∆eu0+v −

(
4πn
|Ω| −∆v

)
eu0+v

]
−∆v =

λ2eu0+v(1−eu0+v)− 4πn
|Ω| .

In order to get an idea of the type of existence result we may expect, we integrate
(3.1) overΩ to obtain the constraint∫

e2(u0+v)− 1
λ

∫ (
λ− 4πn|Ω|−1−∆v

µ

)
eu0+v +

4πn
λ2 = 0.(3.2)

Using the notation of Section 2, setv = w+ c with
∫

w = 0; from (3.2) we get a
quadratic equation inec,

e2c
∫

e2(u0+w)−ec 1
λ

∫ (
λ− 4πn|Ω|−1−∆v

µ

)
eu0+w +

4πn
λ2 = 0,(3.3)

which yieldsw to satisfy the necessary condition∫ (
λ− 4πn|Ω|−1−∆v

µ

)
eu0+w ≥ 4

√
πn
(∫

e2(u0+w)
)1/2

(3.4)

and

(3.5) ec =
[
2λ

∫
e2(u0+w)

]−1

∫ (λ− 4πn|Ω|−1−∆v

µ

)
eu0+w

±
√√√√(∫ (λ− 4πn|Ω|−1−∆v

µ

)
eu0+w

)2

−16πn
∫

e2(u0+w)


 .
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We will show the following:

THEOREM 3.1 There exists a constantκ∗ > 0 (depending only on n, u0, andΩ)
such that ifµ > 0 andλ > 0 satisfy

λ− 4πn
µ|Ω| >

1
κ∗

,

then problem(3.1) admits at leasttwo distinct solutionsv+ = w+ + c+ andv− =
w− + c−. Furthermore, w+ satisfies(3.4) with a strict inequality and c+ satisfies
(3.5)with the “plus” sign and the following estimates hold:

(i) 1
µ‖∆w+‖2 +‖∇w+‖2 ≤Cλ and

(ii)
∫

e2(u0+v+) ≥C
(
(1− 4πn

λµ|Ω|)
2+ 1

λ2 ln(1− 4πn
λµ|Ω|)

)
for a suitable constant C> 0

independent ofλ andµ.

If n = 1, then w− also satisfies(3.4) with a strict inequality and c− satisfies(3.5)
with the “minus” sign.

Remark.Notice that a lower bound of type (ii) cannot be expected for every so-
lution of (3.1). For instance, we show that for the second solutionv−, we have
eu0+v− → 0 uniformly asµ → 0 andλµ is fixed.

By scaling we may assume without loss of generality that|Ω|= 1. We shall use
the variational formulation of (3.1) to prove Theorem 3.1.

Consider the functional defined forv ∈ H2(Ω),

I(v) =
1

2µ2‖∆v‖2
2 +

λ

µ

∫
(4πn−∆v)eu0+v

+
1
2
‖∇v‖2

2 +
λ2

2

∫
(eu0+v −1)2 +4πn

∫
v .

By the Sobolev embeddings and the Moser-Trudinger inequality (2.17),I is well-
defined and Fréchet-differentiable onH2(Ω), and critical points ofI in H2(Ω)
define (weak) solutions for (3.1).

In order to derive solutions for (3.1) with the desired sign condition in (3.5) as
stated by Theorem 3.1, we insert the constraints directly into the functionalI as
follows: Consider the subspaceX2 of H2(Ω) defined by

X2 =
{

w∈ H2(Ω) :
∫

w = 0
}

and notice that onX2 the norm‖w‖X2 = ‖∆w‖2 is equivalent to the standard one
induced byH2(Ω). OnX2 we define the set

A =
{

w∈ X2; 4
√

πn
(∫

e2(u0+w)
)1/2

≤
∫ (

λ− 4πn−∆w
µ

)
eu0+w

}
,

and for everyw∈ A we definec±(w) ∈ R by
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(3.6) ec±(w) =
(

2λ

∫
e2(u0+w)

)−1

∫ (λ− 4πn−∆w

µ
)eu0+w

±
√√√√(∫ (λ− 4πn−∆w

µ

)
eu0+w

)2

−16πn
∫

e2(u0+w)


 .

Hence∀w∈ A, we have thatec±(w) satisfies (3.3) and

I(w+c±(w)) =
1

2µ2‖∆w‖2
2 +

λ

µ
ec±(w)

∫
(4πn−∆w)eu0+w +

1
2
‖∇w‖2

2

+
λ2

2
e2c±(w)

∫
e2(u0+w)−λ2ec±(w)

∫
eu0+w +

λ2

2
+4πnc±(w)

=
1

2µ2‖∆w‖2
2 +

1
2
‖∇w‖2

2−
λ2

2
e2c±(w)

∫
e2(u0+w) +4πnc±(w)

+
λ2

2
−4πn.

Thus, setting

J±(w) =
1

2µ2‖∆w‖2
2 +

1
2
‖∇w‖2

2−
λ2

2
e2c±(w)

∫
e2(u0+w) +4πnc±(w) ,

we have that the functionalsJ± are well-defined onA and

I(w+c±(w)) = J±(w)+
λ2

2
−4πn.(3.7)

Furthermore, it is not difficult to check that for everyw ∈ A satisfying the strict
inequality in (3.4), namely,

4
√

πn
λ

(
e2(u0+w))1/2

<

∫ (
1− 4πn−∆w

λµ

)
eu0+w ,(3.8)

the functionalsJ± are Fréchet-differentiable inw and, as expected, critical points
of J± give rise to critical points forI (hence to solutions of (3.1)), which satisfy the
constraint (3.5) accordingly with the plus or minus sign.

More precisely, we have the following:

LEMMA 3.2 If w0 ∈ A satisfying(3.8) is a critical point for J±, thenv = w0 +
c±(w0) defines a critical point for I, hence a solution for(3.1).

PROOF: By the definition ofc±(w), we have that necessarily

〈I ′(w+c±(w)),c〉 = 0, ∀w∈ A, ∀c∈ R .
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Hence, letϕ ∈ X2. By (3.8), for smallt ∈ R, we havew0 + tϕ ∈ A and|c±(w0 +
tϕ)−c±(w0)| = O(t) ast → 0. Consequently,

I(w0 + tϕ+c±(w0))− I(w0 +c±(w0))

= I(w0 + tϕ+c±(w0))− I(w0 + tϕ+c±(w0 + tϕ))

+ I(w0 + tϕ+c±(w0 + tϕ))− I(w0 +c±(w0))

= 〈I ′(w0 + tϕ+c±(w0 + tϕ)),c±(w0)−c±(w0 + tϕ)〉+o(t)

+J±(w0 + tϕ)−J±(w0)

= J±(w0 + tϕ)−J±(w0)+o(t) .

Thus,

〈I ′(w0 +c±(w0)),ϕ〉 = lim
t→0

I(w0 + tϕ+c±(w0))− I(w0 +c±(w0))
t

= lim
t→0

J±(w0 + tϕ)−J±(w0)
t

= 〈J′±(w0),ϕ〉 = 0,

and the conclusion follows.

Thus, to derive Theorem 3.1 we will show that under the given assumptions
there exist a minimum forJ+ and a minimum forJ− (providedn = 1) satisfying
(3.8). The minimum forJ+ will provide a local minimum for the functionalI in
H2(Ω). Therefore, for everyn∈ N, asecondcritical point ofI will be obtained by
a mountain-pass-type construction.

We start with the following:

LEMMA 3.3 Letµ > 0 andλ > 0 be such that

λ− 4πn
µ

> 4
√

πn
(‖eu0‖2

‖eu0‖1

)
.(3.9)

Then:

(i) w≡ 0 satisfies the strict inequality(3.8) (in particular,A contains functions
satisfying the strict inequality(3.8)).

(ii) The functionals J± are bounded below inA and attain their infimum at w± ∈
A satisfying

1
µ
‖∆w±‖2 +‖∇w±‖2 ≤C(λ+1)

with C> 0 a suitable constant independent ofλ andµ.

PROOF: Recalling that
∫ |∇u0|2eu0 = 4πn

∫
eu0, property (i) is readily checked

from the definition ofA. To obtain (ii), notice that everyw ∈ A in particular
satisfies ∫

e2(u0+w)

(
∫

eu0+w)2 ≤ λ2

16πn
.(3.10)
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Indeed, in the sense of distributions we have thateu0∆u0 = −4πneu0 and conse-
quently

(4πn−∆v)eu0+w = −∆(u0 +w)eu0+w = −∆eu0+w + |∇(u0 +w)|2eu0+w .

Thus ∫
(4πn−∆v)eu0+w =

∫
|∇(u0 +v)|2eu0+w > 0(3.11)

and (3.10) follows for everyw ∈ A. In particular, for everyτ ∈ (0,1] and a =
1/(2− τ), we have∫

eu0+w =
∫

(eu0+w)τa(eu0+w)2(1−a)

≤
(∫

eτ(u0+w)
)a(∫

e2(u0+w)
)1−a

≤
(∫

eτ(u0+w)
)a( λ2

16πn

)1−a(∫
eu0+w

)2(1−a)

,

that is, ∫
eu0+w ≤ max

Ω
eu0

(
λ2

16πn

) 1−τ
τ
(∫

eτw
) 1

τ

, ∀τ ∈ (0,1] .(3.12)

Furthermore, it easy to see that

4πn
λ2
∫

eu0+w ≤ ec±(w) ≤
∫

eu0+w∫
e2(u0+w) .(3.13)

Therefore, by (3.12) and (3.13) we have

J±(w) =
1

2µ2‖∆w‖2
2 +

1
2
‖∇w‖2

2−
λ2

2
e2c±(w)

∫
e2(u0+w) +4πnc±(w)(3.14)

≥ 1
2µ2‖∆w‖2

2 +
1
2
‖∇w‖2

2−
λ2

2
(
∫

eu0+w)2∫
e2(u0+w) −4πnln

λ2∫ eu0+w

4πn

≥ 1
2µ2‖∆w‖2

2 +
1
2
‖∇w‖2

2−
λ2

2
−4πnln

λ2

4πn

−4πnln


max

Ω
eu0

(
λ2

16πn

) 1−τ
τ
(∫

eτw
) 1

τ




≥ 1
2µ2‖∆w‖2

2 +
1
2
‖∇w‖2

2−
4πn
τ

ln
∫

eτw− λ2

2
− 4πn

τ
lnλ2−Cn,τ

with Cn,τ a suitable constant depending onn andτ only. At this point, we may use
the Moser-Trudinger inequality (2.17) to obtain

J±(w) ≥ 1
2µ2‖∆w‖2

2 +
1
2

(
1− nτ

2

)
‖∇w‖2

2−
λ2

2
− 4πn

τ
lnλ2−Cn,τ .(3.15)
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Thus, by choosing 0< τ < min{1, 2
n}, we find thatJ± is bounded below and coer-

cive inA.
SinceJ± is (sequentially) lower semicontinuous with respect to the weak topol-

ogy in X2, we conclude that in the (sequentially) weakly closed setA it attains its
infimum at some pointw± ∈ A.

Finally, by choosingτ = 1/n in (3.15), we derive a suitable constantCn > 0
such that

1
2µ2‖∆w‖2

2 +
1
4
‖∇w‖2

2 ≤
λ2

2
+4πn2 lnλ2 +J±(w±)+Cn .

Since

J±(w±) ≤ J±(0) = −λ2

2
e2c±(0)

∫
e2u0 +4πnc±(0) ≤ 4πnln

∫
eu0∫
e2u0

,

the desired estimate immediately follows for anyλ satisfying (3.9).

In view of Lemma 3.2, to obtain Theorem 3.1 we need to ensure that, under
those assumptions,w± satisfies the strict inequality (3.8). To this purpose, we
analyze the behavior ofJ± on the set

Γ =

{
w∈ X2 :

∫ (
1− 4πn−∆w

λµ

)
eu0+w =

4
√

πn
λ

(∫
e2(u0+w)

) 1
2
}

,

and notice thatJ+ andJ− coincide onΓ.
We have the following:

LEMMA 3.4 Letµ > 0 andλ > 0 satisfy(3.9). There exists a suitable constant Cn

depending on n only such that

inf
Γ

J+ = inf
Γ

J− ≥−4πnlnλ−4πn(n−1) ln
(

λ− 4πn
µ

)
−Cn .(3.16)

PROOF: Note that forw∈ Γ, we have

λ2e2c±(w)
∫

e2(u0+w) = 4πn.(3.17)

Consequently, for allw∈ Γ we have

J±(w) =
1

2µ2‖∆w‖2
2 +

1
2
‖∇w‖2

2−2πn+2πnln
4πn

λ2
∫

e2(u0+w)

=
1

2µ2‖∆w‖2
2 +

1
2
‖∇w‖2

2−2πnln
∫

e2(u0+w)−4πnlnλ

+2πnln(4πn)−2πn.

Let

C0 = inf
w∈X2\{0}

‖∆w‖2
2

‖∇w‖2
2
.(3.18)
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By the Moser-Trudinger inequality (2.17) and (3.18), we derive∫
e2w ≤Cexp

(
1

4π
‖∇w‖2

2

)
≤Cexp

(
1

4πn
‖∇w‖2

2 +
1

4πn
(n−1)‖∇w‖2

2

)

≤Cexp
(

1
4πn

‖∇w‖2
2 +

µ2

4πC0

(
1− 1

n

)‖∆w‖2
2

µ2

)
.

Therefore, for a suitable constantCn > 0 (depending onn only), for everyw ∈ Γ
we obtain

J±(w) ≥
[
1− µ2

C0
(n−1)

]‖∆w‖2
2

2µ2 −4πnlnλ−Cn .(3.19)

Since (3.9) implies the lower boundλ− 4πn/µ > 1, (3.19) immediately gives
(3.16) forn = 1, and forn > 1 when 0< µ2 ≤C0/(n−1) =: µ2

n. Thus we are left
to prove (3.16) whenn > 1 andµ ≥ µn. To this purpose, we argue as in Lemma
3.3 withτ = 2/n and use (3.17) to derive, forw∈ Γ,

J±(w) =
1

2µ2‖∆w‖2
2 +

1
2
‖∇w‖2

2−2πn+4πnc±(w)(3.20)

≥ 1
2µ2‖∆w‖2

2−4πn2 lnλ−Cn

≥−4πnlnλ−4πn(n−1) lnλ−Cn ,

with suitableCn > 0 (depending onn only). Since we assumeµ ≥ µn, by (3.9) we
get a suitable constant ¯µn > 0 such thatλµ ≥ µ̄n and so

lnλ ≤ ln
(

λ− 4πn
µ

)
+Cn

for a suitable constantCn > 0. As n > 1, at this point (3.16) immediately follows
from (3.20).

At this point, we can complete the description of the minimization problem
concerningJ+ onA as follows:

PROPOSITION3.5 There exists a sufficiently smallκ1 > 0such that, ifλ−4πn/µ >
1/κ1, then

(i) the minimum w+ of J+ satisfies the strict inequality(3.8), namely,∫ (
1− 4πn−∆w+

λµ

)
eu0+w+

>
4
√

πn
λ

(∫
e2(u0+w+)

)1/2

(hence, it defines a critical point for J+).
(ii) The functionv∗ = w+ + c+(w+) defines alocal minimumfor the functional

I on H2(Ω).
(iii) The following estimates hold:

(a) 1
µ‖∆w+‖2 +‖∇w+‖2 ≤Cλ

(b)
∫

e2(u0+v∗) ≥C
(
(1− 4πn

λµ )2 + 1
λ2 ln(1− 4πn

λµ )
)
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for a suitable constant C> 0 independent ofλ andµ.

PROOF: We shall use Lemma 3.4 and compare the values ofJ+ on Γ with that
of J+ at 0∈ A\Γ. To this purpose, recall that

ec+(0) =
∫

eu0

2
∫

e2u0


(1− 4πn

λµ

)
+

√√√√(1− 4πn
λµ

)2

− 16πn
λ2

∫
e2u0

(
∫

eu0)2




and so (
1− 4πn

λµ

) ∫
eu0

2
∫

e2u0
≤ ec+(0) ≤

(
1− 4πn

λµ

) ∫
eu0∫
e2u0

.

Thus,

J+(0) = −λ2

2
e2c+(0)

∫
e2u0 +4πnc+(0)

≤−λ2

2

(
1− 4πn

λµ

)2(
∫

eu0)2

4
∫

e2u0
+4πnln

(
1− 4πn

λµ

)
,

and in view of (3.16) we may assert that

inf
Γ

J+ > J+(0) ≥ inf
A

J+ = J+(w+) ,

provided there holds

1
8

(
∫

eu0)2∫
e2u0

(
λ− 4πn

µ

)2

> 4πn2 ln
(

λ− 4πn
µ

)
+Cn ,(3.21)

with Cn the constant in Lemma 3.4. Thus, we may find a suitably small constant
κ1 > 0 (depending onn only) such that ifλ−4πn/µ > 1/κ1, then (3.21) holds and
infΓ J+ > J+(w+). Consequently,w+ ∈ A\Γ and (i) is established.

To obtain (ii), observe that, by (3.7),I(w+c+(w))≥ I(w+ +c+(w+)), ∀w∈A.
In view of (i) we findε0 > 0 such that∫ (

1− 4πn−∆w+

λµ

)
eu0+w+ − 4

√
πn

λ

(∫
e2(u0+w+)

)1/2

≥ ε0 ,

c+(w+)−c−(w+) ≥ ε0 .

Thus, forδ1 > 0 sufficiently small, if‖w−w+‖H2 < δ1, then∫ (
1− 4πn−∆w

λµ

)
eu0+w− 4

√
πn

λ

(∫
e2(u0+w)

)1/2

≥ ε0

2
,

c+(w+)−c−(w) ≥ ε0

2
, |c+(w)−c+(w+)| ≤ ε0

4
.

In particular, this implies that ifv = w+c∈ H2(Ω) satisfies‖w−w+‖H2 ≤ δ1 and
|c−c+(w+)| ≤ ε0/4, thenw∈ A andc−c−(w) > 0. Consequently,

I(w+c) ≥ min
c≥c−(w)

I(w+c) = I(w+c+(w)) ≥ I(w+ +c+(w+)) ,
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and the desired conclusion (ii) follows.
Finally, to obtain (iii) notice that (i) follows from Lemma 3.3 whenλ is suffi-

ciently large as in the hypothesis. To establish (ii) we can argue as in Lemma 3.3
with τ = 2/n to derive a constantCn > 0 (depending onn only) such that

λ2

2
e2c+(w+)

∫
e2(u0+w+)

≥−4πn2 lnλ−Cn−J+(w+)

≥−4πn2 lnλ−Cn−J+(0)

≥−4πn2 lnλ−Cn +
λ2

8

(
1− 4πn

λµ

)2‖eu0‖2
1

‖eu0‖2
2
−4πnln

(
1− 4πn

λµ

)
.

Hence, by choosingκ1 > 0 smaller if necessary, we may insure that, forλ−
4πn/µ > 1/κ1 we have

λ2

16

(
1− 4πn

λµ

)2‖eu0‖2
1

‖eu0‖2
2
≥ 4πn2 ln

(
λ− 4πn

µ

)
+Cn .

Consequently,∫
e2(u0+v∗) ≥ 1

8

(
1− 4πn

λµ

)2‖eu0‖2
1

‖eu0‖2
2
+

8πn(n−1)
λ2 ln

(
1− 4πn

λµ

)

and (ii) easily follows.

From the existence of a local minimum forI , we immediately derive asecond
critical point, because, as we shall see,I exhibits a mountain pass structure. To-
wards this goal, we begin by showing thatI satisfies the Palais-Smale condition.
Actually, I satisfies the following stronger condition:

LEMMA 3.6 Let {v j} ⊂ H2(Ω) satisfy‖I ′(v j)‖H−2(Ω) → 0 as j→ ∞. Thenv j

admits a strongly convergent subsequence in H2(Ω).

PROOF: Recall that, for allv,ϕ ∈ H2(Ω), we have

〈I ′(v),ϕ〉 =
1
µ2

∫
∆v∆ϕ+

λ

µ

∫
(4πn−∆v)eu0+vϕ− λ

µ

∫
∆eu0+vϕ

+
∫

∇v ·∇ϕ+λ2
∫

(eu0+v −1)eu0+vϕ+4πn
∫

ϕ.

Therefore, applying the assumption atϕ = 1, we derive

o(1) = 〈I ′(v j),1〉
=

λ

µ

∫
(4πn−∆v j)eu0+v j +λ2

∫
(eu0+v j −1)eu0+v j +4πn

(3.22)
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as j →∞. Using the inequality(ex−1)ex ≥−1
4 ∀x∈ R and (3.11), we obtain the

bounds

0≤
∫

|∇(u0 +v j)|2eu0+v j =
∫

(4πn−∆v j)eu0+v j ≤C1,(3.23)

‖eu0+v j‖2 ≤C2 ,(3.24)

with C1 andC2 independent ofj.
Writing v j = wj +cj , with

∫
wj = 0, we derive

o(1)‖∆wj‖2 = 〈I ′(v j),wj〉(3.25)

=
1
µ2‖∆wj‖2

2 +
λ

µ

∫
(4πn−∆v j)eu0+vwj

− λ

µ

∫
∆eu0+v j wj +‖∇wj‖2

2 +λ2
∫

(eu0+v j −1)eu0+v j wj .

By (3.11) and Sobolev embeddings, we have∣∣∣∣
∫

(4πn−∆v j)eu0+v j wj

∣∣∣∣=
∣∣∣∣
∫

(−∆eu0+v j + |∇(u0 +v j)|2eu0+v j )wj

∣∣∣∣
≤
∣∣∣∣
∫

eu0+v j ∆wj

∣∣∣∣+‖wj‖∞
∫

|∇(u0 +v j)|2eu0+v j

≤ ‖eu0+v j‖2‖∆wj‖2 +‖wj‖∞
∫

(4πn−∆v j)eu0+v j

≤ (C2 +C1C3)‖∆wj‖2 ,

with C3 the constant of the Sobolev embedding. Therefore, from (3.25) we con-
clude that

‖∆wj‖2 ≤C,(3.26)

which, together with the Moser-Trudinger inequality, (2.17) leads to∫
eu0+wj ≤C(3.27)

for some constantC independent ofj. By (3.24) and Jensen’s inequality,cj is
bounded above. On the other hand, by (3.22) and (3.27) we have

4πn
λ2 +o(1) ≤ ecj

∫
eu0+wj ≤Cecj as j →∞ ,

which shows thatcj is also bounded below uniformly inj. Consequently, the
sequence{v j} is bounded inH2(Ω).

It follows that we can find a subsequencewjk + cjk such thatwjk ⇁ w0 ∈ X2

weakly inH2(Ω), strongly inW1,p(Ω) ∀p≥ 1, and uniformly onΩ, andcjk → c0.
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Hence,

o(1) = 〈I ′(v jk),wjk −w0〉

=
1
µ2

(∫
|∆wjk|2−

∫
∆wjk∆w0

)
− λ

µ

∫
∆(wjk −w0)eu0+v jk

+
λ

µ

∫
(4πn−∆v jk)e

u0+v jk(wjk −w0)+
∫

|∇wjk|2−
∫

∇wjk ·∇w0

+λ2
∫

eu0+v jk(eu0+v jk −1)(wjk −w0)+4πn(cjk −c0)

=
1

2µ2(‖∆wjk‖2
2−‖∆w0‖2

2)+o(1) ,

as j →∞. That is,

‖∆(wjk −w0)‖2
2 = o(1) as j →∞ ,

and the conclusion follows.

PROPOSITION3.7 Let µ > 0 andλ > 0 be such thatλ−4πn/µ > 1/κ1; then the
functional I admits asecondcritical point (other than the local minimum estab-
lished in Proposition3.5).

PROOF: Set v∗ = w+ + c+(w+) the local minimum as obtained in Proposi-
tion 3.5, and letρ0 > 0 be such that∀v ∈ H2(Ω) : ‖v − v∗‖H2 < ρ0 there holds
I(v) ≥ I(v∗). We have the following alternatives:

1. inf‖v−v∗‖H2=ρ I(v) = I(v∗) ∀ρ ∈ (0,ρ0) or
2. there existsρ1 ∈ (0,ρ0) such that inf‖v−v∗‖H2=ρ1

I(v) > I(v∗).
In the case where alternative 1 holds, by Ekeland’s lemma (see [12]) we find for

every 0< ρ < ρ0 there exists avρ ∈X2 such that‖vρ−v∗‖H2 = ρ andI(vρ) = I(v∗).
Thus,vρ defines another local minimum forI , and we actually obtain a continuum
of critical points in this situation. Therefore assume that alternative 2 holds. In this
case, we show thatI admits a mountain pass structure which, in view of the result
of Ambrosetti and Rabinowitz [1], leads to a second critical point ofI of mountain
pass type. Therefore in any case we may conclude the existence of a second critical
point for I .

In order to construct the mountain pass critical value, note that

I(v∗ +c) =
1

2µ2‖∆v∗‖2
2 +

λ

µ
ec
∫

(4πn−∆v∗)eu0+v∗ +
1
2
‖∇v∗‖2

2

+
λ2

2

∫
(eu0+v∗+c−1)2 +4πn

∫
v∗ +4πnc→−∞

asc→−∞. Hence we may find a sufficiently large negative constantc1 < 0 such
that, settingv1 = v∗ +c1 and using alternative 2, we have

‖v∗−v1‖H2 > δ1 and I(v1) < I(v∗) < inf
‖v−v∗‖H2=ρ1

I .(3.28)
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Lemma 3.6 together with (3.28) guarantees that all assumptions of the mountain
pass lemma are satisfied. Thus, by setting

P = {γ : [0,1] → H2(Ω) continuous such thatγ(0) = v∗ andγ(1) = v1} ,

we can conclude that

c1 = inf
γ∈P

sup
t∈[0,1]

I(γ(t)) ≥ inf
‖v−v∗‖H2=ρ1

I > I(v∗)

defines a critical value forI other thanI(v∗).

In order to conclude the proof of Theorem 3.1, we need only establish the follow-
ing:

LEMMA 3.8 Let n= 1. There existsκ2 > 0 (independent ofµ andλ) such that if
λ−4πn/µ > 1/κ2, then the minimum w− of J− onA satisfies(3.8);namely,∫ (

λ− 4πn−∆w−

µ

)
eu0+w−

> 4
√

πn
∫

e2(u0+w−) .

PROOF: Once more we appeal to Lemma 3.4 and compare the minimal value
of J− on Γ with J−(0). To this end, note that∫

|∇u0|2eu0 = 4πn
∫

eu0

and

ec−(0) =

∫
eu0 − 1

λµ

∫ |∇u0|2eu0 −
√

(
∫

eu0 − 1
λµ

∫ |∇u0|2eu0)2− 16πn
λ2

∫
e2u0

2
∫

e2u0

=
8πn
λ2

1

∫
eu0

[
1− 4πn

λµ +

√(
1− 4πn

λµ

)2− 16πn
λ2

∫
e2u0

(
∫

eu0)2

] .

Hence, in this case we have
4πn

λ2
∫

eu0
≤ ec−(0) ≤ 8πn

λ2(1− 4πn
λµ )

∫
eu0

.

Consequently,

J−(0) = −λ2

2
e2c−(0)

∫
e2u0 +4πnc−(0)

≤−8π2n2

λ2

∫
e2u0

(
∫

eu0)2 −4πnlnλ

(
λ− 4πn

µ

)
+4πnln

8πn∫
eu0

≤−4πnlnλ−4πnln
(

λ− 4πn
µ

)
+4πnln(8πn)

and forn = 1 we conclude that

J−(0) ≤−4π lnλ−4π ln
(

λ− 4π

µ

)
+4π ln(8π) .(3.29)
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On the other hand, in view of Lemma 3.4, from (3.16) withn = 1 and (3.29), we
find κ2 > 0 sufficiently small such that ifλ−4π/µ > 1/κ2, then

inf
Γ

J− ≥−4π lnλ−C1 > J−(0) ≥ inf
A

J− = J−(w−) .

Consequently,w− ∈ A\Γ, and the desired conclusion follows.

PROOF OFTHEOREM 3.1: Takeκ∗ = min{κ1,κ2}. Then the existence of the
first solution of (3.1) follows by Proposition 3.5 together with Lemma 3.2 just by
takingv1 = v∗ = w+ +c+(w+). The existence of the second solution is contained
in Proposition 3.7. Finally, the casen = 1 follows by Lemma 3.8 and Lemma 3.2
with v2 = w− +c−(w−).

PROOF OFTHEOREM 1.2: Recalling the transformations of (1.15), we derive
Theorem 1.2 as a consequence of (1.14) and the multiple existence of solutions for
(1.13), which follows by Theorem 3.1 and Lemma 2.2.

4 The CS Limit and the Proof of Theorem 1.4

Recall that in the CS model of Hong, Kim, and Pac [13] and Jackiw and Wein-
berg [14], the Maxwell termFαβFαβ is neglected and the electrodynamics of the
systems is governed solely by the Chern-Simons termεαβγAα∂βAγ . This approx-
imation is sensible at large distances, where the second-order Maxwell term is
dominated by the first-order Chern-Simons term.

The Lagrangean density is given by

LCS(A,φ) =
κ

2
εαβγAα∂βAγ −Dαφ(Dαφ)∗− 1

κ2 |φ|2(|φ|2−1)2

with κ the Chern-Simons coupling constant. Note that in this case the modified
Gauss law reduces to

F12 =
1
κ

J0 = −2
κ

A0|φ|2 .(4.1)

A periodic CS-vortex(A,φ) in Ω is defined as a time-independent configuration of
LCS satisfying the first three in the set of boundary conditions (1.2). As above we
may define its vortex numbern and find that themagnetic fluxΦ =

∫
Ω F12 =−2πn,

while, by (4.1), the totalelectric charge Q=
∫

Ω J0 = κΦ = −2πκn.
Furthermore, (4.1) also enables us to obtain the following form for the energy:

ECS(A,φ) =
∫

Ω

{
|(D1± iD2)φ|2 +

1
4

[
κ

|φ|F12∓ 2
κ
|φ|(|φ|2−1)

]2

∓F12

}
dx.

Thus, in the class of periodicn-vortices we have

ECS≥ 2π|n| ,
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and an energy minimizer(A,φ) corresponds to a solution of the Bogomol′ny̆ı equa-
tions 


(D1± iD2)φ = 0

±F12 = 2
κ2 |φ|2(|φ|2−1)

F12 = − 2
κA0|φ|2 .

(4.2)

It is possible to check rigorously that solutions for (4.2) indeed lead to periodic
n-vortices forLCS with n = deg(φ,Ω,0), E = 2π|n|, andΦ = 1

κQ = −2πn. As
before, we shall limit our attention to the casen > 0, for which we must consider
(4.2) with the upper sign. Furthermore, by Taubes’s approach [23], we can use
doubly periodic solutions for the elliptic problem

∆u =
4
κ2eu(eu−1)+4π

s∑
j=1

njδpj(4.3)

with pj ∈ Ω, nj ∈ N, j = 1,. . . ,s, andn=
∑s

j=1nj , to construct periodicn-vortices
(A,φ) as solutions of (4.2) (with the upper sign) by setting


φ(x) = exp{1

2u+ i
∑s

j=1njArg
( x−pj

|x−pj |
)}

A1 + iA2 = 2i∂̄ lnφ

A0 = 1
κ(1−|φ|2) ,

(4.4)

andφ vanishes exactly atpj with multiplicity nj , j = 1,. . . ,s. Using the notation
of Section 1, we identifyΩ with the flat torus obtained as the quotient ofR

2 by the
lattice generated bya1 anda2, and let

κ =
2
λ

.(4.5)

Furthermore, after scaling, we can always assume|Ω| = 1. So, if we decompose
u = u0 +v, with u0 uniquely defined by (2.1), in view of (4.3) and (4.5) we obtain
v as a solution for the equation

∆v = λ2eu0+v(eu0+v −1)+4πn(4.6)

in the compact manifoldΩ.
In order to obtain Theorem 1.4 we start with the following:

PROPOSITION4.1 Let(v j ,Nj) be solutions for(2.2)withµ = µ j →+∞ andλ > 0
fixed. There exists a solutioñv of equation(4.6)such that, for a subsequence(still
denoted by(v j ,Nj)), the following hold:

(i) v j → ṽ, strong H1 and uniformly,
(ii) Nj → λeu0+ṽ, strong Lp ∀p≥ 1,

(iii) Nj

µ j
→ 0, strong H1, and

(iv) v j +
Nj

µ j
→ ṽ in C1,α.
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PROOF: By Lemmas 2.1 and 2.3, we have thatv j and Nj/µ j are uniformly
bounded inH1(Ω) and Nj is uniformly bounded inL∞. Therefore, there exist
functionsṽ ∈ H1(Ω) andT ∈ L∞(Ω) such that, up to subsequences,

• v j ⇁ ṽ weakly inH1, strongly inLp ∀p≥ 1, and pointwise a.e.,
• Nj ⇁ T weakly inLp ∀p > 1, and
• Nj

µ j
⇁ 0 weakly inH1, strongLp ∀p≥ 1.

Since (by Lemma 2.1)u0+v j ≤ 0, by the dominated convergence theorem we also
have

• eu0+v j → eu0+ṽ strongLp ∀p≥ 1.

Using the first equation in (2.2), we have∫ ∇v j

µ j
·∇ϕ−

∫
(λeu0+v j −Nj)ϕ+

4πn
µ j

∫
ϕ = 0 ∀ϕ ∈ H1(Ω) ,

and taking limits we find

T = λeu0+ṽ a.e. inΩ .(4.7)

From (2.3) we have∫
∇
(

v j +
Nj

µ j

)
·∇ϕ+λ

∫
eu0+v j (Nj −λ)ϕ+4πn

∫
ϕ = 0 ∀ϕ ∈ H1(Ω) ,

and so, passing to the limit, we see that ˜v is a weak solution for (4.3). By elliptic
regularity,ṽ is smooth inΩ.

We are left to show that the convergences are strong. To this end, we multiply
the second equation in (2.2) byµ−2

j Nj and integrate to obtain

∫ ∣∣∣∣∇Nj

µ j

∣∣∣∣
2

=
∫

(λeu0+v j −Nj)Nj +λµ−1
j

∫
eu0+v j (λ−Nj)Nj

and thus ∥∥∥∥∇Nj

µ j

∥∥∥∥
2

2
= −‖Nj‖2

2 +
∫

λ2e2(u0+ṽ) +o(1) .

Consequently, in view of (4.7),

limsup
j→∞

∥∥∥∥∇Nj

µ j

∥∥∥∥
2

2
=
∫

λ2e2(u0+ṽ) − liminf
j→∞ ‖Nj‖2

2 ≤ λ2
∫

e2(u0+ṽ)−‖T‖2
2 = 0,

and we conclude ∥∥∥∥∇Nj

µ j

∥∥∥∥
2
→ 0 and ‖Nj −λeu0+ṽ‖2 → 0.

SinceNj is uniformly bounded inL∞(Ω), in fact we have

Nj → λeu0+ṽ strongLp ∀p≥ 1.
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Inserting into (2.3), we see that

∆
(

v j − ṽ +
Nj

µ j

)
= λeu0+v j (Nj −λeu0+ṽ)+λ2eu0+ṽ(eu0+v j −eu0+ṽ) .

Therefore, by the Schauder estimates we may conclude∇(v j − ṽ +Nj/µ j) → 0 in
C1,α for everyα ∈ (0,1) and, in particular,‖∇(ṽ−v j)‖2 → 0 as j → +∞.

While Proposition 4.1 will allow us to derive immediately part (i) of Theo-
rem 1.4, in order to show that, asκ→ 0, the limiting vortices admit the asymptotic
behavior as discussed in (ii) of Theorem 1.4, we start by showing that the minimal-
ity properties ofw± for J± (see Lemma 3.3) pass to the limit asµ → +∞.

To this purpose, let us recall the variational properties of (4.6) (see [4, 22]). The
solutions for (4.6) correspond to critical points for the functional

Ĩ(v) =
1
2
‖∇v‖2

2 +
λ2

2

∫
(eu0+v −1)2 +4πn

∫
v ,

defined onH1(Ω). Integration of (4.6) overΩ yields the constraint∫
e2(u0+v)−

∫
eu0+v +

4πn
λ2 = 0.

Therefore, setting

X1 =
{

w∈ H1(Ω) :
∫

w = 0
}

,

if ṽ satisfies (4.6), then writing ˜v = w̃+ c̃ with w̃∈ X1, we see that ˜w belongs to the
set

Ã =
{

w∈ X1 :
(∫

eu0+w
)2

≥ 16πn
λ2

∫
e2(u0+w)

}

andc̃ takes one of the following values:

ec̃ = ec̃±(w̃) =

∫
eu0+w̃±

√
(
∫

eu0+w̃)2− 16πn
λ2

∫
e2(u0+w̃)

2
∫

e2(u0+w̃) .

Thus, as above, for ˜w∈ Ã we may define the constrained functionalJ̃± by setting

J̃±(w) = Ĩ(w+ c̃±(w))− λ2

2
+4πn

=
1
2
‖∇w‖2

2−
λ2

2
e2c̃±(w)

∫
e2(u0+w) +4πnc̃±(w) .

Since everyw∈ Ã satisfies (3.13), as in the proof of Lemma 3.3 we can show that
for λ > 4

√
πn(‖eu0‖1/‖eu0‖2), both functionalsJ̃± are bounded from below and

attain their infimum inÃ.



840 T. RICCIARDI AND G. TARANTELLO

Minimizersw̃∈ Ã for J̃± satisfying the strict inequality(∫
eu0+w̃

)2

>
16πn
λ2

∫
e2(u0+w̃)(4.8)

lead to critical points ˜v = w̃+ c̃±(w̃) for Ĩ (see [22]). We have the following:

PROPOSITION4.2 Let λ > 4
√

πn(‖eu0‖1/‖eu0‖2). Along a sequenceµn → +∞
the minimizer w±n for J± in A converges in H1 to a minimizer ofJ̃± in Ã.

From now on we takeλ > 4
√

πn(‖eu0‖1/‖eu0‖2), µ > 0 sufficiently large, and
denote byw± the minimizer ofJ± in A as given by Lemma 3.3. The mere assump-
tion λ > 4

√
πn(‖eu0‖1/‖eu0‖2) does not necessarily guaranteew± ∈ A\Γ, and so

we cannot use the a priori estimates established above to obtain the following:

LEMMA 4.3
1
µ

∫
(4πn−∆v)eu0+v =

1
µ

∫
|∇(u0 +w±)|2eu0+w± → 0 asµ → +∞ .

PROOF: Recall that the given identity is established in (3.11). By part (ii) of
Lemma 3.3, there exists a constantC > 0, independent ofµ andλ, such that

1
µ
‖∆w±‖2 +‖∇w±‖2 ≤C(λ+1) .(4.9)

In particular, from (4.9), it follows that‖∆w±
µ ‖2 is bounded uniformly inµ, and so

for everyp≥ 1 we may find a constantCp > 0, independent ofµ, such that∥∥∥∥∇w±

µ

∥∥∥∥
p
≤Cp .

Furthermore, from (4.9) we also have that‖∇w±‖2 is bounded uniformly inµ, and
by the Moser-Trudinger inequality (2.17), for everyq ≥ 1 we find a constantCq,
independent ofµ, such that

‖ew±‖q ≤Cq .(4.10)

For fixedα ∈ (0,1) andp > 2, takeq > 1 to satisfy

(1−α)
(

1
2
− 1

p

)
=

1
q

so that

1
µ

∫
|∇w±|2eu0+w± ≤ maxeu0

µα

∫ ∣∣∣∣∇w±

µ

∣∣∣∣
1−α

|∇w±|1+αew±

≤ maxeu0

µα

(∫ ∣∣∣∣∇w±

µ

∣∣∣∣
p) 1−α

p
(∫

|∇w±|2
) 1+α

2

‖ew±‖q ≤ C1

µα

for a suitable constantC1 > 0 independent ofµ.
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Recalling thateu0|∇u0| is continuous andeu0|∇u0|2 belongs toLq(Ω), for all
q∈ [1,2), using (4.9) and (4.10) we obtain a suitable constantC2 > 0, independent
of µ, such that

1
µ

∫
|∇(u0 +w±)|2eu0+w±

≤ 1
µ

∫
|∇u0|2eu0+w±

+
2
µ

∫
|∇u0|eu0|∇w±|ew±

+
1
µ

∫
|∇w±|2eu0+w±

≤ C2

µ
+

C1

µα
→ 0 asµ → +∞ ,

and the assertion of the lemma follows.

LEMMA 4.4

lim
µ→+∞J±(w±) = inf

Ã
J̃± .

PROOF: By Lemma 4.3 we have thatc±(w±) = c̃±(w±)+ o(1) asµ → +∞.
Therefore,

J±(w±) ≥ J̃±(w±)+o(1) asµ → +∞ ,

and we conclude that

liminf
µ→+∞J±(w±) ≥ inf

Ã
J̃± .

To obtain the reverse inequality, we use an approximation procedure for the mini-
mum of J̃± on Ã (which a priori belongs toX1 but not necessarily toX2).

For everyε > 0 we takew±
ε ∈ Ã∩X2 satisfying (4.8) and such that

J̃±(w±
ε ) ≤ inf

Ã
J̃± + ε.

By takingµ > 0 sufficiently large, we can ensure thatw±
ε ∈ A and

inf
A

J± ≤ J±(w±
ε ) = J̃±(w±

ε )+o(1) ≤ inf
Ã

J̃± + ε+o(1) .

Hence, by lettingµ → +∞ and using the arbitrariness ofε > 0, we obtain

limsup
µ→+∞

J±(w±) ≤ inf
Ã

J̃± ,

and the statement follows.

PROOF OFPROPOSITION4.2: From(4.9) we find a sequenceµn → +∞ such
that the corresponding minimaw±

n ⇁ w̃± weakly inH1, strongly inLp, and p.w.a.e.
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in Ω. In particular,w̃± ∈ Ã and using Lemma 4.4, it follows that

inf
Ã

J̃± +o(1) = J±(w±
n ) =

1
2µ2

n
‖∆w±

n ‖2
2 + J̃±(w±

n )+o(1)

≥ 1
2µ2

n
‖∆w±

n ‖2
2 + J̃±(w̃±)+o(1)

≥ 1
2µ2

n
‖∆w±

n ‖2
2 + inf

Ã
J̃± +o(1) .

Consequently,

1
µ2

n
‖∆w±

n ‖2
2 → 0 asn→ +∞ , J̃±(w̃±) = inf

Ã
J̃± ,

and necessarilyw±
n → w̃± strongly inH1(Ω).

At this point we are ready to complete the proof of Theorem 1.4 by means of
the following:

THEOREM 4.5 There existsλ0 > 0 sufficiently large such that∀λ > λ0, along a
sequenceµ j → +∞ the corresponding minimizers w±j for J± in A satisfy the fol-
lowing:

(i) v+
j = w+

j + c+(w+
j ) → ṽ+ strongly in H1 with ṽ+ a solution for(4.6) such

that eu0+ṽ+ → 1 asλ → +∞ in W1,q(Ω) and uniformly on compact subsets
of Ω\{p1,. . . , ps}.

(ii) If n = 1, v−j = w−
j + c−(w−

j ) → ṽ− strongly in H1, with ṽ− a solution for

(4.6)such that eu0+ṽ− → 0 asλ → +∞, Ck(Ω)-uniformly∀k≥ 0.

PROOF: In view of Proposition 3.5 and Lemma 3.8, ifλ0 > 0 is sufficiently
large, then∀λ > λ0 we have thatv± = w± + c±(w±) defines a solution for (3.1).
In turn, we obtain a solution for (1.16) by settingN± = 1

µ(λµeu0+v±
+4πn−∆w±).

Thus, by Proposition 4.1, along a sequenceµ j → +∞ we may establish the strong
convergence inH1 to a solution ˜v± of (4.6). In addition, we may use Proposi-
tion 4.2 and Lemma 4.3 to conclude that

ṽ± = w̃± + c̃±(w̃±) with w̃± = inf
Ã

J̃± .

At this point, takingλ0 > 0 larger if necessary, we may combine Proposition 3.2
and Corollary 3.1 in [22] to conclude (ii).

In order to obtain (i), we use forv+ the lower bound (iii)(b) of Proposition 3.5,
which at the limitµ j → +∞ leads to∫

e2(u0+ṽ+) ≥C,(4.11)

with a constantC > 0 independent ofλ. By lemma 3.1 in [22], we have that, for
everyq∈ (1,2), |∇(u0+ ṽ+)| is bounded inLq uniformly in λ. Notice also that the
maximum principle and (4.6) implyu0 + ṽ+ ≤ 0 in Ω. Hence, along a sequence
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λ j → +∞ we have ˜w+ ⇁ w∗ weakly inW1,q, pointwise a.e., and strongly inLp,
∀p≥ 1, andec̃+ → A≤ 1.

In addition, the dominated convergence theorem also guarantees, asλ j →+∞,

eu0+ṽ+ → Aeu0+w∗ ≤ 1 p.w.a.e. and strongly inLp, ∀p≥ 1.

In particular, by (4.11) we have

A
∫

eu0+w∗ ≥C > 0

and necessarilyA > 0. Setc∗ = lnA andu∗ = w∗ +c∗ +u0. Integrating (4.6) over
Ω and passing to the limit asλ j → +∞, we find

∫
eu∗(1−eu∗) = 0, and sou∗ ≡ 0

a.e. inΩ.
At this point we can argue exactly as in the proof of proposition 3.1 in [22] to

conclude that for everyq∈ (1,2),

u+ := u0 + ṽ+ → 0 asλ → +∞, strongly inW1,q(Ω) .

Finally, for every domainΩ′ ⊂ Ω\{p1,. . . , ps} we have

−∆u+ = λ2eu+
(1−eu+

) ≥ 0 in Ω′ .

So we can use the mean value theorem to conclude that for every compact set
K ⊂ Ω′ ⊂ Ω \ {p1,. . . , ps} there exists a constantC > 0 (depending onK only)
such that

0≥ max
K

u+ ≥ min
K

u+ ≥C
∫

Ω′
u+ ≥−C‖u+‖L1(Ω) → 0 asλ → +∞ ,

that is,u+ → 0 uniformly onK asλ → +∞.

PROOF OFTHEOREM 1.4: Recalling the transformations (1.14) and (1.15) for
the MCS Bogomol′ny̆ı equations (1.9) and the corresponding transformations (4.4)
and (4.5) for the CS Bogomol′ny̆ı equations (4.2) (with the upper sign), we see
that part (i) of Theorem 1.4 follows immediately by the convergence results in
Proposition 4.1; analogously, part (ii) is obtained by Theorem 4.5.

5 The AH Limit and the Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5, namely, to the description
of the asymptotic behavior of the periodicn-vortices of Theorem 1.2 in terms of
the AH limit.

To start, recall that the AH model was originally introduced by Ginzburg and
Landau (see [15]) to give a phenomenological description of superconductivity. It
is defined on the Minkowski spaceR1+2 by the Lagrangean density

LAH(A,φ) = − 1
4q2FαβFαβ −Dαφ(Dαφ)∗− q2

2
(|φ|2−1)2 .

The constantq > 0 represents the electric charge. As above, a periodicn-vortex in
Ω is given by a static configuration ofLAH satisfying the first three of the boundary
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conditions (1.2) together with (1.3). For a periodicn-vortex(A,φ), the energy over
Ω takes the form

EAH(A,φ) =
∫

Ω

{
|(D1± iD2)φ|2 +

1
2q2 [F12∓q2(|φ|2−1)]2

+
1

2q2(F2
01+F2

02)+ |D0φ|2∓F12

}
,

and consequently

EAH ≥ 2π|n| .
The lower bound forEAH is attained by configurations(A,φ) satisfying the Bogo-
mol′ny̆ı equations 


(D1± iD2)φ = 0

F12∓q2(|φ|2−1) = 0

F01 = F02 = D0φ = 0.

(5.1)

Solutions to (5.1), together with the boundary conditions (1.2) and (1.3), define
AH-periodic n-vortices that are “electrically neutral,” because the total electric
chargeQ =

∫
Ω−2A0|φ|2 = 0, and carry a quantized magnetic fluxΦ =

∫
Ω F12 =

−2πn and energyEAH = 2π|n|. As above, without loss of generality, we shall limit
our attention to the casen > 0 and consider (5.1) with the upper sign.

By Taubes’s reduction, from system (5.1) (with the upper sign) we obtain the
equation

∆u = 2q2(eu−1)+4π
s∑

j=1

njδpj .(5.2)

Every doubly periodic solution for (5.2) enables us to construct a periodicn-vortex
(A,φ) solution for (5.1) by settingn =

∑s
j=1nj ,


φ(x) = exp{1

2u+ i
∑s

j=1nj Arg
( x−pj

|x−pj |
)}

A1 + iA2 = 2i∂̄ lnφ

A0 = 0,

(5.3)

and soφ vanishes atpj with multiplicity nj (see [15, 25]).
Using (5.2), Jaffe and Taubes [15] extensively studied system (5.1) on the

whole spaceR2 and obtained a complete characterization of finite action config-
urations forLAH. The periodic case was considered by Wang and Yang in [25].
They showed that the condition 2q2 > 4πn/|Ω| is necessary and sufficient for
the existence of a doubly periodic solution for (5.2), which isunique. Thus, for
2q2 > 4πn/|Ω|, to each configuration of zeroesp1,. . . , ps ∈ Ω and relative multi-
plicities n1,. . . ,ns ∈ N, there corresponds aunique(up to gauge transformations)
periodicn-vortex (A,φ)0 solution for (5.1) withn =

∑s
j=1nj andφ vanishing ex-

actly atpj with multiplicity nj .
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By the dilation∂x′ = 1
2q2 ∂x, we may take 2q2 = 1 and therefore, throughout this

section, we assume
4πn
|Ω| < 1.(5.4)

Furthermore, decomposingu = u0 +v with u0 uniquely defined in (2.1), we derive
a uniquesolution for the equation

∆v = eu0+v −1+
4πn
|Ω| ,(5.5)

which we denote by ¯v.
In the notation of the previous sections, the normalization 2q2 = 1 amounts to

takingλµ = 1 in (2.2), and we reduce the system to
∆v = eu0+v −µN+ 4πn

|Ω|
∆(µv +N) = eu0+v(N− 1

µ)+µ4πn
|Ω| .

(5.6)

Our goal will be to analyze the behavior of the solutions(v,N)±µ of (5.6) (given by
Theorem 3.1) asµ→ 0. In this direction, the a priori estimates valid forv+ (see (i)
and (ii), Theorem 3.1) are very useful and permit us to prove the following:

PROPOSITION5.1 For µ > 0 sufficiently small, let(v,N)+
µ be the solution for(5.6)

as established in Theorem3.1. Set S+ = N+− ∫ N+ and2A+
0 = 1

µ −N+ asµ → 0
we have

(i) v+ → v̄, A+
0 → 0, S+ → 0, Ck-uniformly,∀k≥ 0, and

(ii) µ
∫

N+ → 1.

To see what happens to the second solution(v,N)−µ given by Theorem 3.1, we
argue differently. Forµ > 0 sufficiently small, we give a rather precise description
of the solution set for (5.6) whenµ is sufficiently small as follows:

PROPOSITION5.2 There existsµ∗ > 0 sufficiently small such that forµ ∈ (0,µ∗)
the solution set of(5.6) is formed of exactly two smooth curves(v,N)±µ that are
parametrized byµ and are connected inR× [C2,α(Ω)]2. Moreover, asµ → 0, we
have that

(i) v+ and N+ satisfy the convergence properties(i) and (ii) of Proposition5.1.
(ii) Let w− = v−− ∫ v−, S− = N−− ∫ N− and2A−

0 = 1/µ−N−; then w− → 0
and S− → 0 Ck-uniformly, ∀k ≥ 0 and

∫
v− → −∞, µ

∫
N− → 4πn/|Ω|,

2µ
∫

A0 → 1−4πn/|Ω|.
We start with the following:

PROOF OFPROPOSITION5.1: Setv+ = w+ + c+ with c+ =
∫

v+. In view of
estimate (i) of Theorem 3.1 (withλµ = 1) we have

‖∆w+‖2 ≤C(5.7)
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with C > 0 independent ofµ. To estimatec+, recall first thatc+ ≤ 0 (by Lemma
2.1). On the other hand, by estimate (ii) of Theorem 3.1 (withλµ = 1),

e2c+

∫
e2(u0+w+) ≥C

((
1− 4πn

|Ω|
)2

+µ2 ln
(

1− 4πn
|Ω|

))
(5.8)

which holds with a suitableC > 0 independent ofµ. Thus, by means of (5.7),
estimate (5.8) immediately yields a lower bound (independent ofµ) for c+ when
µ → 0+. Sov+ is uniformly bounded inH2(Ω) asµ → 0+. Hence along any se-
quenceµ j → 0+, there exists a subsequence andv ∈ H2(Ω) such that, for the cor-
responding solutions(v+

j ,N+
j ), we havev+

j ⇁ v weakly inH2(Ω) and uniformly
in Ω andµ jN

+
j ⇁ eu0+v +4πn/|Ω|−∆v =: V weakly inL2(Ω).

Since forλµ = 1, 0< µN+ < 1 (see Lemma 2.1), we have 0≤ V ≤ 1 a.e.
in Ω. On the other hand, integrating overΩ the second equation in (5.6) and
passing to the limit asj → +∞, we find

∫
eu0+v(1−V) = 0. ThusV = 1 a.e. in

Ω, and by the first equation in (5.6), the limitv must correspond to theunique
solution of (5.5), that is,v = v̄. Next, writing N+ = S+ +

∫
N+ with

∫
S+ = 0,

we have established thatµ j
∫

N+
j → 1 as j → +∞. To estimateS+, notice that by

the second equation in (5.6) we have∆µ jN
+
j ⇁ 0 weakly inL2(Ω), and so (up to

subsequences)µ jN
+
j → 1 strongly inLp(Ω), ∀p≥ 1. Furthermore, if we multiply

the same equation byN+−1/µ and integrate overΩ, we get

‖∇S+‖2
2 =

−
∫

eu0+v+
(

N+− 1
µ

)2

−µ
4πn
|Ω|

∫ (
N+− 1

µ

)
µ

∫
∆w+

(
N+− 1

µ

)
.

Consequently, asj →+∞, ‖∇S+
j ‖2

2 → 0 and 2
∫

A+
0,j = 1/µ j −

∫
N+

j → 0. In other
words, N+

j − 1/µ j → 0 strongly inH1, and from (5.6) we can use a bootstrap
argument to conclude the desired stronger convergence as claimed in (i). Since
the convergences hold along any sequenceµ j → 0, we obtain (i) and (ii) asµ →
0+.

PROOF OFPROPOSITION5.2: Write v = w+ c andN = S+
∫

N with
∫

w =
0=

∫
Sand notice that the quadratic equation (2.10) takes the following form when

λµ = 1:

e2c
(∫

eu0+w
)2

−
(

1− 4πn
|Ω| −µ

∫
eu0+wS∫
eu0+w

)
ec
∫

eu0+w +µ24πn
|Ω| = 0.(5.9)

Equation (5.9) yields that(w,S) belongs to the set

Aµ =


(w,S) ∈ [C2,α(Ω)]2∫

w = 0 =
∫

S
:

∫
eu0+wS∫
eu0+w ≤

1− 4πn
|Ω| −4µ

√
πn
|Ω|

µ


 ,
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andec satisfies

ec =
1− 4πn

|Ω| −µ

∫
eu0+wS∫
eu0+w ±

√(
1− 4πn

|Ω| −µ

∫
eu0+wS∫
eu0+w

)2−µ2 16πn
|Ω|

2
∫

eu0+w .(5.10)

On the other hand, from the first equation in (5.6) we have that∫
N =

ec∫ eu0+w + 4πn
|Ω|

µ
.(5.11)

We insert the values forc and
∫

N given by (5.10) and (5.11) into (5.6) to obtain
the system


∆w = a±µ (w,S)

( eu0+w∫
eu0+w −1

)−µS

∆(µw+S) = a±µ (w,S)
( eu0+wS∫

eu0+w − eu0+w
∫

eu0+wS

(
∫

eu0+w)2

)−µ4πn
|Ω| (

eu0+w∫
eu0+w −1

)
(w,S) ∈ Aµ ,

(5.12)

wherea±µ is defined by

a±µ (w,S) = ec±(w,S)
∫

eu0+w ,

andec±(w,S) is defined by (5.10). System (5.12) together with (5.10) and (5.11) is
equivalent to (5.6). We point out that (5.12) is well-defined forµ = 0, even though∫

N in (5.11) is not. This simple fact is crucial, because it allows us to obtain
solution curves by the implicit function theorem.

To this purpose, consider the smooth mapsf±µ : Aµ → [C0,α(Ω)]2 defined by

f±µ (w,S) = ( f±1,µ(w,S), f±2,µ(w,S))

with

f±1,µ(w,S) = −∆w+a±µ (w,S)
(

eu0+w∫
eu0+w −1

)
−µS,

f±2,µ(w,S) = −∆(µw+S)+a±µ (w,S)
(

eu0+wS∫
eu0+w − eu0+w∫ eu0+wS

(
∫

eu0+w)2

)

−µ
4πn
|Ω|

(
eu0+w∫
eu0+w −1

)
.

Whenµ = 0, we have

a+
0 (w,S) = 1− 4πn

|Ω| ,

and thereforef +
0 (w,S) = 0 if and only if (w,S) satisfies the system


∆w = (1− 4πn

|Ω| )
( eu0+w∫

eu0+w −1
)

∆S= (1− 4πn
|Ω| )

( eu0+wS∫
eu0+w − eu0+w

∫
eu0+wS

(
∫

eu0+w)2

)
∫

w = 0 =
∫

S.

(5.13)
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The first equation is uncoupled fromSand has a unique solutionw0 corresponding
to the minimum of the strictly convex, coercive functional

1
2
‖∇w‖2

2 +
(

1− 4πn
|Ω|

)
ln
∫

eu0+w

defined onX1 = {w∈ H1(Ω) :
∫

w = 0}. The (linear) equationf +
2,0(w0,S) = 0 has

the unique solutionS= 0. Hencef +
0 has a unique zero, namely,(w0,0). Since

w0 + c+,0(w0,0) satisfies (5.5), by uniqueness we conclude ¯v = w0 + c+,0(w0,0).
It is easy to check that(w0,0) is a nondegenerate zero forf +

0 . Furthermore, the
obvious inequality ∫

eu0+wS∫
eu0+w ≤ max

Ω
|S|(5.14)

implies that for allµ ∈ (0, |Ω|−4πn

8
√

πn|Ω|), the setAµ includes the strip

U =
{

(w,S) ∈ [C2,α(Ω)]2∫
w = 0 =

∫
S

: max
Ω

|S| < 4
√

πn
|Ω|

}
.

An application of the implicit function theorem tof + that is restricted to the set[
0,
|Ω|−4πn

8
√

πn|Ω|
)
×U

provides the first curve of solutions

(v,N)+
µ = (w,S)+

µ +
(

c+((w,S)+
µ ),
∫

N+((w,S)+
µ )
)

.

The second curve of solutions(v,N)−µ is obtained similarly by considering the
map f−µ . The procedure is actually even simpler, sincea−0 (w,S) = 0, which implies
that

f−µ=0 =
(

∆w
∆S

)

and consequently the equationf−µ=0 = 0 is trivial in X1×X1. The implicit function
theorem allows us to extend the unique nondegenerate zero(0,0) of f−0 to a smooth
curve(w,S)−µ of zeroes off−µ .

Using (5.10) and (5.11), it is simple to check that

lim
µ→0+

ec− = 0, lim
µ→0+

µ

∫
N+ = 1, lim

µ→0+
µ

∫
N− =

4πn
|Ω| .

We are left to analyze the behavior of the mean values

−2
∫

A±
0 =

∫
N±− 1

µ
=

ec±
∫

eu0+w−1+ 4πn
|Ω|

µ
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asµ → 0 along the curves(w,S)±µ . To this purpose, notice that along solution
curves, we have ∫

eu0+wS∫
eu0+w = o(1) asµ → 0.

Consequently, by (5.10) we get

ec±(w,S) =
1− 4πn

|Ω| −µ

∫
eu0+wS∫
eu0+w ± (1− 4πn

|Ω| −µ

∫
eu0+wS∫
eu0+w

)
+o(µ)

2
∫

eu0+w .(5.15)

Thus, we easily conclude that∫
A+

0 = o(1) asµ → 0 and 2µ
∫

A−
0 → 1− 4πn

|Ω| asµ → 0.

The uniqueness of the two curves(v,N)±µ for (5.6) whenµ ∈ (0,µ∗) is a con-
sequence of the relative compactness of the solution set of the (equivalent) system
(5.12) (as it follows by part (i) of Lemma (2.3) withλµ = 1) and the uniqueness of
(5.5).

To obtain the connectedness of the solution curves, we use a degree theoretical
argument of Rabinowitz [19] and the estimates of Corollary 2.4 withλµ = 1. We
consider the mapgµ : [X1×R]2 → [X1×R]2 defined by

gµ =

(
g11

µ g12
µ

g21
µ g22

µ

)
,

where

g11
µ (w+c, S+d) = −w+

[
eu0+w+c−µ(S+d)+

4πn
|Ω|

]
∗G,

g12
µ (w+c, S+d) =

∫ [
eu0+w+c−µ(S+d)+

4πn
|Ω|

]
,

g21
µ (w+c, S+d) = −(µw+S)+

[
eu0+w+c(S+d)+µ

4πn
|Ω|

]
∗G,

g22
µ (w+c, S+d) =

∫ [
eu0+w+c(S+d)+µ

4πn
|Ω|

]
.

G = G(x,y) is the Green function for∆ on the compact manifoldΩ with
∫

Ω G(x,y)
dx= 0 =

∫
Ω G(x,y)dy (see [2]), and∗ denotes convolution. The zeroes ofg corre-

spond to the solutions of (5.6) subject to the (natural) constraints (5.10) and (5.11).
For every fixedµ, g is a compact perturbation of a boundedly invertible linear
operator; therefore the Leray-Schauder degree (see [17]) is well-defined. Since
(w0,0) is a nondegenerate zero forf +, then, forµ̄ ∈ (0,µ∗) sufficiently small and
a sufficiently small neighborhoodB of (v,N)+

µ=µ̄, we have that

|d(gµ̄,B,0)| = 1.
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Now the global bifurcation results of Rabinowitz [19] provide an unbounded maxi-
mal continuumC of solutions to (5.6) containing the curve(v,N)+. By uniqueness
nearµ = 0 and the bounds of Corollary 2.4 (withλµ = 1), we conclude that neces-
sarilyC intersects the curve of solutions(v,N)−. The connectedness in[C2,α(Ω)]2

follows by standard elliptic regularity.

PROOF OFTHEOREM 1.5: Recalling the transformations (1.15), the normal-
ization 2q2 = 1 and (5.2), we can easily derive the conclusion of Theorem 1.5 by
applying the results of Propositions 5.1 and 5.2 to (1.14).
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