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Abstract

We provide a unified proof of the asymptotics of the self-dual Maxwell-
Chern-Simons vortices, as the Maxwell term is neglected, in both the U(1)
and C'P(1) case. This result is achieved by identifying and analyzing a
suitable class of nonlinear elliptic systems with exponential type nonlin-
earities.
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1 Introduction and main result

The vortex solutions for the U(1) Maxwell-Chern-Simons model introduced in
[9], correspond to (distributional) solutions (@, v) for the system:

(1) —AlU="t(v—e") — 47Ti Op, on %
(2) —Av =¢~! {ea(l —v)—e Hv - ea)} on X,

where ¥ is a compact Riemannian 2-manifold without boundary, n > 0 is an
integer, p; € ¥ for j = 1,...,n, A denotes the Laplace-Beltrami operator and
€ > 0 a constant. We shall be interested in the asymptotic behavior of solutions
when € — 0.

Physically, e¥ represents a density of particles; it vanishes exactly at the
points p;, 5 = 1,...,n (the vortex points). The function v is a neutral scalar
field and € > 0 is the coupling constant for the Maxwell term. In particular,
letting € — 0 corresponds to dropping the Maxwell term in the Lagrangian.

The limit € — 0 is meaningful in view of the following
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Theorem 1.1 ([13]). If edwn/|X| is sufficiently small, then there exist at least
two solutions for (1)—(2).

The proof of Theorem 1.1 is variational. The two solutions are obtained as
a local minimum and a mountain pass for a suitable functional. We refer to [13]
for the detailed proof.

By a formal analysis of (1)—(2), we expect that as ¢ — 0, e* should converge
to a solution u., for the equation

(3) —Auy, = e (1 —e¥=) — 47TZ Op, on X.
j=1

We observe that solutions for (3) correspond to vortex solutions for the Chern-
Simons model introduced in [7] and [6]. In [11] we provided a rigorous proof of
this formal argument, in any relevant norm. Namely, we showed

Theorem 1.2 ([11]). Suppose (u,v) are (distributional) solutions for (1)—(2)
with € — 0. Then there exists a solution ux, for the equation (3) such that, up
to subsequences, (e%,v) — (U=, e%=) in C"(X) x CM(X), for any h > 0.

Note that e¥, e~ are smooth. Theorem 1.2 completed our previous con-
vergence result obtained with Tarantello [13], where the asymptotics for v was
established in the L2-sense only. See also Chae and Kim [2].

At this point it is natural to seek a more general class of systems which
exhibit an asymptotic behavior as in Theorem 1.2. A further motivation to
this question is provided by the analysis of the CP(1) Maxwell-Chern-Simons
model in [3]. In [3] the authors analyze an elliptic system, whose solutions
correspond to vortex solutions for the self-dual C'P(1) Maxwell-Chern-Simons
model introduced in [4]. Their system (in a special case) is given by:

1—eY ~
1—eY 4eV
AV = —4Q*(— - b3
(5) v Q(-V+S 1+eU)+Q(1+eU)2V on
where ¥ and p1,...,p, are as in (1)—(2), U,V are the unknown functions and

S € R, @ > 0 are given constants. They prove the existence of at least one
solution for (4)—(5); furthermore, they derive an asymptotic behavior as @ —
“+00 analogous to that of system (1)—(2).

With this motivation, we consider (distributional) solutions (u,v) for the
system:

(6) —Au=c"1(v— f(e) - 471'251” on ¥
(7) —Av=c"t|f(eD)e(s —v) —e v — f(e")) on X.

Here ¥ and py,...,p, are as in (1)—(2), f = f(¢), ¢ > 0 is smooth and strictly
increasing, s € R satisfies f(0) < s < sup;~q f(t). Without loss of generality,
we assume volY = 1.



Clearly, when f(¢) =t and s = 1, system (6)—(7) reduces to (1)-(2). On the
other hand, setting v :=V — S, s := =S, e71 := 2Q, system (6)—(7) reduces to
system (4)—(5) with f defined by f(t) = (¢t —1)/(t + 1).

By a formal analysis of (6)—(7) we expect that, up to subsequences, (@, v)
should converge to (Uso, f(€%=)), where 7 is a solutions for the equation for
the equation:

(8) — Ao = f/(e%)e= (s — fe"=)) — 4%25@. on X.

Our main result states that this is indeed the case, with respect to any relevant
norm:

Theorem 1.3 ([12]). Let (u,v) be (distributional) solutions to (6)—(7), with
e — 0. There exists a (distributional) solution U to (8) such that a subse-
quence, still denoted (u,v), satisfies:

(€%,v) — (eﬁw, f(eﬂw)) in CM(S) x C"(S), Yh > 0.

In the rest of this note we shall outline the proof of Theorem 1.3. The
detailed proof is contianed in [12], although some arguments are proved here in
a simpler form. Henceforth we denote by C' > 0 a general constant independent
of €, which may vary from line to line. Unless otherwise specified, all equations
are defined on ¥ and all integrals are taken over ¥ with respect to the Lebesgue
measure.

2 Proof of Theorem 1.3

In order to work in suitable Sobolev spaces, it is standard (see [14]) to define a
“Green’s function” wug, solution for the problem

— Aug =4r n—Z§pj on X

j=1
/UO =0
z

(see [1] for the unique existence of ug). Setting @ = wg + w, we obtain the
equivalent system for (u,v) € HY(X) x H(X):

(9) —Au=c""(v— f(e"™t™)) —4mn on X
(10)  —Av=ct[f/(e"t")em ot (s —v) —c (v— f(e®™™))] onZX,
where €0 is smooth.

The proof is obtained by a priori estimates and an inductive argument. It
will be convenient to introduce the spaces X* := H* N L>°. By the follow-

ing inequality, which follows from the well-known Sobolev-Gagliardo-Nirenberg
inequality (see e.g. [10]):

(11) D7l oers < CIDMull = Vu € C%(2),



X* is a Banach algebra for every k > 0, i.e.,
[uruz || xr < Cllua || xxlluz | xx-
It will also be convenient to set
wi=e (- fe)

and to consider w as a third unknown function. Then the triple (u, v, w) satisfies
a system of the following simple form:

(12) —Au=w—4mn

(13) —?Av+ 1 +ec(z,u)]v = F-(z,u)

(14) —2Aw + [1 + ec(z, u)w = Ge(x,u, v, Vu)
where

c(z,u) =f'(etotH)etot
Fue,u) =f (") + sef (e + )t
G.(z,u,v, Vu) =f'(e"t*)e 0t (s — v)
+e (f//(eu0+u)euo+u + f/(euo+u)) eu0+u|v(u0 4 u)|2
Furthermore, using (11), we obtain:
Lemma 2.1. Let F € C®(XxR), G € C®°(SxRxRxR?). Then for allk >0

there exists constants C, = Cr(|lullL=), C; = Cr(|ullzee, ||v]|Loe, ||Vl z=),
such that:

1F (2, )]l xr < Cr(L+ [|ullke)
IG(2, u,v, Va)l| -1 < CR(L+ [lull 5t + vl xe-)-

The basis for the induction is incuded in the following

Proposition 2.1. There exists a constant C > 0 independent of € — 0, such
that:

(i) Jullx1 + [[vllx2 + [[wllxo < C
(ii) Jul[ L < C
(ii) V= < C

In order to prove Proposition 2.1 we need some preliminary estimates.

Lemma 2.2. The following estimates hold, pointwise on X:

(i) FO) < fe") < s
(i) f0)<v<s.

Proof. By maximum principle. The increasing monotonicity of f is essential
here. O



As a consequence of Lemma 2.2, the nonlinearity f may be truncated. There-
fore in what follows, without loss of generality, we assume that:

(15) sup{| f()] + IO+ IO < C.

The next identity is the main step in deriving the H'-estimate for v and the
L?-estimate for w:

Lemma 2.3. The following identity holds:

(16) /|W|2 /w —/s—v PN + £1(e7)) TV
Proof. We compute:

AL = (F7(eMem + f(e")) IVl + f'(e7)e A
Therefore f(e¥) satisfies the equation:

(17)
A(en) + L (e () = &L (eM)eTu — (£1(eT)eT + f(eT)) |V,

Integrating (17), we obtain
(19 =t [ FEn - ) = [ (1D D) v

Now we multiply (7) by v — f(e?) and integrate to obtain:

oo fe) == [ s~ o) - ()~ [ )

Integrating by parts and using (17) we find:

/ Av(v — /|Vv|2 /vAf(eﬂ)
= [1vep e / o )T = FE) + [o (T4 £1(N) TV
Equating left hand sides in the last two identities, we obtain

JIvel v [ s+ [o(fenet+ pe) v

— / F (e (o — f(e7)),

and thus identity (16) is established. O

We shall need some a priori estimates for solutions to
(19) —e?Au+ (1 +ec)u = f.

Indeed, both (13) and (14) are of the form (19).



Lemma 2.4. Let ¢, f € X* and suppose that u satisfies: (19). For every k >0
there exist e, > 0, Cy > 0 such that

l[ullxe < Crll fllxx,

for all e < g

Proof. The proof is an easy consequence of the following fact Let G. be the
Green’s function for
—eA,;G: + G =0, on X.

Then G.(z,y) — J, weakly in the sense of measures. Note that since the
operator —eA + 1 is coercive, the Green’s function G, is uniquely defined on
3. By the maximum principle, G. > 0 on X. Integrating over ¥, we find
[ Ge = [|Ge| = 1. Therefore, there exists a Radon measure p such that
G. — 1 weakly in the sense of measures. For any ¢ € C°°(X) we have:

5/—AGE¢+/GE¢J = ¢(y).

Taking limits, we find [ ¢ du = ¢(y) and the statement of the lemma is estab-
lished. O

Now we can provide the
Proof of Proposition 2.1. We begin by establishing

(20) / IVl < C.

Proof of the Claim. Multiplying equation (6) by e” and integrating by parts,
we obtain

5_1/617(’[) — fle") = /65|Vﬂ|2 > 0.

By the pointwise estimates in Lemma 2.2, it follows that:
(21) s/eﬂvm? <C.
Multiplying (7) by e and integrating, we find
(22) e ! /ea(v — f(e%) = /ezﬂf’(eﬂ)(s —v)+ E/eﬂAv.
Integration by parts yields:
€/GEA”U = —/vea(v—f(ea)) +£—:/veﬂ|Vﬂ|2.

Hence, by the pointwise estimates as in Lemma 2.2, and taking into account
(21), we conclude that
/ e Av

€ <C.




Inserting into (22), recalling Lemma 2.2, we derive that
8_1/€E(U — f(e") < C,
and thus it follows that
/6ﬂ|Vﬁ|2 =¢! /eﬂ(v — fle") < C.

(20) is established. -
Lemma 2.2 readily implies [[e"|z=~ < C and [[v[z=~ < C. In order to obtain
the H'-estimate for e, it suffices to observe that by Lemma 2.2-(i) and by (20)

we have:
/|veﬂ|2 = /&ﬂvm2 < c/eﬂ|va|2 <C.
Now we estimate || Vo||z2 and ||~ (v— f(e%))||z2. Using identity (16), we have:
J1vo2+ [ <l = vl @ + £ D) [ i
gc/eﬂvm? <C,

where we again used Lemma 2.2 and (20) in order to derive the last step. Proof
of (i). Multiplying (9) by v — [ u and integrating, we have:

[ v =4 [- = [u
<lao = S llallu~ [ ulla < CITuls,

where the last inequality follows by Lemma 2.2 and by the Poincaré inequality.
Hence ||Vul|2 < C. By Lemma 2.2—(ii), we have that e” < C, and thus we only
have to show that [u > —C. To this end, we first observe that integrating (9)
and (10) we obtain:

/f/(euo+u)euo+u(s — ) = q/(v — f(e™t™)) = 47n.

On the other hand, we have in a straightforward manner:

[ et <c et coeen) [erfv<c [ent

Hence, recalling the Moser-Trudinger inequality (see [1]) and the estimate for
|| Vul|2, we conclude that

4mn < Cef“/e“*f“ < Cel uer [ IVul? < C’ef“,

which establishes (i). Proof of (ii). Since ||w|[z2z < C, by (i) and elliptic reg-
ularity we obtain ||ul|gz < C. Then Sobolev embeddings yield |[|[Vul/r» < C,
for any 1 < p < +00 and ||ul|L~ < C, which establishes (ii). Proof of (iii). By
(14), ||Vu||r» < C and Lemma 2.4 imply that ||w||r» < C, for any 1 < p < +o0.
Then (12) and Sobolev embeddings yield ||u||yz» < C, for any 1 < p < +o0.
For p > 2, the Sobolev embeddings yield (iii). O



Proposition 2.2. For all k > 0 there exists a constant C > 0 (possibly depend-
ing on k) such that:

[a = woll g+ + o]l ax < C.

Proof of Proposition 2.2. We argue by induction on k£ € Ny.
CLAIM: Suppose:

[ullxs + vl xx + lwlxr-1 < Ck.
Then:
ullxeer + ol xrer + [Jw]lxx < Cra.
Indeed,
lwl|xr-1 < C = JJu||xs+1 <C by (12) and standard elliptic regularity

= ||vllx#+: < C by (13), Lemma 2.1 and Lemma 2.4
= |w||xx <C by (14), Lemma 2.1 and Lemma 2.4.

Now Proposition 2.1, the Claim and a standard induction argument conclude
the proof. O

Finally, we can prove our main result:

Proof of Theorem 1.3. Let (u,v) be solutions to system (9)—(10), with ¢ —
0. By the a priori estimates as stated in Proposition 2.2 and by standard
compactness arguments, there exist us, Vs such that up to subsequences v —
Uso and v — Vs in C", for all h > 0. We write (9) in the form:

v=f(e") 4 e(—Au + 47n).

Taking limits, we find vy, = f(e“0t“=). Furthermore, taking limits in (10), we
obtain

671(1) 7f(6uo+u)) N f/(euo+uoo)6uo+uoo(s o f(6u0+uoo)),

where the convergence holds in C"*, for any h > 0. Consequently, taking limits
in (9), we find that us, satisfies:

(23) —Aug = f/(e"F )0t (5 — f(et0)) —dm D "5,

j=1
Setting Uee = Ug + Uso, We conclude the proof of Theorem 1.3. O
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