
Unit Testing and
Scaffolding

Course of Software Engineering II
A.A. 2010/2011

Valerio Maggio, PhD Student
Prof. Sergio Di Martino

2
Testing Preliminaries

► You're a programmer
○ a coder, a developer, or maybe a hacker!

► As such, it's almost impossible that you haven't
had to sit down with a program that you

were sure was ready for use
○ or worse yet, a program you knew was not ready

► So, you put together a bunch of test to prove the
correctness of your code
○ Let's think about what correctness means

3
Testing Preliminaries

► Correctness in Testing ?
○Which is the point of view ?

► Different points of view means different types
of tests (testing)

► Automated tools support

4
Outline

► Testing Taxonomy

○ Brief Introduction

►Unit testing with JUnit 4.x

○ Main differences with JUnit 3.x

○ Backward compatibilities

○ JUnit Examples in practice

► Test Scaffolding and Mocking

5

1. Types of testing

6
Example Scenario

► (… not properly related to Computer Science :)

► Please, imagine that you have to test a building

○ Test if it has been constructed properly

○ Test if it is able to resist to earthquake

○ ….

►What types of “testing” will you do?

○ Make an educated guess

7
Five Types of Testing

8
Unit Testing

► Testing of the smallest pieces of a program
○ Individual functions or methods

► Keyword: Unit
○ (def) Something is a unit if it there's no

meaningful way to divide it up further

► Buzz Word:
○ Testing in isolation

9
Unit Testing (cont.)

► Unit test are used to test a single unit in
isolation
○ Verifying that it works as expected
○No matter the rest of the program would do

► Possible advantages ?
○ (Possibly) No inheritance of bugs of mistakes from

made elsewhere
○Narrow down on the actual problem

10
Unit Testing (cont.)

► Is it enough ?
○No, by itself, but...

► … it is the foundation upon which everything is
based!

► (Back to the example)
○ You can't build a house without solid materials.
○ You can't build a program without units that works

as expected.

11
Integration Testing

► Aim: Push further back boundaries of isolation
► Tests encompass interactions between related

units

► (Important)

Every test should still run in isolation
○ To avoid inheriting problems from outside

► Tests check whether the tested unit behave
correctly as a group

12
Functional Testing

► a.k.a. System Testing
► Extends boundaries of isolation even further

○ To the point they don't even exist.

► Testing application Use Cases

► System tests are very useful, but not so useful
without Unit and Integration tests
○ You have to be sure of the pieces before you can be

sure of the whole.

13
Stress and Acceptance Testing

► Stress/Load Testing
○ Test of loadings and performances

● (Non functional requirements)

○ Test if the building is able to resist to the earthquake

► Acceptance Testing
○ Last but not least....
○… does the customer get what he or she expected?

14

Before going on...
►Let's take a look at this code, please

15

2. JUnit Testing Framework

16
► Design that is compliant with xUnit

framework guidelines

Junit 3.x Design

17
JUnit Assertions

► assertNotNull
○ Test passes if Object is not null.

► assertNull
○ Test passes if Object is null.

► assertEquals
○ Asserts equality of two values

► assertTrue
○ Test passes if condition is True

► assertFalse
○ Test passes if condition is False

► assertSame
○ Test passes if the two Objects are not the same Object

18
JUnit 4.x Design

► Main features inspired from other Java Unit
Testing Frameworks
○ TestNG

► Test Method Annotations
○ Requires Java5+ instead of Java 1.2+

► Main Method Annotations
○ @Before, @After
○ @Test, @Ignore
○ @SuiteClasses, @RunWith

19
Java5 Annotations at glance

► Meta Data Tagging
○ java.lang.annotation
○ java.lang.annotation.ElementType

●FIELD
●METHOD
●CLASS
●…

► Target
○ Specify to which ElementType is applied

► Retention
○ Specify how long annotation should be available

20

JUnit Test Annotation

21

Testing
exception handling

►Test anything that could possibly fail

22

New way of Testing
exception handling

►Test anything that could possibly fail

23

JUnit 4.x backward compatibility
► JUnit provides a façade class which

operates with any of the test runners.

○ org.junit.runner.JUnitCore

24
JUnit Matchers: Hamcrest

► Junit 4.4+ introduces matchers
○ Imported from Hamcrest project

○ http://code.google.com/p/hamcrest/

► Matchers improve testing code refactoring
○Writing more and more tests assertion became hard

to read

○ Remember:
●Documentation purposes

► Let's do an example …

http://code.google.com/p/hamcrest/

25

Matchers Example

26
JUnit 4.x Extensions

27

Programming today is a race between software
engineers striving to build bigger and better idiot-
proof programs,
and the Universe trying to produce bigger and
better idiots. So far, the Universe is winning.
Cit. Rich Cook

3. Testing Scaffolding

28public class TestDB extends TestCase {

private Connection dbConn;

protected void setUp() {

dbConn = new Connection("oracle", 1521, "fred", "foobar");

dbConn.connect();

}

protected void tearDown() {

dbConn.disconnect();

dbConn = null;

}

public void testAccountAccess() {

// Uses dbConn

xxx xxx xxxxxx xxx xxxxxxxxx;

}

}

Integration Testing Example

29
Integration testing problem

► Integrate multiple components implies to
decide in which order classes and subsystems
should be integrated and tested

► CITO Problem
○ Class Integration Testing Order Problem

► Solution:
○ Topological sort of dependency graph

30
Integration testing example

31
Testing in isolation

► Testing in isolation offers strong benefits
○ Test code that have not been written
○ Test only a single method (behavior) without side

effects from other objects

► Focused Integration Testing (!!)

► Solutions ?
○ Stubs
○Mocks
○…

32
Testing in Isolation: example

33

Solution with stubs

34

Solution with Mocks

35
Key Ideas

(Ignoring the specifics of codes)

► Mocks do not provide our own implementation of the
components we'd like to swap in

► Main Difference:
○Mocks test behavior and interactions between components

○ Stubs replace heavyweight process that are not relevant to
a particular test with simple implementations

36

Naming Problems and
Buzz Worlds

► Unfortunately, while two components are quite
distinct, they're used interchangeably.
○ Example: spring-mock package

► If we want to be stricter in terms of
naming, stub objects defined previously
are
○ test doubles

► Test Doubles, Stubs, Mocks, Fake
Objects… how can we work it out ?

37

Test Double Pattern
(a.k.a. Imposter)

►Q: How can we verify logic independently when
code it depends on is unusable?

○ Q1: How we can avoid slow tests ?

►A: We replace a component on which the SUT
depends with a “test-specific equivalent.”

38

Test Stub Pattern

►Q: How can we verify logic independently when it
depends on indirect inputs from other software
components ?

►A: We replace a real objects with a test-specific
object that feeds the desired inputs into the SUT

39

Mocks Objects

►Q: How can we implement Behavior Verification for
indirect outputs of the SUT ?

►A: We replace an object on which the SUT depends
on with a test-specific object that verifies it is
being used correctly by the SUT.

40
Mock Objects Observations

► Powerful way to implement Behavior
Verification
○while avoiding Test Code Duplication between

similar tests.

► It works by delegating the job of verifying the
indirect outputs of the SUT entirely to a Test
Double.

► Important Note: Design for Mockability
○Dependency Injection Pattern

41
Design for Mockability

► Dependency Injection

42
Design for Mockability

► Q: How much are the directions in which we
could slice functionalities of the system
under test?

► A:
○Vertical Slicing
○Horizontal Slicing

►

43
Mock Libraries

► Two main design philosphy:
○DSL Libraries

○ Record/Replay Models Libraries

► Record Replay Frameworks
○ First train mocks and then verify expectations

► DSL Frameworks
○Domain Specific Languages

○ Specifications embedded in “Java” Code

44

Mocking with EasyMock

45
EasyMock Test

► Create Mock objects
○ Java Reflections API

► Record Expectation
○ expect methods

► Invoke Primary Test
○ replay method

► Verify Expectation
○ verify method

46

JMock Example

47
JMock features

► JMock syntax relies heavily on chained
method calls
○ Sometimes difficult to decipher and debbuger

► Common Pattern:
invocation-count (mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

JMock Working Example

49
JMock features (intro)

► JMock previsous versions required subclassing
○Not so smart in testing

○Now directly integrated with Junit4

○ JMock tests requires more typing

► JMock API is extensible

50

JMock Example

51

1. Test Fixture

►Mockery represents the context

○ Neighboring objects it will communicate with

○ By convention the mockery is stored in an istance
variable named context

►@RunWith(JMock.class) annotation

►JUnit4Mockery reports expectation failures as
JUnit4 test failures

52

2. Create Mock Objects

►The tests has two mock turtles

○ The first is a field in the test class

○ The second is local to the test

►References (fields and Vars) have to be final
○ Accessible from Anonymous Expectations

►The second mock has a specified name

○ JMock enforces usage of names except for the first (default)

○ This makes failures reporting more clear

53

3. Tests with Expectations

►A test sets up it expectations in one or more
expectation blocks

○ An expectation block can contain any number of
expectations

○ Expectation blocks can be interleaved with calls to
the code under test.

54

3. Tests with Expectations

►Expectations have the following structure:

invocation-count
(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

55
What's with the double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});

► Anonymous subclass of Expectations
► Baroque structure to provide a scope for building

up expectations
○ Collection of expectation components
○ Is an example of Builder Pattern
○ Improves code completion

56
What's with the double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});

57

context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45);

}});

► Expectations describe the interactions that are essential to the
protocol we're testing

► Allowances support the interaction we're testing

○ ignoring() clause says that we don't care about messages
sent to turtle2

○ allowing() clause matches any call to flashLEDs of
turtle

Allowances and Expectations

58

context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45);

}});

► Distintion between allowances and expectations is not rigid

► Rule of Thumb:

○Allow queries; Expect Commands

► Why?

○ Commands could have side effects;

○Queries don't change the world.

Allowances and Expectations

59

Dependency injection issues?
►Too Many Dependencies

○ Ideas??

60

Dependency injection issues?

►Dependency injection for mockability

61

Expectations or … ?
►Too Many Expectations

○ Ideas??

62
►Too Many Expectations

○ Ideas??

Expectations or … ?

63
►Too Many Expectations

○ Ideas??

Expectations or … ?

64
Development process

► Let's think about the development process of this
example:

Code Test RefactoringTest ??

► Q: Does make sense to write tests before writing production
code?

► A: Two Keywords

○ TDD: Test Driven Development

○ Test-first Programming

65
Mocks and Stubs Pitfall

► False sense of security

► Maintenance Overhead
○ Keep mocks up2date with test and producton code

○ Example:
●UserManager won't send mail no more

○Maintenance headaches in making test code to run

66
References

► Professional Java JDK 5 Edition
○ Richardson et. al., Wrox Publications 2006

► xUnit Test Patterns
○ G. Meszaros, Addison Wesley 2006

► Next Generation Java Testing
○ Beust, Suleiman, Addison Wesley 2007

► JUnit in Action, 2nd Ed.
○Massol et al. , Manning Pubs 2009

► Python Testing
○ Arbuckle Daniel, Packt Publising 2010

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

