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Code Clones
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Code Clones

► Two code fragments form a clone if they are similar enough 

according to a given measure of similarity  (I.D. Baxter, 1998)

► Similarity based on Program Text or on “Semantics”

► Program Text can be further distinguished by their degree of similarity1

○ Type 1 Clone: Exact Copy

○ Type 2 Clone: Parameter Substituted Clone

○ Type 3 Clone: Modified/Structure Substituted Clone

1. R. Tiarks, R. Koschke, and R. Falke,
 An assessment of type-3 clones as detected by state-of-the-art tools
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State of the Art Techniques

► Classified in terms of Program Text representation2

○String, token, syntax tree, control structures, metric vectors

► String/Token based Techniques

► Abstract Syntax Tree (AST) Techniques

► ...

2

2. Roy, Cordy, Koschke  Comparison and Evaluation of Clone Detection Tools and Technique 2009



State of the Art Techniques

► String/Token based Techniques

► Abstract Syntax Tree (AST) Techniques

► ...

► Combined Techniques (a.k.a. Hybrid)

○Combine different representations

○Combine different techniques

○Combine different sources of information

●Tree Kernel based approach (Our approach :)
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The Proposed Approach



The Goal

► Define an AST based technique able to detect up to Type 3 

Clones
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The Goal

► Define an AST based technique able to detect up to Type 3 

Clones

► The Key Ideas:

○ Improve the amount of information carried by ASTs by adding (also) 

lexical information

○ Define a proper measure to compute similarities among (sub)trees, 

exploiting such information

► As a measure we propose the use of a 

(Tree) Kernel Function
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Kernels for Structured Data

► Kernels are a class of functions with many appealing features:

○ Are based on the idea that a complex object can be described in terms of 

its constituent parts

○ Can be easily tailored to a specific domain

► There exist different classes of Kernels:

○ String Kernels

○ Graph Kernels

○ …

○ Tree Kernels

●Applied to NLP Parse Trees (Collins and Duffy 2004)
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Defining a new Tree Kernel

► The definition of a new Tree Kernel requires the 

specification of:

(1) A set of features to annotate nodes of compared 

trees
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Defining a new Tree Kernel

► The definition of a new Tree Kernel requires the 

specification of:

(1) A set of features to annotate nodes of compared trees

(2) A (primitive) Kernel Function to measure the 

similarity of each pair of nodes

(3) A proper Kernel Function to compare subparts of 

trees
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(1) The defined features

► We annotate each node of AST by 4 features:
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(1) The defined features

► We annotate each node of AST by 4 features:

○ Instruction Class

●  i.e. LOOP, CONDITIONAL CONTROL, CONTROL FLOW CONTROL,...

○ Instruction

●  i.e. FOR, WHILE, IF, RETURN, CONTINUE,...

○ Context

● Instruction class of statement in which node is enclosed

○ Lexemes

● Lexical information within the code
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Context Feature

► Rationale: two nodes are more similar if they appear in the same 

Instruction class

for (int i=0; i<10; i++)
    x += i+2;

if (i<10)
    x += i+2;

while (i<10)
    x += i+2;
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Lexemes Feature

► For leaf nodes:

○ It is the lexeme associated to the node

► For internal nodes:

○ It is the set of lexemes that recursively comes from 

subtrees with minimum height
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(2) Applying features in a Kernel

We exploits these features to compute similarity among pairs of 

nodes, as follows:

► Instruction Class filters comparable nodes

○We compare only nodes with the same Instruction Class

► Instruction, Context and Lexemes are used to define a value of 

similarity between compared nodes
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(Primitive) Kernel Function between nodes

1.0 If two nodes have the same values of   
       features 

0.8 If two nodes differ in lexemes
       (same instruction and context)

0.7 If two nodes share lexemes and are
       the same instruction

0.5 If two nodes share lexemes and are 
       enclosed in the same context 

0.25 If two nodes have at least one feature
          in common

0.0   no match

s(n1,n2)=

11



(3) Tree Kernel: Kernel on entire Tree Structures
►We apply nodes comparison recursively to compute 

similarity between subtrees

►We aim to identify the maximum isomorphic

tree/subtree
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Overall Process

1. Preprocessing 2. Extraction

3. Match Detection 4. Aggregation
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A Preliminary evaluation



Evaluation Description

► We considered a small Java software system 

○ We choose to identify clones at method level 

► We checked system against the presence of up to Type 3 clones

○ Removed all detected clones through refactoring operations

► We manually and randomly injected a set of artificially created clones

○ One set for each type of clones

► We applied our prototype and CloneDigger* to mutated systems

► We evaluated performances in terms of Precision, Recall and F1

*http://clonedigger.sourceforge.net/
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Results (1)

► Type 1 and Type 2 Clones: 

○ We were able to detect all clones without any false 

positive

○ This was obtained also by CloneDigger

○ Both tools expressed the potential of AST-based 

approaches
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Results (2)

► Type 3 clones:

○ We classified results as “true Type 3 clones” according to 

different thresholds on similarity values

○ We measured performance on different thresholds

We get best results with 
threshold equals to 0.70
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Conclusions and Future Works

► Measure performance on real systems and projects

○ Bellon's Benchmark

○ Investigate best results with 0.7 as threshold

○Measure Time Performances

► Improve the scalability of the approach

○ Avoid to compare all pairs

► Improve similarity computation

○ Avoid manual weighting features

► Extend Supported Languages

○Now we support Java, C, Python

17



Thank you for listening.

Questions?
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► Let's go to the backup slides



Evaluation on Different Thresholds



 

►Exact Clone (Type 1):

○ is an exact copy of consecutive code fragments without modifications 

(except for white spaces and comments) 
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►Structure-substituted clone (Type 3):

○  is a copy where program structures have been substituted, 

added and/or deleted.



 

►Structure-substituted clone (Type 3):

○  is a copy where program structures have been substituted, 

added and/or deleted.
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