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SOFTWARE MAINTENANCE
“A software system must be continuously 
adapted during its overall life cycle or it 
progressively becomes less satisfactory” 
(cit. Lehman’s Law of Software Evolution)

• Software Maintenance is one of the most 
expensive and time consuming phase of the 
whole life cycle

• Anticipating the Maintenance operations 
reduces the cost

• 85%-90% of the total cost are related to the 
effort necessary to comprehend the system 
and its source code [Erlikh, 2000]
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Software Artifacts may be analyzed at different 
levels of abstractions

The different levels of abstractions 
lead to different analysis tasks:

• Identification of functional 
modules and their hierarchical 
arrangement

• i.e., Clustering of Software 
classes

• Identification of Code Clones

• i.e., Clustering of Duplicated 
code fragments (blocks, 

SOFTWARE ARTIFACTS



• Mine information directly from the source 
code:

• Exploit the syntactic/lexical 
information provided in the source 
code text

• Exploit the relational information 
between artifacts

• e.g., Program Dependencies

Problem:  Definition of a proper similarity measure to apply in the clustering 
analysis, which is able to exploit the considered representation of software artifacts

SOFTWARE ARTIFACTS 
CLUSTERING



• Analysis of large and complex systems

• Solutions and algorithms must be able to scale efficiently
(in the large and in the many)

MINING LARGE REPOSITORIES



Idea:  Definition of Machine Learning techniques to mine information from the 
source code

• Combine different kind of information (lexical and structural)

• Application of Kernel Methods to software artifacts

• Provide flexible and computational effective solutions to analyze large data 
sets

ADVANCED MACHINE LEARNING 
FOR SOFTWARE MAINTENANCE



Idea:  Definition of Machine Learning techniques to mine information from the 
source code

• Combine different kind of information (lexical and structural)

• Application of Kernel Methods to software artifacts

• Provide flexible and computational effective solutions to analyze large data 
sets

Advanced Machine Learning

• Learning with syntactic/semantic information (Natural Language Processing)

• Learning in relational domains (Structured-output learning, Logic Learning, 
Statistical Relational Learning)

ADVANCED MACHINE LEARNING 
FOR SOFTWARE MAINTENANCE



KERNEL METHODS FOR 
STRUCTURED DATA

• A Kernel is a function between (arbitrary) pairs of 
entities

• It can be seen as a kind of similarity measure

• Based on the idea that structured objects can be 
described in terms of their constituent parts

• Generalize the computation of the dot product to 
arbitrary domains

• Can be easily tailored to specific domains

• Tree Kernels

• Graph Kernels

• ....
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• Parse Trees represent the syntactic 
structure of a sentence

• Tree Kernels can be used to measure 
the similarity between parse trees
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• Parse Trees represent the syntactic 
structure of a sentence

• Tree Kernels can be used to measure 
the similarity between parse trees

KERNELS FOR 
LANGUAGES

• Abstract Syntax Trees (AST) 
represent the syntactic structure of a 
piece of code

• Research on Tree Kernels for NLP 
carries over to AST (with 
adjustments)

KERNELS FOR 
SOURCE CODE
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KERNELS FOR AST
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•  Supervised Learning

•  Binary Classification

•  Multi-class Classification

•  Ranking

•  Unsupervised Learning

•  Clustering

•  Anomaly Detection

Idea:  Any learning algorithm relying on similarity 
measure can be used

KERNEL MACHINES



KERNEL MACHINES 
FOR CONE DETECTION

• Supervised Learning

• Pairwise classifier: predict if a pair of fragments is clone

• Unsupervised Learning

• Clustering: cluster together all candidate clones



KERNEL FOR CLONES
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KERNEL LEARNING

• Construct a number of candidate kernels with different characteristics

• e.g., Ignore variables names or not

• Employ kernel learning approaches which learn a weighted combination 
of  candidate kernels

• Useless/harmful kernels will get zero weight and will be discarded in the 
final model

LEARNING SIMILARITIES



Supervised Clustering

• Exploit information on already annotated pieces of software

• Training examples are software projects/portions with annotation on existing 
clones (clustering)

• A learning model uses training examples to refine the similarity measure for 
correctly clustering novel examples

STRUCTURED-OUTPUT 
LEARNING



• Software has a rich structure and heterogeneous information

• Advanced Machine learning approaches are promising for exploiting such 
information

• Kernel Methods are natural candidate

• e.g., see the analogy between NLP parse trees and AST

• Many applications:

• architecture recovery, code clone detection, vulnerability detection ....

SUMMARY



CASE STUDY: 
KERNELS FOR 
CLONES



• Goal: “Identify and group all duplicated code fragments/functions”

• Copy&Paste programming

• Taxonomy of 4 different types of clones 

• Program Text similarities and Functional similarities

• Clones affect the reliability and the maintainability of a software 
system

CODE CLONE DETECTION



• Abstract Syntax Tree (AST) 

• Tree structure representing the 
syntactic structure of the different 
instructions of a program (function)

•  Program Dependencies Graph 
(PDG)

• (Directed) Graph structure 
representing the relationship among 
the different statement of a program

KERNELS FOR 
CLONESCODE

STRUCTURES

Kernels for Structured Data:

• The source code could be represented by many different data 
structures
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CODE
STRUCTURES

PDG

• Two Types of Nodes

• Control Nodes (Dashed ones)

• e.g., if - for - while - function calls...

• Data Nodes 

• e.g., expressions - parameters...

NODES AND EDGES

while call-site

argexpr



CODE
STRUCTURES

PDG

• Two Types of Nodes

• Control Nodes (Dashed ones)

• e.g., if - for - while - function calls...

• Data Nodes 

• e.g., expressions - parameters...

• Two Types of Edges (i.e., dependencies)

• Control edges (Dashed ones)

• Data edges 

NODES AND EDGES

while call-site

argexpr



DEFINING KERNELS FOR 
STRUCTURED DATA 

• The definition of a new Kernel for a Structured Object requires the definition 
of:

• Set of features to annotate each part of the object

• A Kernel function to measure the similarity on the smallest part of the object

• e.g., Nodes of AST and Graphs

• A Kernel function to apply the computation on the different (sub)parts of the 
structured object

KERNELS
FOR CODE 

STRUCTURES



• Features:  each node is characterized by a set of 4 
features

• Instruction Class

• i.e., LOOP, CONDITIONAL_STATEMENT, CALL

• Instruction

• i.e., FOR, IF, WHILE, RETURN

• Context

• i.e., Instruction Class of the closer statement node

• Lexemes

• Lexical information gathered (recursively) from 
leaves

KERNELS
FOR CODE 

STRUCTURES:
AST

TREE KERNELS FOR 
AST

FOR

FOR-INIT FOR-
BODY



• Features:  each node is characterized by a set of 4 
features

• Instruction Class

• i.e., LOOP, CONDITIONAL_STATEMENT, CALL

• Instruction

• i.e., FOR, IF, WHILE, RETURN

• Context

• i.e., Instruction Class of the closer statement node

• Lexemes

• Lexical information gathered (recursively) from 
leaves

KERNELS
FOR CODE 

STRUCTURES:
AST

Instruction Class = LOOP

Instruction = FOR

Context = (e.g., LOOP)

Lexemes  = (e.g, name of variables in FOR-
INIT..)

TREE KERNELS FOR 
AST

FOR

FOR-INIT FOR-
BODY



• Goal: Identify the maximum isomorphic Tree/Subtree

• Comparison of blocks to each other

• Blocks: Atomic unit for (sub) tree considered

KERNELS
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• Features of nodes:

• Node Label

• i.e., , WHILE, CALL-SITE, EXPR, ...

• Node Type

• i.e., Data Node or Control Node

• Features of edges:

• Edge Type

• i.e., Data Edge or Control Edge

KERNELS
FOR CODE 

STRUCTURES:
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GRAPH KERNELS 
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• Features of nodes:

• Node Label

• i.e., , WHILE, CALL-SITE, EXPR, ...

• Node Type

• i.e., Data Node or Control Node

• Features of edges:

• Edge Type

• i.e., Data Edge or Control Edge

KERNELS
FOR CODE 

STRUCTURES:
PDG

Node Label = WHILE
Node Type = Control Node

GRAPH KERNELS 
FOR PDG

while

call-site

arg

expr expr

Control Edge

Data Edge
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GRAPH KERNELS 
FOR PDG

• Goal: Identify common subgraphs

• Selectors: Compare nodes to each others and explore the subgraphs of only “compatible” 

nodes (i.e., Nodes of the same type)
• Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)
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EVALUATION 
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

• No publicly available clone detection dataset

• No unique set of analyzed open source systems

• Usually clone results are not available

• Two possible strategies:

• To automatically modify an existing system with randomly generated clones

• Manual classification of candidate results

EMPIRICAL
EVALUATION



BENCHMARKS AND 
DATASET

Project Size (KLOC) # PDGS
Apache-2.2.14 343 3017
Python-2.5.1 435 5091

• Comparison with another Graph-based clone detector

• MeCC (ICSE2011)

• Baseline Dataset

• Results provided by MeCC

• Extended Dataset

• Extension of Clones results by manual evaluation of candidate clones

• Agreement rate calculation between the evaluators

EMPIRICAL
EVALUATION



EMPIRICAL EVALUATION 
OF TREE KERNEL FOR AST

• Comparison with another (pure) AST-based clone detector

• Clone Digger http://clonedigger.sourceforge.net/

• Comparison on a system with randomly seeded clones

Results refer to clones where code 
fragments have been modified by 
adding/removing or changing code 
statements

EVALUATION
TREE KERNELS 

FOR AST

http://clonedigger.sourceforge.net/
http://clonedigger.sourceforge.net/


PRECISION, RECALL AND F1 
PLOT
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LOREM
I P S U M

Threshold #Clones in the Baseline #Clones in the Extended Dataset

1.00 874 1089

0.99 874 1514
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LOREM
I P S U M

Threshold #Clones in the Baseline #Clones in the Extended Dataset

1.00 858 1066

0.99 858 2119
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CHALLENGES AND 
OPPORTUNITIES
• Learning Kernel Functions from Data Set

• Kernel Methods advantages:

• flexible solution to be tailored to specific domain

• efficient solution easy to parallelize

• combinations of multiple kernels

• Provide a publicly available data set
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