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Testing Preliminaries

► You're a programmer
○ a coder, a developer, or maybe a hacker!

► As such, it's almost impossible that you haven't 
had to sit down with a program that you

were sure was ready for use
○ or worse yet, a program you knew was not ready

► So, you put together a bunch of test to prove the 
correctness of your code
○ Let's think about what correctness means
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Testing Preliminaries

► Correctness in Testing ?
○Which is the point of view ?

► Different points of view means different types 
of tests (testing)

► Automated tools support
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Outline

► Testing Taxonomy

○ Brief Introduction

►Unit testing with JUnit 4.x

○ Main differences with JUnit  3.x

○ Backward compatibilities

○ JUnit Examples in practice

► Test Scaffolding and Mocking
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1. Types of testing
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Example Scenario

► (… not properly related to Computer Science :)

► Please, imagine that you have to test a building

○ Test  if it has been constructed properly

○ Test if it is able to resist to earthquake

○ ….

►What types of “testing” will you do?

○ Make an educated guess
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Five Types of Testing
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Unit Testing

► Testing of the smallest pieces of a program
○ Individual functions or methods

► Keyword: Unit
○ (def) Something is a unit if it there's no 

meaningful way to divide it up further

► Buzz Word:
○ Testing in isolation
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Unit Testing (cont.)

► Unit test are used to test a single unit in 
isolation
○ Verifying that it works as expected
○No matter the rest of the program would do

► Possible advantages ?
○ (Possibly) No inheritance of bugs of mistakes from 

made elsewhere
○Narrow down on the actual problem
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Unit Testing (cont.)

► Is it enough ?
○No, by itself, but...

► … it is the foundation upon which everything is 
based!

► (Back to the example)
○ You can't build a house without solid materials.
○ You can't build a program without units that works 

as expected.
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Integration Testing

► Aim: Push further back boundaries of isolation
► Tests encompass interactions between related 

units

► (Important) 

Every test should still run in isolation
○ To avoid inheriting problems from outside

► Tests check whether the tested unit behave 
correctly as a group
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Functional Testing

► a.k.a. System Testing
► Extends boundaries of isolation even further

○ To the point they don't even exist.

► Testing application Use Cases

► System tests are very useful, but not so useful 
without Unit and Integration tests
○ You have to be sure of the pieces before you can be 

sure of the whole.
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Stress and Acceptance Testing

► Stress/Load Testing
○ Test of loadings and performances 

● (Non functional requirements)

○ Test if the building is able to resist to the earthquake

► Acceptance Testing
○ Last but not least....
○… does the customer get what he or she expected?
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Before going on...
►Let's take a look at this code, please
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2. JUnit Testing Framework
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► Design that is compliant with xUnit 

framework guidelines

Junit 3.x Design
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JUnit  Assertions

► assertNotNull
○ Test passes if Object is not null. 

► assertNull
○ Test passes if Object is null. 

► assertEquals
○ Asserts equality of two values 

► assertTrue
○ Test passes if condition is True

► assertFalse
○ Test passes if condition is False

► assertSame
○ Test passes if the two Objects are not the same Object
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JUnit 4.x Design

► Main features inspired from other Java Unit 
Testing Frameworks
○ TestNG

► Test Method Annotations
○ Requires Java5+ instead of Java 1.2+

► Main Method Annotations
○ @Before, @After
○ @Test, @Ignore
○ @SuiteClasses, @RunWith
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Java5 Annotations at glance

► Meta Data Tagging
○ java.lang.annotation
○ java.lang.annotation.ElementType

●FIELD
●METHOD
●CLASS
●…

► Target
○ Specify to which ElementType is applied

► Retention
○ Specify how long annotation should be available
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JUnit Test Annotation
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Testing 
exception handling

►Test anything that could possibly fail
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New way of Testing 
exception handling

►Test anything that could possibly fail
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JUnit 4.x backward compatibility
► JUnit provides a façade class which 

operates with any of the test runners.

○ org.junit.runner.JUnitCore
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JUnit Matchers: Hamcrest

► Junit 4.4+ introduces matchers
○ Imported from Hamcrest project

○ http://code.google.com/p/hamcrest/

► Matchers improve testing code refactoring
○Writing more and more tests assertion became hard 

to read

○ Remember:
●Documentation purposes

► Let's do an example … 

http://code.google.com/p/hamcrest/
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Matchers Example
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JUnit 4.x Extensions
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Programming today is a race between software 
engineers striving to build bigger and better idiot-
proof programs, 
and the Universe trying to produce bigger and 
better idiots. So far, the Universe is winning.
Cit. Rich Cook

3. Testing Scaffolding



28public class TestDB extends TestCase  {

private Connection dbConn;

protected void setUp() {

dbConn = new Connection("oracle", 1521, "fred", "foobar");

dbConn.connect(); 

}

protected void tearDown() {

dbConn.disconnect();

dbConn = null;

}

public void testAccountAccess()  { 

// Uses dbConn

xxx xxx xxxxxx xxx xxxxxxxxx;

}

}

Integration Testing Example
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Integration testing problem

► Integrate multiple components implies to 
decide in which order classes and subsystems 
should be integrated and tested

► CITO Problem
○ Class Integration Testing Order Problem

► Solution:
○ Topological sort of dependency graph
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Integration testing example
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Testing in isolation

► Testing in isolation offers strong benefits
○ Test code that have not been written
○ Test only a single method (behavior) without side 

effects from other objects

► Focused Integration Testing (!!)

► Solutions ?
○ Stubs
○Mocks
○…
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Testing in Isolation: example
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Solution with stubs
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Solution with Mocks



35
Key Ideas

(Ignoring the specifics of codes)

► Mocks do not provide our own implementation of the 
components we'd like to swap in

► Main Difference:
○Mocks test behavior and interactions between components

○ Stubs replace heavyweight process that are not relevant to 
a particular test with simple implementations
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Naming Problems and 
Buzz Worlds

► Unfortunately, while two components are quite 
distinct, they're used interchangeably.
○ Example: spring-mock package

► If we want to be stricter in terms of 
naming, stub objects defined previously 
are 
○ test doubles

► Test Doubles, Stubs, Mocks, Fake 
Objects… how can we work it out ?
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Test Double Pattern 
(a.k.a. Imposter)

►Q: How can we verify logic independently when 
code it depends on is unusable?

○ Q1: How we can avoid slow tests ?

►A: We replace a component on which the SUT 
depends with a “test-specific equivalent.”
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Test Stub Pattern 

►Q: How can we verify logic independently when it 
depends on indirect inputs from other software 
components ?

►A: We replace a real objects with a test-specific 
object that feeds the desired inputs into the SUT
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Mocks Objects

►Q: How can we implement Behavior Verification for 
indirect outputs of the SUT ?

►A: We replace an object on which the SUT depends 
on with a test-specific object that verifies it is 
being used correctly by the SUT.



40
Mock Objects Observations

► Powerful way to implement Behavior 
Verification 
○while avoiding Test Code Duplication between 

similar tests. 

► It works by delegating the job of verifying the 
indirect outputs of the SUT entirely to a Test 
Double.

► Important Note: Design for Mockability
○Dependency Injection Pattern
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Design for Mockability

► Dependency Injection
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Design for Mockability

► Q: How much are the directions in which we 
could slice functionalities of the system 
under test?

► A: 
○Vertical Slicing
○Horizontal Slicing

►



43
Mock Libraries

► Two main design philosphy:
○DSL Libraries

○ Record/Replay Models Libraries

► Record Replay Frameworks
○ First train mocks and then verify expectations

► DSL Frameworks
○Domain Specific Languages

○ Specifications embedded in “Java” Code
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Mocking with EasyMock
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EasyMock Test

► Create Mock objects
○ Java Reflections API

► Record Expectation
○ expect methods

► Invoke Primary Test
○ replay method

► Verify Expectation
○ verify method
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JMock Example
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JMock features

► JMock syntax relies heavily on chained 
method calls
○ Sometimes difficult to decipher and debbuger

► Common Pattern:
invocation-count (mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));



JMock Working Example
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JMock features (intro)

► JMock previsous versions required subclassing
○Not so smart in testing

○Now directly integrated with Junit4

○ JMock tests requires more typing

► JMock API is extensible



50

JMock Example
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1. Test Fixture

►Mockery represents the context

○ Neighboring objects it will communicate with

○ By convention the mockery is stored in an istance 
variable named context

►@RunWith(JMock.class) annotation

►JUnit4Mockery reports expectation failures as 
JUnit4 test failures
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2. Create Mock Objects

►The tests has two mock turtles

○ The first is a field in the test class

○ The second is local to the test

►References (fields and Vars) have to be final
○ Accessible from Anonymous Expectations

►The second mock has a specified name

○ JMock enforces usage of names except for the first (default)

○ This makes failures reporting more clear
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3. Tests with Expectations

►A test sets up it expectations in one or more 
expectation blocks

○ An expectation block can contain any number of 
expectations

○ Expectation blocks can be interleaved with calls to 
the code under test.
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3. Tests with Expectations

►Expectations have the following structure:

invocation-count 
(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));
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What's with the double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});

► Anonymous subclass of Expectations
► Baroque structure to provide a scope for building 

up expectations
○ Collection of expectation components
○  Is an example of Builder Pattern
○ Improves code completion
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What's with the double braces?

context.checking(new Expectations(){{
oneOf(turtle).turn(45);

}});
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context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45); 

}});

► Expectations describe the interactions that are essential to the 
protocol we're testing

► Allowances support the interaction we're testing

○ ignoring() clause says that we don't care about messages 
sent to turtle2

○ allowing() clause matches any call to flashLEDs of
turtle

Allowances and Expectations
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context.checking(new Expectations(){{
ignoring (turtle2);
allowing (turtle).flashLEDs();
oneOf(turtle).turn(45); 

}});

► Distintion between allowances and expectations is not rigid

► Rule of Thumb:

○Allow queries; Expect Commands

► Why?

○ Commands could have side effects;

○Queries don't change the world.

Allowances and Expectations



59

Dependency injection issues?
►Too Many Dependencies

○ Ideas??
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Dependency injection issues?

►Dependency injection for mockability
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Expectations or … ?
►Too Many Expectations

○ Ideas??
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►Too Many Expectations

○ Ideas??

Expectations or … ?
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►Too Many Expectations

○ Ideas??

Expectations or … ?
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Development process

► Let's think about the development process of this 
example:

Code Test RefactoringTest ??

► Q: Does make sense to write tests before writing production 
code?

► A: Two Keywords

○ TDD: Test Driven Development

○ Test-first Programming
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Mocks and Stubs Pitfall

► False sense of security

► Maintenance Overhead
○ Keep mocks up2date with test and producton code

○ Example: 
●UserManager won't send mail no more

○Maintenance headaches in making test code to run
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