

Test-Driven Development

Course of
Software Engineering II
A.A. 2009/2010

Valerio Maggio, Ph.D. Student
Prof. Sergio Di Martino

Contents at Glance

• What is TDD ?

• TDD and XP

• TDD Mantra

• TDD Principles and Patterns

1. Example Scenario

Software Development as a
Learning Process

• One must learn by doing the thing; for though you
think you know it, you have no certainty until you try

Sofocle

Software Development as a
Learning Process

• Almost all projects attempts something new
• Something refers to

• People involved
• Technology involved
• Application Domain
• … (most likely) a combination of these

• For Customers and End-Users ?
• Experience is worse!

Software Development as a
Learning Process

• Every one involved has to learn as the
projects progresses
• Resolve misunderstanding along the way

• There will be changes!!

Anticipate unanticipated
changes

Feedback is a fundamental tool

• Team needs cycle of activities
• Add new feature
• Gets feedback about quality and quantity of

work already done!
• Time Boxes
• Incremental and Iterative Development

• Incremental : Dev. feature by feature
• Iterative: improvement of features in response

to feedback

Practices that support changes

1. Constant testing to catch regression errors

a. Add new feature without fear

b. Frequent manual testing is infeasible!!

2. Keep the code as simple as possible

a. More time spent in reading code than writing it

3. Simplicity takes effort so...

a. REFACTOR!

2. Test Driven Development

Test Driven Development

• We write tests before we write the code

• Testing as a Design Activity

• Testing to clarify ideas about what we want
the code to do!

What is TDD ?

• Test-Driven Development

• Test-First Programming

• Test-Driven Design

What is TDD ?

• Iterative and incremental software
development

• TDD objective is to DESIGN CODE and not
to VALIDATE Code
• Design to fail principle

TDD and Agile

• TDD concepts combines
• Test First Programming
• Refactoring

• TDD is an agile practice
• XP is an agile methodology

TDD and XP
• Core of XP
• No needs of others XP practices

• Avoid software regression
• Anticipate changes

• Product code smarter that works better

• Reduce the presence of bugs and errors
• “You have nothing to lose but your bugs”

3. TDD and Unit Testing

Unit test

• “ Unit tests run fast. If they don't run fast
they're not unit tests. ”

• A test is not a unit test if:
• communicate with DB
• communicate with networking services
• cannot be executed in parallel with other unit

tests

Unit Test and TDD

• Testing code is released together with
production code

• A feature is released only if
• Has at least a Unit test
• All of its unit tests pass

• Do changes without fear
• Refactoring

• Reduce debugging

Unit Test and TDD

• Unit Tests overcome dependencies
• How ?
• Stubs and Mock Objects

• www.mockobjects.com
• Mocks simulate interactions with real objects

• Unit tests can continue to run fast...
• ... but ?

• Too many setup operations are bad!

http://www.mockobjects.com/

Example

DBConnection.java

public interface DBConnection
{
 void connect();
 void close();
}

public class FakeDBConnection implements DBConnection
{
 private boolean connected = false;
 private boolean closed = false;
 public void connect() {connected = true;}
 public void close() {closed = true;}
 public boolean validate(){return connected && closed;}
}

FakeDBConnection.java

4. TDD Mantra

TDD Mantra
First step

Think

Think : step by step

Think about what we want the code to do

TDD Mantra

Think

“We want do develop an innovative arithmetic
library that handles only non negative numbers”

Example

aritLib.py

TDD Mantra
Second Step

Think

Red Bar : Writing tests

Think about the behavior of the class and
its public interface

Red bar

TDD Mantra
Second step

Think Red bar

import aritLib
import unittest

class AritLibTest(unittest.TestCase):
 knownValues = ((0,0,0),(1,1,2),(2,3,5),(-1,-1,-1),(-10,10,-1),(10,-5,-1),)
 def testSum(self):
 for x, y, sum in self.knownValues:
 result = aritLib.add(x, y)
 self.assertEquals(sum, result)

TDD Mantra
Second step

Think Red bar

class AritLibTest(unittest.TestCase):
 knownValues = ((0,0,0),(1,1,2),(2,3,5),(-1,-1,-1),(-10,10,-1),(10,-5,-1),)
 def testSum(self):
 for x, y, sum in self.knownValues:
 result = aritLib.add(x, y)
 self.assertEquals(sum, result)

TEST FAILS BECAUSE THE FUNCTION
STILL NOT EXISTS

ERROR: testAdd (__main__.AritLibTest)
--
Traceback (most recent call last):
File “AritLibTest.py”, line 11, in testAdd
result = aritLib.add(x,y)
AttributeError: 'module' object has no attribute 'add'
--
Ran 1 test in 0.000s
FAILED (errors=1)

TDD Mantra
Third step

Think Red bar Green Bar

Failed Test

Green Bar : writing production code.

Write ONLY production code to pass previous test

TDD Mantra
Third step

Think Red bar Green Bar

Failed Test

Green Bar : writing production code.

aritLib.py

def add(x, y):
 if x < 0:
 return -1
 if y < 0:
 return -1
 return x+y

TDD Mantra
Third step

Think Red bar Green Bar

Failed Test

Green Bar : writing production code.

aritLib.py

def add(x, y):
 if x < 0:
 return -1
 if y < 0:
 return -1
 return x+y

--
Ran 1 test in 0.000 s
--
OK

Run previous tests without modifications

TDD Mantra
Fouth step

Think Red bar Green Bar

Failed Test

Refactoring

Refactoring: refactor developed feature

During refactoring we DO NOT have to modify
semantic of developed feature!!

TDD Mantra
Fouth step

Think Red bar Green Bar

Failed Test

Refactoring

Before

def add(x, y):
 if x < 0:
 return -1
 if y < 0:
 return -1
 return x+y

After

def add(x, y):
 if x < 0 or y < 0:
 return -1
 return x+y

TDD Mantra
Fouth step

Think Red bar Green Bar

Failed Test

Refactoring

After

def add(x, y):
 if x < 0 or y < 0:
 return -1
 return x+y

--
Ran 1 test in 0.000 s
--
OK

Run previous tests without modifications

Principles

Think Red bar Green Bar

Failed Test

Refactoring

• Code once, test twice
• Clean code that works

•KISS: Keep It Short & Simple
•YAGNI: You Ain’t Gonna Need It
•DRY: Don't repeat yourself

Banana Spelling ?

• “ I can spell banana but I never know when
to stop”

WHEN TO STOP ?
• When code works
• When all tests are done
• When there's no duplicated code

Bad smells …

There's something wrong when:

• It is necessary to test private
and/or protected methods.

• We need white box testing.
• We need to configure system

before run tests.
• Tests run intermittently.
• Tests run slowly.

Speed

Testing Speed is important because:
• If the tests were not fast then they would

be a distraction.
• If the tests were not fast then it would not

run with high frequency
• Benefit of the TDD ?

“Unit tests run fast. If they don’t run fast, they aren’t unit tests.”

5. TDD Patterns

TDD Patterns

Red Bar patterns:
• Begin with a simple test.
• If you have a new idea

• add it to the test list
• stay on what you're doing.

• Add a test for any faults found.
• If you can not go on throw it all away and

change it.

TDD Patterns

Testing patterns:
• If the test takes too long to work then

divide it into simpler parts.
• If tests need some complex objects then

use mock objects.
• Store execution log of tests
• If you work alone leave the last test of the

day broken
• If you work in a team leave ever tests

running.

TDD Patterns

Green Bar patterns:
• Writing the easier code to pass the test.
• Write the simpler implementation to pass

current test
• If an operation has to work on collections

• write the first implementation on a single
object

• then generalizes.

Test Readability

• Test names describe features

public class TargetObjectTest
{
 @Test public void test1() { [...]
 @Test public void test2() { [...]
 @Test public void test3() { [...]
}

public class TargetObjectTest
{
 @Test public boolean isReady() { [...]
 @Test public void choose() { [...]
 @Test public void choose1() { [...]
}

public class TargetObjectTest
{
 @Test public boolean isReady() { [...]
 @Test public void choose(Picker picker) { [...]

}

6. Focused Integration Testing
and eEnd2End Testing

Three types of unit tests

Focused integration testing

A focused integration test is focused on
testing:

• communication with the database
• network communication
• communication with the filesystem
• communication with external objects

Focused integration testing (2)

• If you need a lot of integration tests then there's
something wrong.

• Ex. If all the business objects speak

directly with the database then the code have

not a good design!

• The code that talks too much with the outside
world is neither very cohesive nor well coupled.

End-to-end Testing

Used to test the whole system:

Test of whole stories using the system, the GUI
user to the database ...

Cons:
• Difficult to accomplish.
• Difficult to set.
• Difficult to detect errors.
• Very slow.
• Not automated.

Execution speed of tests

• Unit tests
• one hundred per second.

• Focused integration tests
• ten per second.

• End-to-end tests
• several seconds for each test.

7. TDD and Legacy Code

Legacy Code

Problems:
• Lack of documentation
• Difficult to understand in depth
• It is not designed thinking of

"testability"

“Legacy code is code without tests”

Legacy Code (2)

Steps to address the legacy code:
• Start typing tests to see if the legacy code

(a part of) was well understood.
• Fit the test until it works well.

• What code has been tested ?
• What areas need testing ?
• What are the risks of the code ?

8. Conclusions

Social Implications

• TDD handles “the fears” during software
development

• Fears has a lot of negative aspects:
• makes it uncertain
• removes the desire to communicate
• makes it wary of the feedback
• makes nervous

Social Implications (2)

• TDD handles the "fears" during development:

• New (small) release only if the code has
exceeded 100% of the test set.

• The design goes hand in hand with development.
• TDD allows programmers to perfectly know the

code.

TDD Benefits

• It keeps the code simple
• Rapid development
• The tests are both design and documentation
• Easy to understand code
• Bugs found early in development
• Less debugging
• Low cost of change

TDD Limits

• High learning curve
• Managers are reluctant to apply
• Requires great discipline
• Difficult to implement the GUI
• Difficult to apply to Legacy Code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Cos’è? (2)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Esempio (2)
	Slide 20
	TDD Mantra
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	I princìpi
	Slide 33
	Bad smells …
	La velocità
	Slide 36
	TDD Patterns
	TDD Patterns
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Focused integration testing
	Focused integration testing (2)
	End-to-end Testing
	La velocità di esecuzione dei test
	Slide 47
	Legacy Code
	Legacy Code (2)
	Slide 50
	Implicazioni sociali
	Implicazioni sociali (2)
	Benefici del TDD
	Limiti del TDD

