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Development process

► Let's think about the development process of this 
example:

Code Test RefactoringTest ??

► Q: Does make sense to write tests before writing production 
code?

► A: Two Keywords

○ TDD: Test Driven Development

○ Test-first Programming
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Outline

►What is TDD?

► TDD and eXtreme Programming

► TDD Mantra

► TDD Principles and Practices
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1. Motivations
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Software Development as a 
Learning Process

One must learn by doing the thing; for though you 
think you know it, you have no certainty until you 
try

Sofocle
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Software Development as a 
Learning Process

► Almost all projects attempts something new

► Something refers to
○ People involved
○ Technology involved
○ Application Domain
○… (most likely) a combination of these
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Software Development as a 
Learning Process

► Every one involved has to learn as the projects 
progresses
○ Resolve misunderstanding along the way

► There will be changes!!

► Anticipate Changes
○How ?
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Feedback is a fundamental tool

► Team needs cycle of activities
○ Add new feature
○Gets feedback about what already done!

► Time Boxes

► Incremental and Iterative Development
○ Incremental : Dev. feature by feature
○ Iterative: improvement of features in response to 

feedback
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Practices that support changes

► Constant testing to catch regression errors
○ Add new feature without fear
○ Frequent manual testing infeasible

► Keep the code as simple as possible
○More time spent reading code that writing it

► Simplicity takes effort, so Refactor
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2. Test Driven Development
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What is TDD ?

► TDD: Test Driven Development
○ Test Driven Design

○ Test-first Programming

○ Test Driven Programming

► Iterative and incremental software development

► TDD objective is to DESIGN CODE and not to 
VALIDATE Code
○Design to fail principle
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Test Driven Development

► We write tests before we write the code

► Testing as a way to clarify ideas about what we want 
the code has to do

► Testing as a Design Activity
○ Think about the feature

○Write a test for that feature (Fail)

○Write the code to pass the test

○ Run same previous test (Success)

○ Refactor the code
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TDD and XP

► TDD vs XP

○ TDD is an agile practice

○ XP is an agile methodology

► Core of XP

○No needs of others XP practices

► Avoid software regression

○ Anticipate changes

► Product code smarter that works better

► Reduce the presence of bugs and errors

○ “You have nothing to lose but your bugs”
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3. TDD and Unit Testing
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Unit test

► “ Unit tests run fast. If they don't run fast they're not unit 
tests. ”

► A test is not a unit test if:
○ communicate with DB

○ communicate with networking services

○ cannot be executed in parallel with other unit tests

► Unit tests overcome dependencies
○How?

○Why is it so important?
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Unit Test and TDD

► Testing code is released together with production 
code

► A feature is released only if 
○Has at least a Unit test

○ All of its unit tests pass

► Do changes without fear
○ Refactoring

► Reduce debugging
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4. TDD Mantra
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TDD Mantra

Think

Think about what we want the code to do

Think : step by step
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TDD Mantra

Think “Set up a Walking Skeleton”

Think : step by step
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TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

FAIL: testFoo (__main__.FooTests)
------------------------------------
Traceback (most recent call last):
  self.failUnless(False)
AssertionError
------------------------------------
1 test in 0.003s

FAILED (failures=1)
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TDD Mantra

Think

Think : step by step

“We want to create objects that can say whether 
two given dates "match".
These objects will act as a "pattern" for dates. ”

►So, Pattern....What is the pattern did you think about?

○Design Pattern such as Template Method
►Implementation Pattern such as Regular Expressions

►Anyway, It doesn't matter now!
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TDD Mantra

Think Feature 1: Date Matching

Think : step by step
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TDD Mantra

Think

Red Bar : Writing tests that fails

Think about the behavior of the class and its public interface

Red bar

What will you expect that happens?
Why?
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TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR: testMatches
-----------------------------------
Traceback (most recent call last):
  line 8, in testMatches
    p = DatePattern(2004, 9, 28)
NameError: global name 'DatePattern' 
is not defined
-----------------------------------
Ran 1 test in 0.000s

FAILED (errors=1)
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TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

Write production code ONLY to pass previous failing test
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TDD Mantra

Think

Green Bar : Writing production code

Red bar

==========================
--------------------------
Ran 1 test in 0.000s

OK

Green Bar

Failed Test
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TDD Mantra

Think Feature 1: Date Matching

Think : step by step

Now that first test 
passes,
It's time to move to 
the second test!

Any Guess?
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TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR: testMatches
-----------------------------------
Traceback (most recent call last):
  line 15, in testMatchesFalse
    self.failIf(p.matches(d))
AssertionError

------------------------------------
Ran 2 tests in 0.001s

FAILED (failures=1)    
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TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test
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TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

==========================
--------------------------
Ran 2 test in 0.000s

OK
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TDD Mantra

Think Feature 1: Date Matching 
as a WildCard

Think : step by step

What happens if I pass 
a zero as for the year 
parameter?
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TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR testMatchesYearAsWildCard
---------------------------------------------
 [..]
ValueError: year is out of range
---------------------------------------------
Ran 3 tests in 0.000s
FAILED (errors=1)
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TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test
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TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

==========================
--------------------------
Ran 3 test in 0.000s

OK
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TDD Mantra

Think Feature 1: Date Matching 
as a WildCard

Think : step by step

What happens if I pass 
a zero as for the month 
parameter?
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TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR testMatchesYearAsWildCard
---------------------------------------------
 [..]
ValueError: month is out of range
---------------------------------------------
Ran 4 tests in 0.000s
FAILED (errors=1)
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TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test
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TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

==========================
--------------------------
Ran 4 test in 0.000s

OK
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TDD Mantra
Refactoring: Simply and refactor production code

Think Red bar Green Bar

Failed Test

Refactoring
OK
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TDD Mantra
Refactoring: Simply and refactor production code

Think Red bar Green Bar

Failed Test

Refactoring
OK

==========================
--------------------------
Ran 4 test in 0.000s

OK
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TDD Mantra

Think

Refactoring

Red bar Green Bar

Failed Test

==========================
--------------------------
Ran 4 test in 0.000s

OK

Refactoring
OK
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TDD Mantra

Think

Principles

Red bar Green Bar

Failed Test

Refactoring
OK

►Code once, test twice

►Clean code that works

►KISS: Keep It Short & Simple

►YAGNI: You Ain’t Gonna Need It

►DRY: Don't repeat yourself
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5. TDD Patterns
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TDD Patterns

Red Bar patterns:

► Begin with a simple test.

► If you have a new idea
○ add it to the test list

○ stay on what you're doing.

► Add a test for any faults found.

► If you can not go on throw it all away and 
change it.
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Green Bar patterns:
► Writing the easier code to pass the test.

► Write the simpler implementation to pass 
current test

► If an operation has to work on collections
○write the first implementation on a single object 
○ then generalizes.

TDD Patterns
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Tests for Documentation 

► Test names describe features

public class TargetObjectTest
{
    @Test public void test1() { [...]
    @Test public void test2() { [...]
    @Test public void test3() { [...]
}

public class TargetObjectTest
{
    @Test public boolean isReady() { [...]
    @Test public void choose(Picker picker) { [...]

}
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8. Conclusions
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Social Implications

► TDD handles “the fears” during software 
development
○ Allows programmers to perfectly know the code

○New feature only if there are 100% of passed tests

► Fears has a lot of negative aspects:
○makes it uncertain

○ removes the desire to communicate

○makes it wary of the feedback

○makes nervous
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TDD Benefits

► It keeps the code simple
○ Rapid development

► The tests are both design and documentation
○ Easy to understand code

► Bugs found early in development
○ Less debugging

► Low cost of change
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TDD Limits

► High learning curve
► Managers are reluctant to apply
► Requires great discipline
► Difficult to implement the GUI
► Difficult to apply to Legacy Code
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