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oOF 'WARE MAINTENANCE

Analyse user
requirements

Operate and
maintain the system

“A software system must be continuously
adapted aduring its overall life cycle or it
progressively becomes less satisfactory”
(clt. Lenman'’s Law of software Evolution)

Document and Design the
test the system program

Code the
program

e Software Maintenance is one of the most

expensive and time consuming phase of the

The Early Maintenance Benefits |
whole life cycle

e Anticipating the Maintenance operations

reduces the cost

COoST

-
-
-
-
-
-
-
-
-
-

* 85%-90% of the total cost are related to the
effort necessary to comprehend the system
and its source code |Erikh, 2000

Requirements Design Coding Testing Deployment Maintenance

TIME
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Provide models and views
representing the relationships
among different software artifacts

Clustering of Software Artifacts

Advantages:
To aid the comprehension

To reduce maintenance effort
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Provide models and views
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among different software artifacts

Clustering of Software Artifacts

To aid the comprehension

To reduce maintenance effort

Advantages:
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Clusters of Software Artifacts
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oOF TWARE ARTIFAC TS

Software Artifacts may be analyzed at different
levels of abstractions

MailServer

MailServer
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Software Artifacts may be analyzed at different

levels of abstractions
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oOF TWARE ARTIFAC TS

Software Artifacts may be analyzed at different

levels of abstractions

The different levels of abstractions

lead to different ana|ysis tasks: class WrappedClassloader extends ClasslLoader {

private Bundle bundle;
public Wrapped(ClassLoader(Bundle bundle) {

super();

s , , this.bundle = bundle;
e [dentification of functional p oo € = bundie

/* (non-Javadoc)
* @see java.lang.ClasslLoader#findClass(java.lang.String)
*/

modaqules and their hierarchical

arrangemern t public Class findClass(String name) throws ClassNotFoundException {
return bundle.loadClass(name);
}
e i.e., Clustering of Software /* (non-Javadoc)
* @see java.lang.(ClasslLoader#findResource(java. lang.String)
classes */

public URL findResource(String name) {
return bundle.getResource(name);

}

/* (non-Javadoc)
* @see java.lang.(ClasslLoader#findResources(java.lang.String)

e i.e., Clustering of Duplicated v/ o , ,
protected Enumeration findResources(String name) throws IOException {

code fragments (b|OCkS return bundle.getResources(name);
| }
|

 [dentification of Code Clones




oOF WARE ARTIFAC TS
CLUSTERING

Problem: Definition of a proper similarity measure to apply in the clustering
J

‘analysis, which is able to exploit the considered representation of software artifacts

L - i
class Wrapped(Classloader extends ClasslLoader {
: : : : private Bundle bundle;
e Mine information directly from the source public WrappedClassLoader(Bundle bundle) {
super();
code: this.bundle = bundle;
}
/* (non-Javadoc)
. ] ] " . . . .
o EXplOlt the SyntaCtIC/leX|Ca| */@see java.lang.(ClasslLoader#findClass(java. lang.String)
. . : : blic Cl findCl Stri th ClassNotFoundE ti
information provided in the source o o lae o ieg nate) throws ClassNotFoundException {
}
code text /* (non-Javadoc)
* @see java.lang.(ClasslLoader#findResource(java.lang.String)
*/
: H - H public URL findResource(String name) {
 Exploit the relational information return bundle.getResource(name);
}

between artifacts

/* (non-Javadoc)
* @see java.lang.(ClassLoader#findResources(java.lang.String)
* e.g., Program Dependencies Y/ o
protected Enumeration findResources(String name) throws IOException {
return bundle.getResources(name);

}
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Analysis of large and complex systems

Solutions and algorithms must be able to scale efficiently

(in the large and in the many)
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SINING

Idea: Definition of Machine Learning techniques to mine information from the

source code

e Combine different kind of information (lexical and structural)

 Application of Kernel Methods to software artifacts

 Provide flexible and computational effective solutions to analyze large data

sets



ADVANCED MACHINE LEARNING
~OR SOrF TWARE MAINTENANCE

Idea: Definition of Machine Learning techniques to mine information from the

source code
e Combine different kind of information (lexical and structural)
 Application of Kernel Methods to software artifacts

 Provide flexible and computational effective solutions to analyze large data
sets

Advanced Machine Learning

* |earning with syntactic/semantic information (Natural Language Processing)

* Learning in relational domains (Structured-output learning, Logic Learning,
Statistical Relational Learning)



<ERNEL METHODS FOR
o [ RUC TURED DATA

A Kernel is a function between (arbitrary) pairs of

entities
It can be seen as a kind of similarity measure

'1»
/
Based on the idea that structured objects can be ‘ 'X )

described in terms of their constituent parts

ml

Generalize the computation of the dot product to Au !‘.

arbitrary domains n,\!,',“‘u \\<
I.«.

Can be easily tailored to specific domains 4;4 ‘\\ 'A‘ “ »
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Tree Kernels

Graph Kernels




<ERNELS FOR
o I RUC TURES

Computation of the dot product between (Graph) Structures




<ERNELS FOR
| ANGUAGES

Parse Trees represent the syntactic

structure of a sentence

Tree Kernels can be used to measure

the similarity between parse trees

S

T

NAM/ENP V/VP\NP
/N

John fed DET N

the numbat




{ERNELS FOR <ERNELS FOR
 ANGUAGES o>OURGCE CODE

* Abstract Syntax Trees (AST)

represent the syntactic structure of a

Parse Trees represent the syntactic

structure of a sentence .
piece of code

Tree Kernels can be used to measure
Research on Tree Kernels for NLP

the similarity between parse trees carries over to AST (with

adjustments)

S stmt

/\ while
NP VP M
/\ expr compound stmt
| |

binary stmt

NAME Vv NP P o SN |
A leq expr expr expr
namie: X int¢:3 funclcall
John fed DET N T Ty

expr arg list
‘ | |

name: f expr
the  numbat na,,fe: y
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Sentence

John hit the ball

| like you

Parse Tree
/S\
V NP
John
Det N
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Det N



CODE
while (x <vy) {
X=x+1
y=y-1

}
while (a < b) {
a=a*?2
b=Db/2

}

=

Lo FOR Ao

AST AST KERNEL
while
while
A < block
< block
/\ /<\ _ _
X y = = /\
ANVAN X Y X + y/\
X + y - -
AN\ /\ A +
X 1 Yy 1 Yy 1 A
X 1
while
while
< block
> block
/N /N a b a/\* bA/
a b /
A2 bA 2 * [
a
/N /\




<ERNEL MACHINES

Idea: Any learning algorithm relying on similarity

measure can be used

e Supervised Learning
* Unsupervised Learning
e Binary Classification
* (Clustering
* Multi-class Classification
* Anomaly Detection
* Ranking
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Supervised Learning

“RNEL MACHINES

)

~G THON

Pairwise classifier: predict if a pair of fragments is clone

Unsupervised Learning

Clustering: cluster together all candidate clones
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CODE
while (x <vy) {
X=Xx+1
y=y-1

}
while (b > a) {
a=a+1
b=Db-1

}

-~OR CLONE

AST AST KERNEL

while
while
///\\\ < block
< block

B /\_ <
AN <
N\ /\
X 1 y 1
while
>
block
=/\=
aA+ b/\-
A\ /\



—ARNING SIMILARITIES

KERNEL LEARNING

e Construct a number of candidate kernels with different characteristics

* e.9., Ignore variables names or not

* Employ kernel learning approaches which learn a weighted combination

of candidate kernels

* Useless/harmful kernels will get zero weight and will be discarded in the

final model



o | RUC TURED-OUTPUT
| FARNING

Supervised Clustering
* Exploit information on already annotated pieces of software

* Training examples are software projects/portions with annotation on existing

clones (clustering)

* A learning model uses training examples to refine the similarity measure for

correctly clustering novel examples



o UNMMARY

Software has a rich structure and heterogeneous information

Advanced Machine learning approaches are promising for exploiting such

iInformation

Kernel Methods are natural candidate

* e.g., see the analogy between NLP parse trees and AST
Many applications:

* architecture recovery, code clone detection, vulnerability detection ....
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CODE CLONE DET=CTION

d_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) i_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v)
{ {

double x; int x;

if (!PyArg_Parse(v, "d;array item must be float", &x)) /* "1" == signed int, maps to PyArg_Parse's 'i' formatter */

return -1; if (!PyArg_Parse(v, "i;array item must be integer”, &x))
if (1 >=0) return -1;
((double *)ap->ob_item)[i] = x; if (1 >=0)

return 9; ((int *)ap->ob_item)[i] = x;

} return @;
}

- Goal: "ldentify and group all auplicated code fragments/functions”
- Copy&Paste programming

- Taxonomy of 4 different types of clones
- Program Text similarities and Functional similarities

- Clones affect the reliability and the maintainability of a software

system
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Kernels for Structured Data:

* [The source code could be represented by many different data

structures

 Abstract Syntax Tree (AST) ) (ggg)ram Dependencies Graph

* Tree structure representing the e (Directed) Graph structure

syntactic structure of the different representing the relationship among

instructions of a program (function) the different statement of a program



RACT SYNTAX
= (AST!

int function (int parameter) {

int k = 10;
ody

printf("Hello, this is the function");

int 1 = 0;

while (i < 7) { @ @
>;T;b something cool
}
) 000010 Q Q
AST embeds both Syntactic and @ @ @ Q

Lexical Information

* Program Instructions @

e Name of Variables, Literals...




RACT SYNTAX
= (AST!

int _function (int parameter) {
int k = 10;

printf("Hello, this is the function");

}
} olo @5@ ©
AST embeds both Syntactic and @ @ @ Q

Lexical Information

* Program Instructions @

e Name of Variables, Literals...

int 1 = 0;

while (1 < 7) {
1++;

// do something cool

O




RACT SYNTAX
= (AST!

int _function (int parameter) {
int k = 10;

printf("Hello, this is the function");

int 1 = 0; /
o115 =
>7’;b something cool
}
} POLOOY O
AST embeds both Syntactic and @ @ @ Q

Lexical Information

* Program Instructions @

e Name of Variables, Literals...




SACT SYNTAX
S AS T

int _function (int parameter) {
int k = 10;

printf("Hello, this is the function");

int 1 = 0; 7 \

while (i < 7) { .
1++;
// do something cool

}

AST embeds both Syntactic and @ @ @ Q

Lexical Information

* Program Instructions @

e Name of Variables, Literals...




STRUCTURES B < B )G)

e

int function (int parameter) {
int k = 10;

printf("Hello, this is the function");

int 1 = 0;
while (1 < 7) {
1++;
// do something cool

* Nodes correspond to instructions

- Edges represent relationships
between couple of nodes




CODE

STRUCTURES
e

int function (

G

= A

int parameter)

int k = 107

106G

)

{

= A

<_)

printf("Hello, this is the function");

int 1 = 0;

while (1 < 7) {

1++;

// do something cool

* Nodes correspond to instructions

- Edges represent relationships
between couple of nodes

D=
Bl€)
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int _function (lint parameter)
int k = 10;

ROC

)

{

= A

<

)

printf("Hello, this is the function");

int 1 = 0;
while (1 < 7) {
1++;
// do something cool

* Nodes correspond to instructions

- Edges represent relationships

between couple of nodes

D=
Bl€)
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—PENDENCIES

printf("Hello, this is the function");

int _function (lint parameter) {
int k = 10;

int 1 = 0;
while (1 < 7) {
1++;
// do something cool o
} 4
\
} TN

* Nodes correspond to instructions

- Edges represent relationships
between couple of nodes

/
/

call-site

OR 0050
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STRUPCDT(:‘.JRES G _)A D < D
1

int _function (lint parameter) {
int k = 10;

printf("Hello, this is the function");

int 1 = 0;
while (i < 7) {
1++;
// do something cool

* Nodes correspond to instructions

- Edges represent relationships
between couple of nodes

D=
Bl€)

/
/

K0

OR 0050

—NCOIES

call-site




CODE

STRUCTURES
e

Two Types of Nodes

Control Nodes (Dashed ones)

D

e.g., if - for - while - function calls...

Data Nodes

e.g., expressions - parameters...

GES

- N - N



CODE

STRUCTURES
e

Two Types of Nodes

Control Nodes (Dashed ones)

e.g., if - for - while - function calls.

Data Nodes

e.g., expressions - parameters...

Two Types of Edges (i.e., dependencies)

Control edges (Dashed ones)

Data edges

D

)C

N
7 \

e

RN
7 \




KERNELS H\HNG K:%N:LS :Qg
Rl 1O TURED DATA

 The definition of a new Kernel for a Structured Object requires the definition

of:

o Set of features to annotate each part of the object

A Kernel function to measure the similarity on the smallest part of the object

e e.9., Nodes of AST and Graphs

A Kernel function to apply the computation on the different (sub)parts of the

structured object



KERNELS K:%N:‘ S :Qg

FOR CODE
STRUCTURES:
AST

e Features: each node is characterized by a set of 4

o features

\ - Instruction Class

1
e j.e.,, LOOP, CONDITIONAL_STATEMENT, CALL
Instruction
e je. FOR, IF, WHILE, RETURN
Context
FOR-
BODY
e |.e., Instruction Class of the closer statement node
- Lexemes
¥ 9 ¥ \‘1

Lexical information gathered (recursively) from

leaves




KERNELS K:%N:‘ S :Qg

FOR CODE
STRUCTURES:
AST

e Features: each node is characterized by a set of 4

o features

\ - Instruction Class

\ Instruction Class = LOOP

l.e., LOOP, CONDITIONAL_STATEMENT, CALL

Instruction = FOR

Context = (e.g., LOOP)

Instruction
Lexemes = (e.g, name of variables in FOR-
INIT..)
e je. FOR, IF, WHILE, RETURN
Context
FOR-
BODY
e |.e., Instruction Class of the closer statement node
- Lexemes
¥ ¥ <

Lexical information gathered (recursively) from

leaves




KERNELS
FOR CODE
STRUE;;JRES: /A\ S T

o Goal: /dentify the maximum isomorphic Tree/Subtree

%

<ERN

LS

 Comparison of blocks to each other

 Blocks: Atomic unit for (sub) tree considered
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KERNELS

FOR CODE
STRUCTURES:
AST

N

AS [

<

<N

LS

-0

Goal: /dentify the maximum isomorphic Tree/Subtree

Comparison of blocks to each other
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e Features of nodes:

Node Label

i.e.,, WHILE, CALL-SITE, EXPR,
Node Type

VTN e |.e., Data Node or Control Node

Features of edges:
Edge Type

e |.e., Data Edge or Control Edge
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Node Label = WHILE
Node Type = Control Node

N__ N —
™ VN
call-site w
Data Edge

—RNELS

Features of nodes:

Node Label

i.e.,, WHILE, CALL-SITE, EXPR,
Node Type

e |.e., Data Node or Control Node

Features of edges:
Edge Type

e |.e., Data Edge or Control Edge
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 Goal: /[dentify common subgraphs

7

 Selectors: Compare nodes to each others and explore the subgraphs of only “compatible

nodes (.e., Nodes of the same type)

« Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

~ \\/ - \\

call-site @
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 Goal: /[dentify common subgraphs

e Selectors: Compare nodes to each others and explore the subgraphs of only “compatible”

nodes (.e., Nodes of the same type)

« Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

~ \\/ - \\

call-site @
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 Goal: /[dentify common subgraphs

e Selectors: Compare nodes to each others and explore the subgraphs of only “compatible”

nodes (.e., Nodes of the same type)

« Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

N
N TN
\ i \

I call-site , ( call-site ,

[ calsite , ( expr |
\_ N/

arg
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KERNELS

FOR CODE
STRUCTURES:
PDG

 Goal: /dentify common subgraphs

e Selectors: Compare nodes to each others and explore the subgraphs of only “compatible”

nodes (.e., Nodes of the same type)

« Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

\ —
N/ ™~

call-site
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 (Comparison of results with other two clone detector tools:

e AST-based Clone detector

e PDG-based Clone Detector
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 (Comparison of results with other two clone detector tools:

e AST-based Clone detector
e PDG-based Clone Detector

* No publicly available clone detection dataset
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e AST-based Clone detector
e PDG-based Clone Detector
* No publicly available clone detection dataset

 No unigue set of analyzed open source systems
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 (Comparison of results with other two clone detector tools:

 AST-based Clone detector
 PDG-based Clone Detector
* No publicly available clone detection dataset
 No unigue set of analyzed open source systems

e Usually clone results are not available
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 (Comparison of results with other two clone detector tools:

 AST-based Clone detector
 PDG-based Clone Detector
* No publicly available clone detection dataset
 No unigue set of analyzed open source systems
e Usually clone results are not available

* [wo possible strategies:
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 (Comparison of results with other two clone detector tools:

 AST-based Clone detector
 PDG-based Clone Detector
* No publicly available clone detection dataset
 No unigue set of analyzed open source systems
e Usually clone results are not available
* [wo possible strategies:

* Jo automatically modify an existing system with randomly generated clones
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 (Comparison of results with other two clone detector tools:

 AST-based Clone detector
 PDG-based Clone Detector
* No publicly available clone detection dataset
 No unigue set of analyzed open source systems
e Usually clone results are not available
* [wo possible strategies:
* Jo automatically modify an existing system with randomly generated clones

e Manual classification of candidate results



SENCHMARKS AND
EMPIRICAL DATAS —

Apache-2.2.14 343 3017
Python-2.5.1 435 5091

 Comparison with another Graph-based clone detector
e MeCC (ICSE2011)
 Baseline Dataset
* Results provided by MeCC
 Extended Dataset
* Extension of Clones results by manual evaluation of candidate clones

 Agreement rate calculation between the evaluators
[
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FRNEL FOR AST

 (Comparison with another (pure) AST-based clone detector

* (lone Digger http://clonedigger.sourceforge.net/

e (Comparison on a system with randomly seeded clones

B Tree Kernel
approach

™ Clone Digger
Results refer to clones where code

fragments have been modified by

F1 adding/removing or changing code

Precision Recall

S_z‘atements



http://clonedigger.sourceforge.net/
http://clonedigger.sourceforge.net/

SECISION, RECALL AND F1
O

EVALUATION
TREE KERNELS . . o
FOR AST Clone results with different similarity
thresholds
1 o T o T = = ® ® ® ® ® ® ® ® ® o
0.76 ' """ ) o [ R """ """"""""""""""""""""""""""""""""""""""""""""""
05 . """ """ w ® """ """ """"""""""""""
.25 o 70— ¥
0

0.6 0.620.640.660.68 0.7 0.720.740.76 0.78 0.8 0.82 0.84 0.860.88 0.9 0.92 0.94 0.96 0.98
O Precision ©O Recall ©O F1



—oULTS WITE

EVALUATION

%
e O 2 2 14

Threshold #Clones in the Baseline #Clones in the Extended Dataset

1.00 874 1089
0.99 874 1514
0.9 0.6
0.8
0.5
0.7
0.6 - 04
0.5
0.3
0.4 _
0.3 7 — 027
02 T— — — 01 - " Recall-
M Precision- ' Baseline
0.1 +— 1 — Baseline
o -
oc— " “ Precision- 0.99 1 Recall-
0.99 1 Extended

Extended




EVALUATION %:SUL__S \/\/|TH
e [CERIGINERS

Threshold #Clones in the Baseline #Clones in the Extended Dataset

1.00 858 1066
0.99 858 2119
1.2 0.9
0.8
1
0.7
08 +—— — 0.6
0.5 .
06 +— | S = Precision- " Recall-Baseline
Baseline 0.4 - Recall-Extended
04 ——m——  E— — Precision- 0.3 -
Extended
0.2 -
0.2 +—  EE— —
0.1 - —
O = I O

0.99 1 0.99 1
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Learning Kernel Functions from Data Set

Kernel Methods advantages:

* flexible solution to be tailored to specific domain

» efficient solution easy to parallelize

* combinations of multiple kernels

Provide a publicly available data set
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