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Abstract

We provide a unified proof of the asymptotics of the self-dual Maxwell-
Chern-Simons vortices, as the Maxwell term is neglected, in both the U(1)
and CP (1) case. This result is achieved by identifying and analyzing a
suitable class of nonlinear elliptic systems with exponential type nonlin-
earities.
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1 Introduction and main result

The vortex solutions for the U(1) Maxwell-Chern-Simons model introduced in
[9], correspond to (distributional) solutions (ũ, v) for the system:

−∆ũ =ε−1(v − eeu)− 4π

n∑

j=1

δpj on Σ(1)

−∆v =ε−1
{

eeu(1− v)− ε−1(v − eeu)
}

on Σ,(2)

where Σ is a compact Riemannian 2-manifold without boundary, n ≥ 0 is an
integer, pj ∈ Σ for j = 1, . . . , n, ∆ denotes the Laplace-Beltrami operator and
ε > 0 a constant. We shall be interested in the asymptotic behavior of solutions
when ε → 0.

Physically, eeu represents a density of particles; it vanishes exactly at the
points pj , j = 1, . . . , n (the vortex points). The function v is a neutral scalar
field and ε > 0 is the coupling constant for the Maxwell term. In particular,
letting ε → 0 corresponds to dropping the Maxwell term in the Lagrangian.

The limit ε → 0 is meaningful in view of the following
∗Partially supported by PRIN 2000 “Variational Methods and Nonlinear Differential Equa-

tions”
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Theorem 1.1 ([13]). If ε4πn/|Σ| is sufficiently small, then there exist at least
two solutions for (1)–(2).

The proof of Theorem 1.1 is variational. The two solutions are obtained as
a local minimum and a mountain pass for a suitable functional. We refer to [13]
for the detailed proof.

By a formal analysis of (1)–(2), we expect that as ε → 0, eu should converge
to a solution u∞ for the equation

(3) −∆u∞ = eu∞(1− eu∞)− 4π

n∑

j=1

δpj on Σ.

We observe that solutions for (3) correspond to vortex solutions for the Chern-
Simons model introduced in [7] and [6]. In [11] we provided a rigorous proof of
this formal argument, in any relevant norm. Namely, we showed

Theorem 1.2 ([11]). Suppose (u, v) are (distributional) solutions for (1)–(2)
with ε → 0. Then there exists a solution u∞ for the equation (3) such that, up
to subsequences, (eeu, v) → (eu∞ , eu∞) in Ch(Σ)× Ch(Σ), for any h ≥ 0.

Note that eeu, eu∞ are smooth. Theorem 1.2 completed our previous con-
vergence result obtained with Tarantello [13], where the asymptotics for v was
established in the L2-sense only. See also Chae and Kim [2].

At this point it is natural to seek a more general class of systems which
exhibit an asymptotic behavior as in Theorem 1.2. A further motivation to
this question is provided by the analysis of the CP (1) Maxwell-Chern-Simons
model in [3]. In [3] the authors analyze an elliptic system, whose solutions
correspond to vortex solutions for the self-dual CP (1) Maxwell-Chern-Simons
model introduced in [4]. Their system (in a special case) is given by:

∆U =2Q(−V + S − 1− eU

1 + eU
) + 4π

n∑

j=1

δpj on Σ(4)

∆V =− 4Q2(−V + S − 1− eU

1 + eU
) + Q

4eU

(1 + eU )2
V on Σ(5)

where Σ and p1, . . . , pn are as in (1)–(2), U, V are the unknown functions and
S ∈ R, Q > 0 are given constants. They prove the existence of at least one
solution for (4)–(5); furthermore, they derive an asymptotic behavior as Q →
+∞ analogous to that of system (1)–(2).

With this motivation, we consider (distributional) solutions (ũ, v) for the
system:

−∆ũ = ε−1(v − f(eeu))− 4π

n∑

j=1

δpj on Σ(6)

−∆v = ε−1
[
f ′(eeu)eeu(s− v)− ε−1(v − f(eeu))

]
on Σ.(7)

Here Σ and p1, . . . , pn are as in (1)–(2), f = f(t), t ≥ 0 is smooth and strictly
increasing, s ∈ R satisfies f(0) < s < supt>0 f(t). Without loss of generality,
we assume volΣ = 1.
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Clearly, when f(t) = t and s = 1, system (6)–(7) reduces to (1)–(2). On the
other hand, setting v := V − S, s := −S, ε−1 := 2Q, system (6)–(7) reduces to
system (4)–(5) with f defined by f(t) = (t− 1)/(t + 1).

By a formal analysis of (6)–(7) we expect that, up to subsequences, (ũ, v)
should converge to (ũ∞, f(eeu∞)), where ũ∞ is a solutions for the equation for
the equation:

(8) −∆ũ∞ = f ′(eeu∞)eeu∞(s− f(eeu∞))− 4π

n∑

j=1

δpj
on Σ.

Our main result states that this is indeed the case, with respect to any relevant
norm:

Theorem 1.3 ([12]). Let (ũ, v) be (distributional) solutions to (6)–(7), with
ε → 0. There exists a (distributional) solution ũ∞ to (8) such that a subse-
quence, still denoted (ũ, v), satisfies:

(eeu, v) →
(
eeu∞ , f(eeu∞)

)
in Ch(Σ)× Ch(Σ), ∀h ≥ 0.

In the rest of this note we shall outline the proof of Theorem 1.3. The
detailed proof is contianed in [12], although some arguments are proved here in
a simpler form. Henceforth we denote by C > 0 a general constant independent
of ε, which may vary from line to line. Unless otherwise specified, all equations
are defined on Σ and all integrals are taken over Σ with respect to the Lebesgue
measure.

2 Proof of Theorem 1.3

In order to work in suitable Sobolev spaces, it is standard (see [14]) to define a
“Green’s function” u0, solution for the problem

−∆u0 = 4π


n−

n∑

j=1

δpj


 on Σ

∫

Σ

u0 = 0

(see [1] for the unique existence of u0). Setting ũ = u0 + u, we obtain the
equivalent system for (u, v) ∈ H1(Σ)×H1(Σ):

−∆u = ε−1
(
v − f(eu0+u)

)− 4πn on Σ(9)

−∆v = ε−1
[
f ′(eu0+u)eu0+u(s− v)− ε−1

(
v − f(eu0+u)

)]
on Σ,(10)

where eu0 is smooth.
The proof is obtained by a priori estimates and an inductive argument. It

will be convenient to introduce the spaces Xk := Hk ∩ L∞. By the follow-
ing inequality, which follows from the well-known Sobolev-Gagliardo-Nirenberg
inequality (see e.g. [10]):

(11) ‖Dju‖L2k/j ≤ C‖Dku‖j/k
L2 ‖u‖1−j/k

L∞ ∀u ∈ C∞(Σ),
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Xk is a Banach algebra for every k ≥ 0, i.e.,

‖u1u2‖Xk ≤ C‖u1‖Xk‖u2‖Xk .

It will also be convenient to set

w := ε−1(v − f(eu0+u))

and to consider w as a third unknown function. Then the triple (u, v, w) satisfies
a system of the following simple form:

−∆u = w − 4πn(12)

− ε2∆v + [1 + εc(x, u)]v = Fε(x, u)(13)

− ε2∆w + [1 + εc(x, u)]w = Gε(x, u, v,∇u)(14)

where

c(x, u) =f ′(eu0+u)eu0+u

Fε(x, u) =f(eu0+u) + sεf ′(eu0+u)eu0+u

Gε(x, u, v,∇u) =f ′(eu0+u)eu0+u(s− v)

+ ε
(
f ′′(eu0+u)eu0+u + f ′(eu0+u)

)
eu0+u|∇(u0 + u)|2.

Furthermore, using (11), we obtain:

Lemma 2.1. Let F ∈ C∞(Σ×R), G ∈ C∞(Σ×R×R×R2). Then for all k ≥ 0
there exists constants Ck = Ck(‖u‖L∞), C ′k = C ′k(‖u‖L∞ , ‖v‖L∞ , ‖∇u‖L∞),
such that:

‖F (x, u)‖Xk ≤ Ck(1 + ‖u‖k
Xk)

‖G(x, u, v,∇u)‖Xk−1 ≤ C ′k(1 + ‖u‖k−1
Xk + ‖v‖Xk−1).

The basis for the induction is incuded in the following

Proposition 2.1. There exists a constant C > 0 independent of ε → 0, such
that:

‖u‖X1 + ‖v‖X1 + ‖w‖X0 ≤ C(i)
‖u‖L∞ ≤ C(ii)
‖∇u‖L∞ ≤ C(iii)

In order to prove Proposition 2.1 we need some preliminary estimates.

Lemma 2.2. The following estimates hold, pointwise on Σ:

f(0) ≤ f(eeu) ≤ s(i)
f(0) ≤ v ≤ s.(ii)

Proof. By maximum principle. The increasing monotonicity of f is essential
here.
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As a consequence of Lemma 2.2, the nonlinearity f may be truncated. There-
fore in what follows, without loss of generality, we assume that:

(15) sup
t>0

{|f(t)|+ |f ′(t)|+ |f ′′(t)|} ≤ C.

The next identity is the main step in deriving the H1-estimate for v and the
L2-estimate for w:

Lemma 2.3. The following identity holds:
∫
|∇v|2 +

∫
w2 =

∫
(s− v)

(
f ′′(eeu)eeu + f ′(eeu)

)
eeu|∇ũ|2.(16)

Proof. We compute:

∆f(eeu) =
(
f ′′(eeu)eeu + f ′(eeu)

)
eeu|∇ũ|2 + f ′(eeu)eeu∆ũ.

Therefore f(eeu) satisfies the equation:

−∆f(eu) + ε−1f ′(eeu)eeu f(eeu) = ε−1f ′(eeu)eeuv −
(
f ′′(eeu)eeu + f ′(eeu)

)
eeu|∇ũ|2.

(17)

Integrating (17), we obtain

(18) ε−1

∫
f ′(eeu)eeu(v − f(eeu)) =

∫ (
f ′′(eeu)eeu + f ′(eeu)

)
eeu|∇ũ|2

Now we multiply (7) by v − f(eeu) and integrate to obtain:
∫
−∆v(v − f(eeu)) = ε−1

∫
f ′(eeu)eeu(s− v)(v − f(eeu))− ε−2

∫
(v − f(eeu))2.

Integrating by parts and using (17) we find:
∫
−∆v(v − f(eeu)) =

∫
|∇v|2 +

∫
v∆f(eeu)

=
∫
|∇v|2 − ε−1

∫
vf ′(eeu)eeu(v − f(eeu)) +

∫
v

(
f ′′(eeu)eeu + f ′(eeu)

)
eeu|∇ũ|2.

Equating left hand sides in the last two identities, we obtain
∫
|∇v|2 + ε−2

∫
(v − f(eeu))2 +

∫
v

(
f ′′(eeu)eeu + f ′(eeu)

)
eeu|∇ũ|2

= sε−1

∫
f ′(eeu)eeu(v − f(eeu)),

and thus identity (16) is established.

We shall need some a priori estimates for solutions to

(19) −ε2∆u + (1 + εc)u = f.

Indeed, both (13) and (14) are of the form (19).
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Lemma 2.4. Let c, f ∈ Xk and suppose that u satisfies: (19). For every k ≥ 0
there exist εk > 0, Ck > 0 such that

‖u‖Xk ≤ Ck‖f‖Xk ,

for all ε ≤ εk.

Proof. The proof is an easy consequence of the following fact Let Gε be the
Green’s function for

−ε∆xGε + Gε = δy on Σ.

Then Gε(x, y) → δy weakly in the sense of measures. Note that since the
operator −ε∆ + 1 is coercive, the Green’s function Gε is uniquely defined on
Σ. By the maximum principle, Gε > 0 on Σ. Integrating over Σ, we find∫

Gε =
∫ |Gε| = 1. Therefore, there exists a Radon measure µ such that

Gε ⇁ µ weakly in the sense of measures. For any ϕ ∈ C∞(Σ) we have:

ε

∫
−∆Gεϕ +

∫
Gεϕ = ϕ(y).

Taking limits, we find
∫

ϕ dµ = ϕ(y) and the statement of the lemma is estab-
lished.

Now we can provide the

Proof of Proposition 2.1. We begin by establishing

(20)
∫

eeu|∇ũ|2 ≤ C.

Proof of the Claim. Multiplying equation (6) by eeu and integrating by parts,
we obtain

ε−1

∫
eeu(v − f(eeu)) =

∫
eeu|∇ũ|2 ≥ 0.

By the pointwise estimates in Lemma 2.2, it follows that:

(21) ε

∫
eeu|∇ũ|2 ≤ C.

Multiplying (7) by eeu and integrating, we find

ε−1

∫
eeu(v − f(eeu)) =

∫
e2euf ′(eeu)(s− v) + ε

∫
eeu∆v.(22)

Integration by parts yields:

ε

∫
eeu∆v = −

∫
veeu(v − f(eeu)) + ε

∫
veeu|∇ũ|2.

Hence, by the pointwise estimates as in Lemma 2.2, and taking into account
(21), we conclude that

ε

∣∣∣∣
∫

eeu∆v

∣∣∣∣ ≤ C.
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Inserting into (22), recalling Lemma 2.2, we derive that

ε−1

∫
eeu(v − f(eeu)) ≤ C,

and thus it follows that
∫

eeu|∇ũ|2 = ε−1

∫
eeu(v − f(eeu)) ≤ C.

(20) is established.
Lemma 2.2 readily implies ‖eeu‖L∞ ≤ C and ‖v‖L∞ ≤ C. In order to obtain

the H1-estimate for eeu, it suffices to observe that by Lemma 2.2–(i) and by (20)
we have: ∫

|∇eeu|2 =
∫

e2eu|∇ũ|2 ≤ C

∫
eeu|∇ũ|2 ≤ C.

Now we estimate ‖∇v‖L2 and ‖ε−1(v−f(eeu))‖L2 . Using identity (16), we have:
∫
|∇v|2 +

∫
w2 ≤‖s− v‖∞‖f ′′(eeu)eeu + f (ũ)‖∞

∫
eeu|∇ũ|2

≤C

∫
eeu|∇ũ|2 ≤ C,

where we again used Lemma 2.2 and (20) in order to derive the last step. Proof
of (i). Multiplying (9) by u− ∫

u and integrating, we have:
∫
|∇u|2 =q

∫
(v − f(eeu))(u−

∫
u)

≤‖q(v − f(eeu))‖2‖u−
∫

u‖2 ≤ C‖∇u‖2,

where the last inequality follows by Lemma 2.2 and by the Poincaré inequality.
Hence ‖∇u‖2 ≤ C. By Lemma 2.2–(ii), we have that eeu ≤ C, and thus we only
have to show that

∫
u ≥ −C. To this end, we first observe that integrating (9)

and (10) we obtain:
∫

f ′(eu0+u)eu0+u(s− v) = q

∫
(v − f(eu0+u)) = 4πn.

On the other hand, we have in a straightforward manner:
∫

f ′(eu0+u)eu0+u(s− v) ≤ C

∫
eu0+u ≤ Ce

R
u‖eu0‖∞

∫
eu−R u ≤ C

∫
eu−R u.

Hence, recalling the Moser-Trudinger inequality (see [1]) and the estimate for
‖∇u‖2, we conclude that

4πn ≤ Ce
R

u

∫
eu−R u ≤ Ce

R
ueγ

R |∇u|2 ≤ Ce
R

u,

which establishes (i). Proof of (ii). Since ‖w‖L2 ≤ C, by (i) and elliptic reg-
ularity we obtain ‖u‖H2 ≤ C. Then Sobolev embeddings yield ‖∇u‖Lp ≤ C,
for any 1 ≤ p < +∞ and ‖u‖L∞ ≤ C, which establishes (ii). Proof of (iii). By
(14), ‖∇u‖Lp ≤ C and Lemma 2.4 imply that ‖w‖Lp ≤ C, for any 1 ≤ p < +∞.
Then (12) and Sobolev embeddings yield ‖u‖W 2,p ≤ C, for any 1 ≤ p < +∞.
For p > 2, the Sobolev embeddings yield (iii).

7



Proposition 2.2. For all k ≥ 0 there exists a constant C > 0 (possibly depend-
ing on k) such that:

‖ũ− u0‖Hk + ‖v‖Hk ≤ C.

Proof of Proposition 2.2. We argue by induction on k ∈ N0.
CLAIM: Suppose:

‖u‖Xk + ‖v‖Xk + ‖w‖Xk−1 ≤ Ck.

Then:
‖u‖Xk+1 + ‖v‖Xk+1 + ‖w‖Xk ≤ Ck+1.

Indeed,

‖w‖Xk−1 ≤ C ⇒ ‖u‖Xk+1 ≤ C by (12) and standard elliptic regularity
⇒ ‖v‖Xk+1 ≤ C by (13), Lemma 2.1 and Lemma 2.4
⇒ ‖w‖Xk ≤ C by (14), Lemma 2.1 and Lemma 2.4.

Now Proposition 2.1, the Claim and a standard induction argument conclude
the proof.

Finally, we can prove our main result:

Proof of Theorem 1.3. Let (u, v) be solutions to system (9)–(10), with ε →
0. By the a priori estimates as stated in Proposition 2.2 and by standard
compactness arguments, there exist u∞, v∞ such that up to subsequences u →
u∞ and v → v∞ in Ch, for all h ≥ 0. We write (9) in the form:

v = f(eu0+u) + ε(−∆u + 4πn).

Taking limits, we find v∞ = f(eu0+u∞). Furthermore, taking limits in (10), we
obtain

ε−1(v − f(eu0+u)) → f ′(eu0+u∞)eu0+u∞(s− f(eu0+u∞)),

where the convergence holds in Ch, for any h ≥ 0. Consequently, taking limits
in (9), we find that u∞ satisfies:

(23) −∆u∞ = f ′(eu0+u∞)eu0+u∞(s− f(eu0+u∞))− 4π

n∑

j=1

δpj .

Setting ũ∞ = u0 + u∞, we conclude the proof of Theorem 1.3.
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