
MACHINE
LEARNING FOR
SOFTWARE
MAINTAINABILITY

Anna Corazza, Sergio Di Martino, Valerio Maggio
Alessandro Moschitti, Andrea Passerini, Giuseppe Scanniello,
Fabrizio Silverstri

JIMSE 2012
 August 28, 2012 Montpellier, France

SOFTWARE MAINTENANCE
“A software system must be continuously
adapted during its overall life cycle or it
progressively becomes less satisfactory”
(cit. Lehman’s Law of Software Evolution)

• Software Maintenance is one of the most
expensive and time consuming phase of the
whole life cycle

• Anticipating the Maintenance operations
reduces the cost

• 85%-90% of the total cost are related to the
effort necessary to comprehend the system
and its source code [Erlikh, 2000]

Software Artifacts

UI Process
Components

UI
Components

Data Access
Components

Data Helpers /
Utilities

Security

Operational Management

Communications

Business
Components

Application Facade

Buisiness
Workflows

Messages
InterfacesService Interfaces

• Provide models and views
representing the relationships
among different software artifacts

• Clustering of Software Artifacts

• Advantages:

• To aid the comprehension

• To reduce maintenance effort

SOFTWARE ARCHITECTURE

• Provide models and views
representing the relationships
among different software artifacts

• Clustering of Software Artifacts

• Advantages:

• To aid the comprehension

• To reduce maintenance effort

SOFTWARE ARCHITECTURE

External
Systems

Service Consumers

Se
rv
ice

s

Service Interfaces

Messages
Interfaces

Cross Cutting

Security

O
perational M

anagem
ent

Com
m

unications

Da
ta Data Access

Components
Data Helpers /

Utilities
Pr
es

en
ta
tio

n UI
Components

UI Process
Components

Bu
sin

es
s

Application Facade

Buisiness
Workflows

Business
Components

Clusters of Software Artifacts

• Provide models and views
representing the relationships
among different software artifacts

• Clustering of Software Artifacts

• Advantages:

• To aid the comprehension

• To reduce maintenance effort

SOFTWARE ARCHITECTURE

External
Systems

Service Consumers

Se
rv
ice

s

Service Interfaces

Messages
Interfaces

Cross Cutting

Security

O
perational M

anagem
ent

Com
m

unications

Da
ta Data Access

Components
Data Helpers /

Utilities
Pr
es

en
ta
tio

n UI
Components

UI Process
Components

Bu
sin

es
s

Application Facade

Buisiness
Workflows

Business
Components

Clusters of Software Artifacts

Software Artifacts may be analyzed at different
levels of abstractions

SOFTWARE ARTIFACTS

Software Artifacts may be analyzed at different
levels of abstractions

SOFTWARE ARTIFACTS

Software Artifacts may be analyzed at different
levels of abstractions

The different levels of abstractions
lead to different analysis tasks:

• Identification of functional
modules and their hierarchical
arrangement

• i.e., Clustering of Software
classes

• Identification of Code Clones

• i.e., Clustering of Duplicated
code fragments (blocks,

SOFTWARE ARTIFACTS

• Mine information directly from the source
code:

• Exploit the syntactic/lexical
information provided in the source
code text

• Exploit the relational information
between artifacts

• e.g., Program Dependencies

Problem: Definition of a proper similarity measure to apply in the clustering
analysis, which is able to exploit the considered representation of software artifacts

SOFTWARE ARTIFACTS
CLUSTERING

• Analysis of large and complex systems

• Solutions and algorithms must be able to scale efficiently
(in the large and in the many)

MINING LARGE REPOSITORIES

Idea: Definition of Machine Learning techniques to mine information from the
source code

• Combine different kind of information (lexical and structural)

• Application of Kernel Methods to software artifacts

• Provide flexible and computational effective solutions to analyze large data
sets

ADVANCED MACHINE LEARNING
FOR SOFTWARE MAINTENANCE

Idea: Definition of Machine Learning techniques to mine information from the
source code

• Combine different kind of information (lexical and structural)

• Application of Kernel Methods to software artifacts

• Provide flexible and computational effective solutions to analyze large data
sets

Advanced Machine Learning

• Learning with syntactic/semantic information (Natural Language Processing)

• Learning in relational domains (Structured-output learning, Logic Learning,
Statistical Relational Learning)

ADVANCED MACHINE LEARNING
FOR SOFTWARE MAINTENANCE

KERNEL METHODS FOR
STRUCTURED DATA

• A Kernel is a function between (arbitrary) pairs of
entities

• It can be seen as a kind of similarity measure

• Based on the idea that structured objects can be
described in terms of their constituent parts

• Generalize the computation of the dot product to
arbitrary domains

• Can be easily tailored to specific domains

• Tree Kernels

• Graph Kernels

•

KERNELS FOR
STRUCTURES
















 


Computation of the dot product between (Graph) Structures

• Parse Trees represent the syntactic
structure of a sentence

• Tree Kernels can be used to measure
the similarity between parse trees

KERNELS FOR
LANGUAGES

• Parse Trees represent the syntactic
structure of a sentence

• Tree Kernels can be used to measure
the similarity between parse trees

KERNELS FOR
LANGUAGES

• Abstract Syntax Trees (AST)
represent the syntactic structure of a
piece of code

• Research on Tree Kernels for NLP
carries over to AST (with
adjustments)

KERNELS FOR
SOURCE CODE

KERNELS FOR PARSE
TREE





 



 

 



 

 




 



 





 


 

 





 


 

KERNELS FOR AST















 



















 





 



















 







 

 







 










 







 

 







 










 



• Supervised Learning

• Binary Classification

• Multi-class Classification

• Ranking

• Unsupervised Learning

• Clustering

• Anomaly Detection

Idea: Any learning algorithm relying on similarity
measure can be used

KERNEL MACHINES

KERNEL MACHINES
FOR CONE DETECTION

• Supervised Learning

• Pairwise classifier: predict if a pair of fragments is clone

• Unsupervised Learning

• Clustering: cluster together all candidate clones

KERNEL FOR CLONES















 



















 





 



















 







 

 







 











 







 

 







 











 



KERNEL LEARNING

• Construct a number of candidate kernels with different characteristics

• e.g., Ignore variables names or not

• Employ kernel learning approaches which learn a weighted combination
of candidate kernels

• Useless/harmful kernels will get zero weight and will be discarded in the
final model

LEARNING SIMILARITIES

Supervised Clustering

• Exploit information on already annotated pieces of software

• Training examples are software projects/portions with annotation on existing
clones (clustering)

• A learning model uses training examples to refine the similarity measure for
correctly clustering novel examples

STRUCTURED-OUTPUT
LEARNING

• Software has a rich structure and heterogeneous information

• Advanced Machine learning approaches are promising for exploiting such
information

• Kernel Methods are natural candidate

• e.g., see the analogy between NLP parse trees and AST

• Many applications:

• architecture recovery, code clone detection, vulnerability detection

SUMMARY

CASE STUDY:
KERNELS FOR
CLONES

• Goal: “Identify and group all duplicated code fragments/functions”

• Copy&Paste programming

• Taxonomy of 4 different types of clones

• Program Text similarities and Functional similarities

• Clones affect the reliability and the maintainability of a software
system

CODE CLONE DETECTION

• Abstract Syntax Tree (AST)

• Tree structure representing the
syntactic structure of the different
instructions of a program (function)

• Program Dependencies Graph
(PDG)

• (Directed) Graph structure
representing the relationship among
the different statement of a program

KERNELS FOR
CLONESCODE

STRUCTURES

Kernels for Structured Data:

• The source code could be represented by many different data
structures

ABSTRACT SYNTAX
TREE (AST)CODE

STRUCTURES
AST

Function
Body

= whileprint

k 10 =

i +

p

=

i 0

i 1.0

<

i 7AST embeds both Syntactic and
Lexical Information

• Program Instructions

• Name of Variables, Literals...

ABSTRACT SYNTAX
TREE (AST)CODE

STRUCTURES
AST

Function
Body

= whileprint

k 10 =

i +

p

=

i 0

i 1.0

<

i 7AST embeds both Syntactic and
Lexical Information

• Program Instructions

• Name of Variables, Literals...

ABSTRACT SYNTAX
TREE (AST)CODE

STRUCTURES
AST

Function
Body

= whileprint

k 10 =

i +

p

=

i 0

i 1.0

<

i 7AST embeds both Syntactic and
Lexical Information

• Program Instructions

• Name of Variables, Literals...

ABSTRACT SYNTAX
TREE (AST)CODE

STRUCTURES
AST

Function
Body

= whileprint

k 10 =

i +

p

=

i 0

i 1.0

<

i 7AST embeds both Syntactic and
Lexical Information

• Program Instructions

• Name of Variables, Literals...

while
call-site

expr

decl param

expr

decl

arg

expr

CODE
STRUCTURES

PDG

• Nodes correspond to instructions

• Edges represent relationships
between couple of nodes

PROGRAM DEPENDENCIES
GRAPH (PDG)

while
call-site

expr

decl param

expr

decl

arg

expr

CODE
STRUCTURES

PDG

• Nodes correspond to instructions

• Edges represent relationships
between couple of nodes

PROGRAM DEPENDENCIES
GRAPH (PDG)

while
call-site

expr

decl param

expr

decl

arg

expr

CODE
STRUCTURES

PDG

• Nodes correspond to instructions

• Edges represent relationships
between couple of nodes

PROGRAM DEPENDENCIES
GRAPH (PDG)

while
call-site

expr

decl param

expr

decl

arg

expr

CODE
STRUCTURES

PDG

• Nodes correspond to instructions

• Edges represent relationships
between couple of nodes

PROGRAM DEPENDENCIES
GRAPH (PDG)

while
call-site

expr

decl param

expr

decl

arg

expr

CODE
STRUCTURES

PDG

• Nodes correspond to instructions

• Edges represent relationships
between couple of nodes

PROGRAM DEPENDENCIES
GRAPH (PDG)

CODE
STRUCTURES

PDG

• Two Types of Nodes

• Control Nodes (Dashed ones)

• e.g., if - for - while - function calls...

• Data Nodes

• e.g., expressions - parameters...

NODES AND EDGES

while call-site

argexpr

CODE
STRUCTURES

PDG

• Two Types of Nodes

• Control Nodes (Dashed ones)

• e.g., if - for - while - function calls...

• Data Nodes

• e.g., expressions - parameters...

• Two Types of Edges (i.e., dependencies)

• Control edges (Dashed ones)

• Data edges

NODES AND EDGES

while call-site

argexpr

DEFINING KERNELS FOR
STRUCTURED DATA

• The definition of a new Kernel for a Structured Object requires the definition
of:

• Set of features to annotate each part of the object

• A Kernel function to measure the similarity on the smallest part of the object

• e.g., Nodes of AST and Graphs

• A Kernel function to apply the computation on the different (sub)parts of the
structured object

KERNELS
FOR CODE

STRUCTURES

• Features: each node is characterized by a set of 4
features

• Instruction Class

• i.e., LOOP, CONDITIONAL_STATEMENT, CALL

• Instruction

• i.e., FOR, IF, WHILE, RETURN

• Context

• i.e., Instruction Class of the closer statement node

• Lexemes

• Lexical information gathered (recursively) from
leaves

KERNELS
FOR CODE

STRUCTURES:
AST

TREE KERNELS FOR
AST

FOR

FOR-INIT FOR-
BODY

• Features: each node is characterized by a set of 4
features

• Instruction Class

• i.e., LOOP, CONDITIONAL_STATEMENT, CALL

• Instruction

• i.e., FOR, IF, WHILE, RETURN

• Context

• i.e., Instruction Class of the closer statement node

• Lexemes

• Lexical information gathered (recursively) from
leaves

KERNELS
FOR CODE

STRUCTURES:
AST

Instruction Class = LOOP

Instruction = FOR

Context = (e.g., LOOP)

Lexemes = (e.g, name of variables in FOR-
INIT..)

TREE KERNELS FOR
AST

FOR

FOR-INIT FOR-
BODY

• Goal: Identify the maximum isomorphic Tree/Subtree

• Comparison of blocks to each other

• Blocks: Atomic unit for (sub) tree considered

KERNELS
FOR CODE

STRUCTURES:
AST

TREE KERNELS FOR
AST

BLOCK

= = print

x 1.0 y f

x x

y

BLOCK

= = print

s 0.0 p f

s 1.0

p

• Goal: Identify the maximum isomorphic Tree/Subtree

• Comparison of blocks to each other

• Blocks: Atomic unit for (sub) tree considered

KERNELS
FOR CODE

STRUCTURES:
AST

TREE KERNELS FOR
AST

BLOCK

= = print

x 1.0 y f

x x

y

BLOCK

= = print

s 0.0 p f

s 1.0

p

• Features of nodes:

• Node Label

• i.e., , WHILE, CALL-SITE, EXPR, ...

• Node Type

• i.e., Data Node or Control Node

• Features of edges:

• Edge Type

• i.e., Data Edge or Control Edge

KERNELS
FOR CODE

STRUCTURES:
PDG

GRAPH KERNELS
FOR PDG

while

call-site

arg

expr expr

• Features of nodes:

• Node Label

• i.e., , WHILE, CALL-SITE, EXPR, ...

• Node Type

• i.e., Data Node or Control Node

• Features of edges:

• Edge Type

• i.e., Data Edge or Control Edge

KERNELS
FOR CODE

STRUCTURES:
PDG

Node Label = WHILE
Node Type = Control Node

GRAPH KERNELS
FOR PDG

while

call-site

arg

expr expr

Control Edge

Data Edge

while

call-site

arg

expr expr

while

call-site

arg

expr call-site

GRAPH KERNELS
FOR PDG

• Goal: Identify common subgraphs

• Selectors: Compare nodes to each others and explore the subgraphs of only “compatible”

nodes (i.e., Nodes of the same type)
• Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

KERNELS
FOR CODE

STRUCTURES:
PDG

while

call-site

arg

expr expr

while

call-site

arg

expr call-site

GRAPH KERNELS
FOR PDG

• Goal: Identify common subgraphs

• Selectors: Compare nodes to each others and explore the subgraphs of only “compatible”

nodes (i.e., Nodes of the same type)
• Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

KERNELS
FOR CODE

STRUCTURES:
PDG

while

call-site

arg

expr expr

while

call-site

arg

expr call-site

GRAPH KERNELS
FOR PDG

• Goal: Identify common subgraphs

• Selectors: Compare nodes to each others and explore the subgraphs of only “compatible”

nodes (i.e., Nodes of the same type)
• Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

KERNELS
FOR CODE

STRUCTURES:
PDG

while

call-site

arg

expr expr

while

call-site

arg

expr call-site

GRAPH KERNELS
FOR PDG

• Goal: Identify common subgraphs

• Selectors: Compare nodes to each others and explore the subgraphs of only “compatible”

nodes (i.e., Nodes of the same type)
• Context: The subgraph of a node (with paths whose lengths are at most L to avoid loops)

KERNELS
FOR CODE

STRUCTURES:
PDG

EVALUATION
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

EMPIRICAL
EVALUATION

EVALUATION
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

• No publicly available clone detection dataset

EMPIRICAL
EVALUATION

EVALUATION
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

• No publicly available clone detection dataset

• No unique set of analyzed open source systems

EMPIRICAL
EVALUATION

EVALUATION
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

• No publicly available clone detection dataset

• No unique set of analyzed open source systems

• Usually clone results are not available

EMPIRICAL
EVALUATION

EVALUATION
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

• No publicly available clone detection dataset

• No unique set of analyzed open source systems

• Usually clone results are not available

• Two possible strategies:

EMPIRICAL
EVALUATION

EVALUATION
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

• No publicly available clone detection dataset

• No unique set of analyzed open source systems

• Usually clone results are not available

• Two possible strategies:

• To automatically modify an existing system with randomly generated clones

EMPIRICAL
EVALUATION

EVALUATION
PROTOCOL

• Comparison of results with other two clone detector tools:

• AST-based Clone detector

• PDG-based Clone Detector

• No publicly available clone detection dataset

• No unique set of analyzed open source systems

• Usually clone results are not available

• Two possible strategies:

• To automatically modify an existing system with randomly generated clones

• Manual classification of candidate results

EMPIRICAL
EVALUATION

BENCHMARKS AND
DATASET

Project Size (KLOC) # PDGS
Apache-2.2.14 343 3017
Python-2.5.1 435 5091

• Comparison with another Graph-based clone detector

• MeCC (ICSE2011)

• Baseline Dataset

• Results provided by MeCC

• Extended Dataset

• Extension of Clones results by manual evaluation of candidate clones

• Agreement rate calculation between the evaluators

EMPIRICAL
EVALUATION

EMPIRICAL EVALUATION
OF TREE KERNEL FOR AST

• Comparison with another (pure) AST-based clone detector

• Clone Digger http://clonedigger.sourceforge.net/

• Comparison on a system with randomly seeded clones

Results refer to clones where code
fragments have been modified by
adding/removing or changing code
statements

EVALUATION
TREE KERNELS

FOR AST

http://clonedigger.sourceforge.net/
http://clonedigger.sourceforge.net/

PRECISION, RECALL AND F1
PLOT

0

0.25

0.5

0.75

1

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Precision Recall F1

Clone results with different similarity
thresholds

EVALUATION
TREE KERNELS

FOR AST

LOREM
I P S U M

Threshold #Clones in the Baseline #Clones in the Extended Dataset

1.00 874 1089

0.99 874 1514

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

0.99" 1"

Soglia'di'Similarità'

Apache'2.2.14'6'Precision'con'Oracolo'Esteso'

Precision5
Baseline"

Precision5
Extended"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.99" 1"

Soglia'di'Similarità'

Apache'2.2.14'6'Recall'con'Oracolo'Esteso'

Recall0
Baseline"

Recall0
Extended"

RESULTS WITH
APACHE 2.2.14EVALUATION

GRAPH KERNELS
FOR PDG

LOREM
I P S U M

Threshold #Clones in the Baseline #Clones in the Extended Dataset

1.00 858 1066

0.99 858 2119

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0.99" 1"

Soglia'di'Similarità'

Python'2.5.1'5'Precision'con'Oracolo'
Esteso'

Precision2
Baseline"

Precision2
Extended"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

0.99" 1"
Soglia'di'Similarità'

Python'2.5.1'5'Recall'con'Oracolo'Esteso'

Recall2Baseline"

Recall2Extended"

RESULTS WITH
PYTHON 2.5.2EVALUATION

GRAPH KERNELS
FOR PDG

CHALLENGES AND
OPPORTUNITIES
• Learning Kernel Functions from Data Set

• Kernel Methods advantages:

• flexible solution to be tailored to specific domain

• efficient solution easy to parallelize

• combinations of multiple kernels

• Provide a publicly available data set

THANK YOU
FOR YOUR KIND
ATTENTION

