
Sca!olding with JMock

Course of Software Engineering II
A.A. 2011/2012

Valerio Maggio, PhD Student
Prof. Marco Faella

Outline

‣ Brief Recap

-Unit Testing

-JUnit (case study)

‣ Test Sca!olding

-Stubs

-Mocks

‣JMock

-Working Example

2

Example Scenario

‣(… not properly related to Computer Science :)

‣Please, imagine that you have to test a building
•Test if it has been constructed properly

•Test if it is able to resist to earthquake

•….

‣ Q: What types of “testing” would you do?

‣ Q: What should be the “starting point”?
•Make an educated guess

3

Unit Testing

‣Testing of the smallest pieces of a program
•Individual functions or methods

‣Keyword: Unit
•(def) Something is a unit if it there's no meaningful

way to divide it up further

‣Buzz Word:
•Testing in isolation

4

Unit Testing (cont.)

‣Unit test are used to test a single unit in isolation
•Verifying that it works as expected

•No matter the rest of the program would do

‣Possible advantages ?
•(Possibly) No inheritance of bugs of mistakes from

made elsewhere

•Narrow down on the actual problem

5

Unit Testing (cont.)

‣Is it enough ?
•Not by itself, but...

•… it is the foundation upon which everything is
based!

‣(Back to the example)
•You can't build a house without solid materials.

•You can't build a program without units that works as
expected.

6

7
Testing RoadMap

Functional Software Testing

‣Examine code at the boundary of its
public API
•Testing application Use Cases

‣Developers often combine
Functional and Integration Testing

‣Testing
•Frameworks (API)

•GUIs

•Subsystems (API call enforced)

8

Integration Software Testing

‣What happens when di!erent units of works are
combined together ?

‣Examine the interactions among and writing
components:
•Objects

•Services

•Subsystems

9

Unit Software Testing

‣Examine the code of a single module in all of its
features

‣Starts from the inspection of a simple (small)
functionality

‣Writing more and more tests means more and
more “manifold” test cases
•Three types of unit testing

10

Three types of unit tests

11

Unit Testing main features

‣Greater code coverage percentage
•Functional Testing coverage about 70%

•Enable code coverage and other metrics

‣Increase team productivity

‣Improve implementation
•Con"dence with refactoring

‣Document expected behavior

12

Test Sca!olding

Programming today is a race between software
engineers striving to build bigger and better idiot-proof
programs, and the Universe trying to produce bigger
and better idiots. So far, the Universe is winning.

Cit. Rich Cook

Integration Testing Example

14

Integration Testing Example

14

Integration Testing Example

14

Integration Testing Example

14

Integration testing problem

‣Integrate multiple components implies to decide
in which order classes and subsystems should be
integrated and tested

‣CITO Problem
•Class Integration Testing Order Problem

‣Solution:
•Topological sort of dependency graph

15

Integration testing example
16

Integration testing example
16

Testing in isolation

‣Testing in isolation o!ers strong bene"ts
•Test code that have not been written

•Test only a single method (behavior) without side
e!ects from other objects

‣Solutions ?
•Stubs

•Mocks

•…

17

Testing in Isolation: example
18

Solution with stubs

19

Solution with (Pseudo) Mocks

20

Key Ideas

‣Wrap all the details of Code
• (sort of) Simulation

‣Mocks do not provide our own implementation of
the components we'd like to swap in

‣Main Di!erence:
•Mocks test behavior and interactions between

components

•Stubs replace heavyweight process that are not relevant
to a particular test with simple implementations

21

Mock Objects Observations

‣Powerful way to implement Behavior Veri"cation
•while avoiding Test Code Duplication between similar

tests.

‣It works by delegating the job of verifying the
indirect outputs of the SUT

‣Important Note: Design for Mockability
•Dependency Injection Pattern

22

Naming Confusion

‣Unfortunately, while two components are quite
distinct, they're used interchangeably.
•Example: spring-mock package

‣If we were to be stricter in terms of naming, stub
objects de"ned previously are test doubles

‣Test Doubles, Stubs, Mocks, Fake Objects… how
we can work it out ?

23

Test Double Pattern
(a.k.a. Imposter)

Q: How can we verify logic independently when code it
depends on is unusable?
Q1: How we can avoid slow tests ?

A: We replace a component on which the SUT depends
with a “test-speci"c equivalent.”

24

Test Stub Pattern

Q: How can we verify logic independently when it
depends on indirect inputs from other software
components ?

A: We replace a real objects with a test-speci"c
object that feeds the desired inputs into the SUT

25

Mocks Objects

Q: How can we implement Behavior Veri"cation
for indirect outputs of the SUT ?

A: We replace an object on which the SUT
depends on with a test-speci"c object that
veri"es it is being used correctly by the SUT.

26

Design for Mockability

‣Dependency Injection

27

Dependency injection issues?

Too Many Dependencies......Ideas??
28

Dependency injection issues?

Dependency injection for mockability
29

Mock Libraries

‣Two main design philosophy:
•DSL Libraries

•Record/Replay Models Libraries

‣Record Replay Frameworks
•First train mocks and then verify expectations

‣DSL Frameworks
•Domain Speci"c Languages

•Speci"cations embedded in “Java” Code

30

Mocking with EasyMock

31

EasyMock Test

‣Create Mock objects
•Java Re#ections API

‣Record Expectation
•expect methods

‣Invoke Primary Test
•replay method

‣Verify Expectation
•verify method

32

JMock Example

33

JMock features (intro)

‣JMock previous versions required subclassing
•Not so smart in testing

•Now directly integrated with Junit4

•JMock tests requires more typing

‣JMock API is extensible

34

JMock features

‣JMock syntax relies heavily on chained method
calls
•Sometimes di$cult to decipher and to debug

‣Common Patterns:
invocation-count(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

35

JMock Example

36

37

1. Test Fixture

▶Mockery represents the context

l Neighboring objects it will communicate with
l By convention the mockery is stored in an istance

variable named context
▶@RunWith(JMock.class) annotation

▶JUnit4Mockery reports expectation failures as
JUnit4 test failures

38

2. Create Mock Objects

▶The tests has two mock turtles
l The "rst is a "eld in the test class
l The second is local to the test

▶References ("elds and Vars) have to be final
l Accessible from Anonymous Expectations

▶The second mock has a speci"ed name

l JMock enforces usage of names except for the "rst
(default)

l This makes failures reporting more clear

39

3. Tests with Expectations

▶A test sets up it expectations in one or more
expectation blocks

l An expectation block can contain any number of
expectations

l Expectation blocks can be interleaved with calls to
the code under test.

40

3. Tests with Expectations

▶Expectations have the following structure:

invocation-count
(mockobject).method(arguments);

inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

41
What are those double braces?

 context.checking(new Expectations(){{
	 	 oneOf(turtle).turn(45);
	 }});

▶Anonymous subclass of Expectations
▶Baroque structure to provide a scope for building up

expectations
l Collection of expectation components
l Is an example of Builder Pattern
l Improves code completion

42
What are those double braces?

 context.checking(new Expectations(){{
	 	 oneOf(turtle).turn(45);
	 }});

43

 context.checking(new Expectations(){{
	 ignoring (turtle2);
	 allowing (turtle).flashLEDs();
	 oneOf(turtle).turn(45);
}});

▶ Expectations describe the interactions that are essential to the
protocol we're testing

▶ Allowances support the interaction we're testing
l ignoring() clause says that we don't care about messages

sent to turtle2
l allowing() clause matches any call to flashLEDs of
turtle

Allowances and Expectations

 context.checking(new Expectations(){{

	 ignoring (turtle2);
	 allowing (turtle).flashLEDs();
	 oneOf(turtle).turn(45);
}});

‣Distinction between allowances and expectations is not rigid

‣Rule of Thumb:
•Allow queries; Expect Commands

‣Why?
•Commands could have side e!ects;

•Queries don't change the world.

Allowances and Expectations
44

Too Many Expectations......Ideas??
45

Expectations or … ?

46

Expectations or … ?
Too Many Expectations......Ideas??

Expectations or … ?

47

Too Many Expectations......Ideas??

48
Development process

‣Let's think about the development process of
this example:

Code Test Refactoring

▶Q: Does make sense to write tests before writing
production code?

▶A: Two Keywords
○ TDD: Test Driven Development
○ Test-!rst Programming

48
Development process

‣Let's think about the development process of
this example:

Code Test RefactoringTest ??

▶Q: Does make sense to write tests before writing
production code?

▶A: Two Keywords
○ TDD: Test Driven Development
○ Test-!rst Programming

49

References

Growing Object-Oriented
Software, Guided By Tests
Freeman and Pryce, Addison Wesley
2010

JMock Project WebSite
(http://jmock.org)

http://jmock.org
http://jmock.org

