
Test Driven Development

Course of Software Engineering II
A.A. 2010/2011

Valerio Maggio, PhD Student
Prof. Sergio Di Martino

2
Development process

► Let's think about the development process of this
example:

Code Test RefactoringTest ??

► Q: Does make sense to write tests before writing production
code?

► A: Two Keywords

○ TDD: Test Driven Development

○ Test-first Programming

3
Outline

►What is TDD?

► TDD and eXtreme Programming

► TDD Mantra

► TDD Principles and Practices

4

1. Motivations

5

Software Development as a
Learning Process

One must learn by doing the thing; for though you
think you know it, you have no certainty until you
try

Sofocle

6

Software Development as a
Learning Process

► Almost all projects attempts something new

► Something refers to
○ People involved
○ Technology involved
○ Application Domain
○… (most likely) a combination of these

7

Software Development as a
Learning Process

► Every one involved has to learn as the projects
progresses
○ Resolve misunderstanding along the way

► There will be changes!!

► Anticipate Changes
○How ?

8
Feedback is a fundamental tool

► Team needs cycle of activities
○ Add new feature
○Gets feedback about what already done!

► Time Boxes

► Incremental and Iterative Development
○ Incremental : Dev. feature by feature
○ Iterative: improvement of features in response to

feedback

9
Practices that support changes

► Constant testing to catch regression errors
○ Add new feature without fear
○ Frequent manual testing infeasible

► Keep the code as simple as possible
○More time spent reading code that writing it

► Simplicity takes effort, so Refactor

10

2. Test Driven Development

11
What is TDD ?

► TDD: Test Driven Development
○ Test Driven Design

○ Test-first Programming

○ Test Driven Programming

► Iterative and incremental software development

► TDD objective is to DESIGN CODE and not to
VALIDATE Code
○Design to fail principle

12
Test Driven Development

► We write tests before we write the code

► Testing as a way to clarify ideas about what we want
the code has to do

► Testing as a Design Activity
○ Think about the feature

○Write a test for that feature (Fail)

○Write the code to pass the test

○ Run same previous test (Success)

○ Refactor the code

13
TDD and XP

► TDD vs XP

○ TDD is an agile practice

○ XP is an agile methodology

► Core of XP

○No needs of others XP practices

► Avoid software regression

○ Anticipate changes

► Product code smarter that works better

► Reduce the presence of bugs and errors

○ “You have nothing to lose but your bugs”

14

3. TDD and Unit Testing

15
Unit test

► “ Unit tests run fast. If they don't run fast they're not unit
tests. ”

► A test is not a unit test if:
○ communicate with DB

○ communicate with networking services

○ cannot be executed in parallel with other unit tests

► Unit tests overcome dependencies
○How?

○Why is it so important?

16
Unit Test and TDD

► Testing code is released together with production
code

► A feature is released only if
○Has at least a Unit test

○ All of its unit tests pass

► Do changes without fear
○ Refactoring

► Reduce debugging

17

4. TDD Mantra

18

TDD Mantra

Think

Think about what we want the code to do

Think : step by step

19

TDD Mantra

Think “Set up a Walking Skeleton”

Think : step by step

20

TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

FAIL: testFoo (__main__.FooTests)

Traceback (most recent call last):
 self.failUnless(False)
AssertionError

1 test in 0.003s

FAILED (failures=1)

21

TDD Mantra

Think

Think : step by step

“We want to create objects that can say whether
two given dates "match".
These objects will act as a "pattern" for dates. ”

►So, Pattern....What is the pattern did you think about?

○Design Pattern such as Template Method
►Implementation Pattern such as Regular Expressions

►Anyway, It doesn't matter now!

22

TDD Mantra

Think Feature 1: Date Matching

Think : step by step

23

TDD Mantra

Think

Red Bar : Writing tests that fails

Think about the behavior of the class and its public interface

Red bar

What will you expect that happens?
Why?

24

TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR: testMatches

Traceback (most recent call last):
 line 8, in testMatches
 p = DatePattern(2004, 9, 28)
NameError: global name 'DatePattern'
is not defined

Ran 1 test in 0.000s

FAILED (errors=1)

25

TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

Write production code ONLY to pass previous failing test

26

TDD Mantra

Think

Green Bar : Writing production code

Red bar

==========================

Ran 1 test in 0.000s

OK

Green Bar

Failed Test

27

TDD Mantra

Think Feature 1: Date Matching

Think : step by step

Now that first test
passes,
It's time to move to
the second test!

Any Guess?

28

TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR: testMatches

Traceback (most recent call last):
 line 15, in testMatchesFalse
 self.failIf(p.matches(d))
AssertionError

Ran 2 tests in 0.001s

FAILED (failures=1)

29

TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

30

TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

==========================

Ran 2 test in 0.000s

OK

31

TDD Mantra

Think Feature 1: Date Matching
as a WildCard

Think : step by step

What happens if I pass
a zero as for the year
parameter?

32

TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR testMatchesYearAsWildCard

 [..]
ValueError: year is out of range

Ran 3 tests in 0.000s
FAILED (errors=1)

33

TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

34

TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

==========================

Ran 3 test in 0.000s

OK

35

TDD Mantra

Think Feature 1: Date Matching
as a WildCard

Think : step by step

What happens if I pass
a zero as for the month
parameter?

36

TDD Mantra

Think

Red Bar : Writing tests that fails

Red bar

===================================
ERROR testMatchesYearAsWildCard

 [..]
ValueError: month is out of range

Ran 4 tests in 0.000s
FAILED (errors=1)

37

TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

38

TDD Mantra

Think

Green Bar : Writing production code

Red bar Green Bar

Failed Test

==========================

Ran 4 test in 0.000s

OK

39

TDD Mantra
Refactoring: Simply and refactor production code

Think Red bar Green Bar

Failed Test

Refactoring
OK

40

TDD Mantra
Refactoring: Simply and refactor production code

Think Red bar Green Bar

Failed Test

Refactoring
OK

==========================

Ran 4 test in 0.000s

OK

41

TDD Mantra

Think

Refactoring

Red bar Green Bar

Failed Test

==========================

Ran 4 test in 0.000s

OK

Refactoring
OK

42

TDD Mantra

Think

Principles

Red bar Green Bar

Failed Test

Refactoring
OK

►Code once, test twice

►Clean code that works

►KISS: Keep It Short & Simple

►YAGNI: You Ain’t Gonna Need It

►DRY: Don't repeat yourself

43

5. TDD Patterns

44
TDD Patterns

Red Bar patterns:

► Begin with a simple test.

► If you have a new idea
○ add it to the test list

○ stay on what you're doing.

► Add a test for any faults found.

► If you can not go on throw it all away and
change it.

45

Green Bar patterns:
► Writing the easier code to pass the test.

► Write the simpler implementation to pass
current test

► If an operation has to work on collections
○write the first implementation on a single object
○ then generalizes.

TDD Patterns

46
Tests for Documentation

► Test names describe features

public class TargetObjectTest
{
 @Test public void test1() { [...]
 @Test public void test2() { [...]
 @Test public void test3() { [...]
}

public class TargetObjectTest
{
 @Test public boolean isReady() { [...]
 @Test public void choose(Picker picker) { [...]

}

47

8. Conclusions

48
Social Implications

► TDD handles “the fears” during software
development
○ Allows programmers to perfectly know the code

○New feature only if there are 100% of passed tests

► Fears has a lot of negative aspects:
○makes it uncertain

○ removes the desire to communicate

○makes it wary of the feedback

○makes nervous

49
TDD Benefits

► It keeps the code simple
○ Rapid development

► The tests are both design and documentation
○ Easy to understand code

► Bugs found early in development
○ Less debugging

► Low cost of change

50
TDD Limits

► High learning curve
► Managers are reluctant to apply
► Requires great discipline
► Difficult to implement the GUI
► Difficult to apply to Legacy Code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide_15
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	TDD Mantra
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	TDD Patterns
	Slide 45
	Slide 46
	Slide 47
	Implicazioni sociali
	Benefici del TDD
	Limiti del TDD

