
A Tree Kernel Based
Approach for

Clone Detection

1) University of Naples Federico II
2) University of Basilicata

Anna Corazza1, Sergio Di Martino1,
Valerio Maggio1, Giuseppe Scanniello2

Outline

►Background
○ Clone detection definition

○ State of the Art Techniques Taxonomy

►Our Abstract Syntax Tree based Proposal
○ A Tree Kernel based approach for clone detection

►A preliminary evaluation

Code Clones

► Two code fragments form a clone if they are similar enough

according to a given measure of similarity (I.D. Baxter, 1998)

3. R. Tiarks, R. Koschke, and R. Falke,
 An assessment of type-3 clones as detected by state-of-the-art tools

1

Code Clones

► Two code fragments form a clone if they are similar enough

according to a given measure of similarity (I.D. Baxter, 1998)

► Similarity based on Program Text or on “Semantics”

3. R. Tiarks, R. Koschke, and R. Falke,
 An assessment of type-3 clones as detected by state-of-the-art tools

1

Code Clones

► Two code fragments form a clone if they are similar enough

according to a given measure of similarity (I.D. Baxter, 1998)

► Similarity based on Program Text or on “Semantics”

► Program Text can be further distinguished by their degree of similarity1

○ Type 1 Clone: Exact Copy

○ Type 2 Clone: Parameter Substituted Clone

○ Type 3 Clone: Modified/Structure Substituted Clone

1. R. Tiarks, R. Koschke, and R. Falke,
 An assessment of type-3 clones as detected by state-of-the-art tools

1

State of the Art Techniques

► Classified in terms of Program Text representation2

○String, token, syntax tree, control structures, metric vectors

► String/Token based Techniques

► Abstract Syntax Tree (AST) Techniques

► ...

2

2. Roy, Cordy, Koschke Comparison and Evaluation of Clone Detection Tools and Technique 2009

State of the Art Techniques

► String/Token based Techniques

► Abstract Syntax Tree (AST) Techniques

► ...

► Combined Techniques (a.k.a. Hybrid)

○Combine different representations

○Combine different techniques

○Combine different sources of information

●Tree Kernel based approach (Our approach :)

2

The Proposed Approach

The Goal

► Define an AST based technique able to detect up to Type 3

Clones

3

The Goal

► Define an AST based technique able to detect up to Type 3

Clones

► The Key Ideas:

○ Improve the amount of information carried by ASTs by adding (also)

lexical information

○ Define a proper measure to compute similarities among (sub)trees,

exploiting such information

3

The Goal

► Define an AST based technique able to detect up to Type 3

Clones

► The Key Ideas:

○ Improve the amount of information carried by ASTs by adding (also)

lexical information

○ Define a proper measure to compute similarities among (sub)trees,

exploiting such information

► As a measure we propose the use of a

(Tree) Kernel Function

3

Kernels for Structured Data

► Kernels are a class of functions with many appealing features:

○ Are based on the idea that a complex object can be described in terms of

its constituent parts

○ Can be easily tailored to a specific domain

► There exist different classes of Kernels:

○ String Kernels

○ Graph Kernels

○ …

○ Tree Kernels

●Applied to NLP Parse Trees (Collins and Duffy 2004)

4

Defining a new Tree Kernel

► The definition of a new Tree Kernel requires the

specification of:

(1) A set of features to annotate nodes of compared

trees

5

Defining a new Tree Kernel

► The definition of a new Tree Kernel requires the

specification of:

(1) A set of features to annotate nodes of compared

trees

(2) A (primitive) Kernel Function to measure the

similarity of each pair of nodes

5

Defining a new Tree Kernel

► The definition of a new Tree Kernel requires the

specification of:

(1) A set of features to annotate nodes of compared trees

(2) A (primitive) Kernel Function to measure the

similarity of each pair of nodes

(3) A proper Kernel Function to compare subparts of

trees

5

(1) The defined features

► We annotate each node of AST by 4 features:

6

(1) The defined features

► We annotate each node of AST by 4 features:

○ Instruction Class

● i.e. LOOP, CONDITIONAL CONTROL, CONTROL FLOW

CONTROL,...

6

(1) The defined features

► We annotate each node of AST by 4 features:

○ Instruction Class

● i.e. LOOP, CONDITIONAL CONTROL, CONTROL FLOW

CONTROL,...

○ Instruction

● i.e. FOR, WHILE, IF, RETURN, CONTINUE,...

6

(1) The defined features

► We annotate each node of AST by 4 features:

○ Instruction Class
● i.e. LOOP, CONDITIONAL CONTROL, CONTROL FLOW CONTROL,...

○ Instruction
● i.e. FOR, WHILE, IF, RETURN, CONTINUE,...

○ Context

● Instruction class of statement in which node is
enclosed

6

(1) The defined features

► We annotate each node of AST by 4 features:

○ Instruction Class

● i.e. LOOP, CONDITIONAL CONTROL, CONTROL FLOW CONTROL,...

○ Instruction

● i.e. FOR, WHILE, IF, RETURN, CONTINUE,...

○ Context

● Instruction class of statement in which node is enclosed

○ Lexemes

● Lexical information within the code

6

Context Feature

► Rationale: two nodes are more similar if they appear in the same

Instruction class

for (int i=0; i<10; i++)
 x += i+2;

if (i<10)
 x += i+2;

while (i<10)
 x += i+2;

7

Context Feature

► Rationale: two nodes are more similar if they appear in the same

Instruction class

for (int i=0; i<10; i++)
 x += i+2;

if (i<10)
 x += i+2;

while (i<10)
 x += i+2;

7

Context Feature

► Rationale: two nodes are more similar if they appear in the same

Instruction class

for (int i=0; i<10; i++)
 x += i+2;

if (i<10)
 x += i+2;

while (i<10)
 x += i+2;

7

Context Feature

► Rationale: two nodes are more similar if they appear in the same

Instruction class

for (int i=0; i<10; i++)
 x += i+2;

if (i<10)
 x += i+2;

while (i<10)
 x += i+2;

7

Context Feature

► Rationale: two nodes are more similar if they appear in the same

Instruction class

for (int i=0; i<10; i++)
 x += i+2;

if (i<10)
 x += i+2;

while (i<10)
 x += i+2;

7

Lexemes Feature

► For leaf nodes:

○ It is the lexeme associated to the node

► For internal nodes:

○ It is the set of lexemes that recursively comes from

subtrees with minimum height

8

Lexemes Propagation

x

<

0

return

yblock

%=

x y

block

while

9

Lexemes Propagation

x

<

0

return

yblock

%=

x y

block

while

x 0

x y

y

9

Lexemes Propagation

x

<

0

return

yblock

%=

x y

block

while

x

x y

y

0

x, 0

9

Lexemes Propagation

x

<

0

return

yblock

%=

x y

block

while

x

x y

y

0

x, 0

x, y

x, y

9

Lexemes Propagation

x

<

0

return

yblock

%=

x y

block

while

x

x y

y

0

x, 0

x, y

x, y

x, 0, while y, return

9

Lexemes Propagation

x

<

0

return

yblock

%=

x y

block

while

x

x y

y

0

x, 0

x, y

x, y

x, 0, while y, return

y, return

9

(2) Applying features in a Kernel

We exploits these features to compute similarity among pairs of

nodes, as follows:

► Instruction Class filters comparable nodes

○We compare only nodes with the same Instruction Class

► Instruction, Context and Lexemes are used to define a value of

similarity between compared nodes

10

(Primitive) Kernel Function between nodes

1.0 If two nodes have the same values of
 features

0.8 If two nodes differ in lexemes
 (same instruction and context)

0.7 If two nodes share lexemes and are
 the same instruction

0.5 If two nodes share lexemes and are
 enclosed in the same context

0.25 If two nodes have at least one feature
 in common

0.0 no match

s(n1,n2)=

11

(3) Tree Kernel: Kernel on entire Tree Structures
►We apply nodes comparison recursively to compute

similarity between subtrees

►We aim to identify the maximum isomorphic

tree/subtree

12

Overall Process

1. Preprocessing 2. Extraction

3. Match Detection 4. Aggregation

13

A Preliminary evaluation

Evaluation Description

► We considered a small Java software system

○ We choose to identify clones at method level

► We checked system against the presence of up to Type 3 clones

○ Removed all detected clones through refactoring operations

► We manually and randomly injected a set of artificially created clones

○ One set for each type of clones

► We applied our prototype and CloneDigger* to mutated systems

► We evaluated performances in terms of Precision, Recall and F1

*http://clonedigger.sourceforge.net/

14

Results (1)

► Type 1 and Type 2 Clones:

○ We were able to detect all clones without any false

positive

○ This was obtained also by CloneDigger

○ Both tools expressed the potential of AST-based

approaches

15

Results (2)

► Type 3 clones:

○ We classified results as “true Type 3 clones” according to

different thresholds on similarity values

○ We measured performance on different thresholds

We get best results with
threshold equals to 0.70

16

Conclusions and Future Works

► Measure performance on real systems and projects

○ Bellon's Benchmark

○ Investigate best results with 0.7 as threshold

○Measure Time Performances

► Improve the scalability of the approach

○ Avoid to compare all pairs

► Improve similarity computation

○ Avoid manual weighting features

► Extend Supported Languages

○Now we support Java, C, Python

17

Thank you for listening.

Questions?

18

► Let's go to the backup slides

Evaluation on Different Thresholds

►Exact Clone (Type 1):

○ is an exact copy of consecutive code fragments without modifications

(except for white spaces and comments)

►Exact Clone (Type 1):

○ is an exact copy of consecutive code fragments without modifications

(except for white spaces and comments)

►Parameter-substituted clone (Type 2):

○ is a copy where only parameters (identifiers or

literals) have been substituted

►Parameter-substituted clone (Type 2):

○ is a copy where only parameters (identifiers or

literals) have been substituted

►Structure-substituted clone (Type 3):

○ is a copy where program structures have been substituted,

added and/or deleted.

►Structure-substituted clone (Type 3):

○ is a copy where program structures have been substituted,

added and/or deleted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

