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Abstract
Some sharp Sobolev inequalities on Riemannian manifolds are pre-
sented, emphasizing the role of scalar curvature, on the line of our joint
work with Y.Y. Li [13]. Proofs, which are based on a fine blow-up analy-
sis of solutions to a nonlinear elliptic equation with critical growth, are
outlined. The main estimate is obtained in a new and more general form.

1 Introduction and preliminaries

It is well-known that sharp Sobolev inequalities on Riemannian manifolds are
of interest in many problems from geometry and physics, see e.g., Aubin [2, 3],
Brezis and Lieb [5], Brezis and Nirenberg [6], Carlen and Loss [7], Druet [§],
Escobar [10], Hebey and Vaugon [12], Li and Zhu [15], Moser [16], Talenti [19],
Trudinger [20], and references therein.

To begin, let us recall a classical result by Aubin [1] and Talenti [19]. For
n >3, 2* =2n/(n — 2), there holds

v n *
(1) inf IVullz@n - ¢ g (R™)\ {0}, |Vu| € L*(R") § = K~}
HUHL?*(R")
with K defined by
2 4
n(n — 2)072/" 7
where oy, is the volume of the standard n-sphere . The set of minimizers for (1)
is given by {tU,  ; y € R", A > 0,¢ # 0}, where
Uya(z) = X220\ - y))

1 n—2)/2
Ute) = Voa@) = (o)
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A% = [n(n — 2)]71K 2. In this notation, U, \ concentrates at y (in the sense of
L?") as A\ — +oo. We are interested in the sharp extensions of (1) to Riemannian
manifolds. Let (M, g) denote a smooth, compact Riemannian manifold without
boundary, of dimension n > 3. Henceforth, we use the following notation:

1/p
- loriat) = < / |-|pdvg) , 1 <p< 4o,
M

and we recall that in local coordinates:

g = gij(z)da’da?, dv, = /detg(z)dz, |Vgul®=g"(z) 5zt D’

where indices are lowered and raised in the usual way. We also recall that in
geodesic normal coordinates centered at fixed point P € M, a Riemannian met-
ric differs from the Euclidean metric by an error of the second order depending
on curvature, namely:

1 .
(2) gij(fﬁ) = (Sij — gRiklj(P)fEliL‘J + O(|JI|3),

where R;j;; are the components of the Riemann curvature tensor, see [3]. In our
notation, the scalar curvature of M is the contraction R, = ., Ri, . Using
(2) together with partitions of unity and interpolation, it is not difficult to derive
the following inequality from (1):

(3) ||UHi2*(M)g) < (K* + 8)vau”%2(M,g) + AEHUH?:l(Mg) Vu € HI(M),

where A, > 0 depends on (M, g) and on &, but not on u. It is also clear
that K in (3) may not be replaced by any smaller constant. At this point, a
natural question is whether or not inequality (3) holds true with ¢ = 0 (more
precisely, whether or not sup,.qA. < +00). It turns out that the answer
depends on (M, g). To see this, following an idea of Aubin [1], we fix P € M
and we construct test functions £p  concentrating at P using the minimizers
Uy, defined above:

\ (n—2)/2
Epa(Q) == <1 + A2dist? (P, Q)> e

(&p is the pullback of Uy y by the exponential map centered at P). When
n > 7, using (2), it is not difficult to verify that

——_R(P)A24+0(\7Y)
H£P7>\||i2*(M,g) 4(" - 1)

(4)

and
CTIA2 < épalTaqar,g < CA72,
I1€pAlTo(ar gyl =0(A72)  VI<p<2.

Consequently: If there exists some P € M such that R,(P) > 0, then (3)
does not hold with ¢ = 0. In fact, by the work of Aubin [1] and Hebey and
Vaugon [12], inequality (3) has been sharpened in the form:

(5)  Nul2er gy < KNV gulZonrg + AllulBagurgy  Yu € H'(M),



where A > 0 depends on (M, g) only. If the scalar curvature of M is positive at
some point, then the L2-norm in (5) may not be replaced by any LP-norm with
1<p<2.

Motivated by the above arguments, in a joint work with Y.Y. Li [13] we
proved the following inequality, which clarifies the role of scalar curvature in
the context of sharp Sobolev-type inequalities.

Theorem 1 ([13]). Let (M,g) be a smooth compact Riemannian manifold
without boundary of dimensionn > 6. There exists a constant A > 0, depending
on (M, g) only, such that for all u € H*(M) there holds:

©) Ml gy < K [ (Vo + )Ry} dog + Alulrqan,

where 2* and K are defined above, c(n) = (n —2)/[4(n —1)], 7 = 2n/(n + 2),
R, is the scalar curvature of g.

Remark 1. The case n = 6 is the “limit” case for inequality (6) and requires
a more delicate proof.

Remark 2. The quantity [,,{|Vqul®+c(n)Rgu?} dvy is conformally invariant.
It also appears in the Yamabe problem, see, e.g., [3, 17]. We recall that the
Yamabe functional Yy for (M, g) is defined by

Yar(u) = S IVgul? + c¢(n) Ryu?} duy

- . ueH'(M)\ {0},
T e

and that (1) is equivalent to inf Ys» = K2, where S™ denotes the Euclidean
n-sphere. Hence, inequality (6) is equivalent to the lower bound

12
(7) inf Yoo < inf Yy + AH”;w'
” : HL2* (M,g)
Concerning sharpness of (6), we have

Remark 3. K and R, are sharp, in the sense that K may not be replaced by
any smaller constant and R, may not be replaced by any smaller function.

On the other hand, the sharpness of 7 depends on (M, g). This fact is a
consequence of the following expansion, also due to Aubin [1], which sharpens
the expansion (4):

(8) Yar(€pp) = K72 = 3 [W(P)PA™* +o(A7Y),

where v, > 0 is a dimensional constant and W denotes the Weyl tensor of g.
We recall that W = 0 if and only if (M, g) is locally conformally flat. Since

CTIN* < lepallirarg SCAY
we conclude that

Remark 4. If (M, g) is not locally conformally flat, then the L™-norm in (6)
may not be replaced by any LP-norm, with 1 < p < 7.



For locally conformally flat manifolds, we have the following Sobolev-Poin-
caré-type inequality:

Theorem 2 ([13]). Let (M,g) be a smooth compact locally conformally flat
Riemannian manifold without boundary of dimension n > 3. There exists a
constant A > 0, depending on (M, g) only, such that for all u € H'(M) there
holds:

e arg) < K /M {1V gul? + c(m) Ry} dug + Allull21ar-

The proofs of Theorem 1 and of Theorem 2 are based on a fine blow-up
analysis of “approximate minimizers”, solutions to a nonlinear elliptic equation
with critical growth. We shall (briefly) outline the proofs in Section 3, and
we refer to [13], [14] for the details. The key step is a pointwise estimate as
in Lemma 3, which is based on an a priori estimate for solutions to a class of
elliptic equations with coefficients of a particular form, see Proposition 1 below.
We believe that Proposition 1 is of its own interest, and therefore in Section 2
we present it in a new and more general form.

2 An elliptic problem

In this section we present an a elliptic estimate, which is the main step towards
obtaining the crucial Lemma 3 below.

Proposition 1. Let p; > 0, i — 400, and f be measurable functions defined
on M, with f € L*, and let A; > 0, A; — 400, 1 < g < 2. Consider the
functions V; defined by

2—
min{f—FAi(”’Ziq) q,l} when p; #0

Vii=
1 when p; =0

Then the operators —A,+V; are coercive on H* (M) for sufficiently large i, with
coercivity constant uniform in i. Consequently, for every i sufficiently large there
exists a unique (distributional) solution G; to the equation:

(9) —AgGi + ViG; = (51:»1., on M.

Furthermore, the first nonzero eigenvalue of —Ag + V; is bounded away from
zero and therefore G; satisfies, for some constant C' > 0 independent of i,

(i) Gi € Cf (M \{P:});

(is) C~tdisty(z, P;)*™ < Gy(z) < Cdisty(z, P)*>™™ Vaze M.

Note that V; is Lipschitz on M (with Lipschitz constant depending on ¢) and
it is uniformly bounded:

(10) —[flle €V; <1.

In order to prove Proposition 1 we need the following



Lemma 1. The functions V; satisfy:

1
lim vol,{V; < 5} =0.

1—+00

Proof. Note that for every measurable set E such that £ C M N {p; > 0} we
have the lower bound:

pill Loy llo Ml pagm) > (volg E)/.
Indeed, using the Holder inequality we find:

2 —q/2 2 — 2
vol B = [ vy = [ 70 oy < iy I 192
It follows that

| oo (s

(A1) Wpill caganypi > pasre-o iy =NpillZatary 1o
>l 2ot 17 2ty > |G-,
Let E; := {V; < 1/2}. Then E; C M N {p; > 0} and therefore, by (11),
(volg ;) 3~ 9%/ < Ulpill Lacanypi )~ U oo (8,)-

On the other hand, since
Ailpilsane P < 5 +1fl o B,
we have
Al P~ sy < (G + 1l (vl )0/,
and consequently,
A;(voly E;)2-0/1 < C,

for some C' > 0 independent of i. Recalling that A; — 400, Lemma 1 follows
immediately. O

Proof of Proposition 1. Proof of the coercivity. For ¥ = 1/2 and v € H'(M),
by the Sobolev inequality and a straightforward computation we have:

[ Vg + Vi bauy = [ (9,02 + 50 + (¥ - 3y
M M
> [ (VP + 30 = (V= 3) g
M
Z /M{|vgu|2 + ’N)/U2} dvg - ||(‘/z - ’?)7||Ln/2(M)||uHi2* (M)

z/ {IVgul? + 7u?} dvg — Cvol2/™{V; < 1/2}/ {IVgul? + u?} dvg,
M M

where (V; —4)_ > 0 denotes the negative part of V; — 4. The coercivity and its
uniformity in ¢ follow from the above and Lemma 1.

Proof of (i) and (ii). Because of the coercivity of —A, + V;, the Lipschitz
regularity and the uniform L°°-bound for V;, it follows from standard elliptic
theories (see e.g., [11], [18] and [9]) and the maximum principle that G; is
uniquely defined by (9) and it satisfies (i) and (ii). O



3 Proof of Theorem 1

In the rest of this note we outline the proof of Theorem 1 in the (simpler) case
n>"T.

Since the “correction term” ||€p. | is of the order A~%, the expansion (8)
implies that inequality (6) holds for the family {t{~ p,x} defined above, uniformly
int#0,P e M,A>0. To obtain (6) for general u € H'(M), we argue by
contradiction, and we take a global approach. Negating (6) in the equivalent
form (7), we assume that for some sequence a — 400 there holds:

(12) inf {YM(u) + a|:;‘|”§* cue HY(M)\ {o}} < K2

By standard arguments, (12) implies the existence of a minimizer u, € H*(M)
for the functional Yas +al|-||2/|-[|3- with uq >0, [,, u2 dv, = 1, which satisfies
the Euler-Lagrange equation:

(13)  —Dgug + c(n) Ryt + alluall3{ypyun = Lou =" on M.

Note that (13) is a nonlinear elliptic equation with critical growth. The idea
of the proof is to obtain the contradiction a < C by blowup analysis of u, as
a — 4+o00. We denote:

To € M :un(z0) = MAxX Ua, ,ug"_Q)ﬂ = ua(xa)_l,

and without loss of generality we assume that z, converges to a point in M. It
is a standard fact that u, concentrates “in energy” at a single point. Namely:

Lemma 2. As a — +00, we have:

bo — 0

IVgualls = K2, allua|? =0

IVg(ua =&, z)llL2(Bsy(za)) + e = & izt L2 (Bsy (2a)) = O
p D Pug (exp, (o - ) = U()  in Ch(R™),

where 69 > 0 is small and fixed and depends only on (M, g).

In order to derive a contradiction from (12), we estimate the rates of the
asymptotic behaviors stated in Lemma 2. Towards this goal, the following
pointwise estimate is a key step, which allows to neglect “boundary values” of
U, and thus to “localize” the blow-up analysis at x,. It is a direct consequence
of Proposition 1.

Lemma 3 (Pointwise estimate). The following estimate holds:
(14) U () < Cu&”fz)mdistz_"(x,xa), Vo e M.

Estimate (14) implies that the boundary values of u, on Bs_(z,) for some
suitable &, € [69/2, 0] decay in the sense of L and of H' with the rate u?~2,
and therefore they are negligible .



Outline of the proof of Lemma 3. Using Proposition 1 with A; := «a, p; 1= u,,
f:=c(n)Ry, q :=7, we have that the operators —Ay + V,,, where

V. = {min{c(n)Rg + a(%)%il} when u, > 0

1 when u, =0,

are coercive on H'(M), with coercivity constant independent of a. Conse-
quently, ¢, is well-defined by the equation

—Agpa + Vapa = ug"—”/?&% on M
and it satisfies
(15) Cilugnfz)mdist;_"(x,xa) < palx) < Cu&"ﬂ)/zdist;_"(x,xa).

Setting g = @i/(nfz)g, we see that u, /. satisfies

~Agle <o, (3—3)2*71 on M\ {2}

*

2
fBRM(a:a) (ZZ_Z) dvg < €9

where ¢ is chosen small and R is large. The metrics ¢, are singular at z,, nev-
ertheless, since the singularity is uniformly of the order u&n%)/ 2dist§7”(x, Ta)s
a Sobolev inequality holds for ¢, independently of a,, namely:

2/2°
(/ ul> dv§> < C/ |Vgul? dvg Yu € H' (M) : u =0 near 0.
M M

Therefore, the Moser iteration scheme may be applied on M \ Bgr,, (o). We
conclude uq/po < C in M \ Bgy,(zs), which suffices to obtain (14). This
version of the Moser iterations was used by Li and Zhu in [15]. d

Several well-known techniques may now be applied to estimate the decay rates
in Lemma 2. In particular, we adopt a technique of Bahri and Coron [4] to
estimate the distance of u, to the family {t{pr/t > 0,A > 0,P € M} defined
in Section 1. We obtain:

Lemma 4 (Energy estimate). As a — 400, we have:

(16)  distars(an) (o, {t€paYenp) < C (2 + (1 + 1z )allual2).

where B = (n —6)(n—2)/[2(n+ 2)] > 0 is strictly positive, since n > 7.

At this point we can conclude the proof by inserting (16) into the contra-
diction assumption (12), and using (8) and (16). Alternatively, we could use
a Pohozhaev identity to balance lower-order terms. In either way, we obtain
a < C, a contradiction.

The case n = 6 is more delicate than the case n > 7. Indeed, it is in some
sense the “limit case” of Theorem 1. To treat this case we use a pointwise lower
bound, which we obtain by the maximum principle, adapting an idea in [15].
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