Test Driven Development

Course of Software Engineering I
A.A.2011/2012

Valerio Maggio, PhD Student
Prof. Marco Faella

Development process

Let's think about the development process
of this example:

Q: Does make sense to write tests
before writing production code?
A: Two Keywords
TDD: Test Driven Development
Test-first Programming

-
3

»What is TDD?

» TDD and eXtreme Programming

» I DD Mantra

» TDD Principles and Practices

1. Motivations

www. histoire-fr.com

SRR One must learn by doing
P N the thing; for though
i ¥ you think you know it
' i | you have no certainty
| 4 until you try

4 ‘~

'\
N
.
-

,../ 2
. TR
o -
"'wr. . .__. _s_,“

|
&
r
s

-‘w

> e .-(=3 v 5.

Sofocle (496 a.c. 406 a.C)

Software Development as a

Learning Process

» Almost all projects attempts something new

»Something refers to
ePeople involved
eTechnology involved
eApplication Domain

e... (most likely) a combination of these

Software Development as a

Learning Process

»Every one involved has to learn as the projects
progresses

eResolve misunderstanding along the way

» There will be changes!!

» Anticipate Changes
eHow ?

Feedback is a fundamental tool

» Team needs cycle of activities
eAdd new feature
eGets feedback about what already done!

» Time Boxes

»Incremental and Iterative Development
e[ncremental : Dev. feature by feature

e[terative: improvement of features in response to
feedback

Practices that support changes

» Constant testing to catch regression errors
eAdd new feature without fear
eFrequent manual testing infeasible

» Keep the code as simple as possible
eMore time spent reading code that writing it

» Simplicity takes effort, so Refactor

2. Test Driven Development

10D

AR A P

ALL CODE IS GUILTY
UNTIL PROVEN INNOCENT

coDESHALK

What is TDD ?

» TDD: Test Driven Development
eTest Driven Design
eTest-first Programming
eTest Driven Programming

»Iterative and incremental software development

» TDD objective is to DESIGN CODE and not to
VALIDATE Code

eDesign to fail principle

Test Driven Development

»We write tests before we write the code

» Testing as a way to clarify ideas about what we
want the code has to do

» Testing as a Design Activity
*Think about the feature
e\Write a test for that feature (Fail)
e\Write the code to pass the test
*Run same previous test (Success)
eRefactor the code

TDD and XP

»TDD vs XP
*TDD is an agile practice
*XP is an agile methodology

» Core of XP
*No needs of others XP practices

» Avoid software regression
eAnticipate changes

» Product code smarter that works better

» Reduce the presence of bugs and errors
*“You have nothing to lose but your bugs”

TESTING

| FIND YOUR LACK OF TESTS DISTURBING.

Unit test

» " Unit tests run fast. If they don't run fast they're
not unit tests. "

» A test is not a unit test if:
ecommunicate with DB
ecommunicate with networking services
ecannot be executed in parallel with other unit tests

»Unit tests overcome dependencies
eHow?
*Why is it so important?

Unit Test and TDD

» Testing code is released together with
production code

» A Feature is released only if
eHas at least a Unit test
eAll of its unit tests pass

» Do changes without fear
eRefactoring

» Reduce debugging

PROGRAMMING

You're DoiNG IT CoMPLETELY WRONG.

TDD Mantra

Think about what we want the code to do

TDD Mantra

“Set up a Walking Skeleton”

import unittest

class FooTests(unittest.TestCase):

def testFoo(self):
self.failUnless(False)

def main():
unittest.main()

if __name__ == '__main__":

TDD Mantra

Think Red bar

import unittest

class FooTests(unittest.TestCase):

FAIL: testFoo (__main__.FooTests)
def testFoo(self): .

self.failUnless(False) Trgceback (most recent call last):
def main(): self.failUnless(False)

unittest.main() Assertiontrror
.lf: __name__ == '__mai.n__': 1 test 1in 0.003s
main()

FATLED (failures=1)

TDD Mantra

“We want to create objects that can say whether
two given dates "match".
These objects will act as a "pattern” for dates.”

»So, Pattern...What is the pattern did you think about?

o Design Pattern such as Template Method
» Implementation Pattern such as Regular Expressions

» Anyway, It doesn't matter now!

TDD Mantra

Feature 1: Date Matching

import unittest
import datetime
from DatePattern import *

class DatePatternTests(unittest.TestCase):

def testMatches(self):

~ p = DatePattern(2004, 9, 28)
d = datetime.date(2004, 9, 28)
self.failUnless(p.matches(d))

def main():
unittest.main()

if __name__ = "'__main__":
main()

TDD Mantra

Think Red bar

Think about the behavior of the class
and its public interface

-What will you expect that happens?
- Why?

TDD Mantra

Red bar

import unittest |
import datetime
from DatePattern import *

ERROR: testMatches
class DatePatternTests(unittest.TestC - - - - - - - - -\ =\ o - o 0 o o i o i i i i i i i i

Traceback (most recent call last):
Qef testMatches(self):

line 8, in testMatches
= DatePattern(2004, 9, 28) ’
d - datetine.date(004, 9, 28 P = DatePattern(2004, 9, 28)

Se'lf.failUnlesscp.matches(d)) NameError: glOba-l. name 'DatePattern’
1s not defined

def main(): -
unittest.main() Ran 1 test in 0.000s
if __name__ == '__main__":

main() FAIFED (errors=1)

TDD Mantra

Red bar Emme Green Bar

Failed Test

Write production code ONLY to pass previous failing test

import datetime
class DatePattern:

def matches(self, date):
return True

TDD Mantra

Red bar Emme Green Bar

Failed Test

import unittest
import datetime
from DatePattern import *

class DatePatternTests(unittest.TestCase):

def testMatches(self):

~ p = DatePattern(2004, 9, 28)
d = datetime.date(2004, 9, 28)
self.failUnless(p.matches(d))

def main():
unittest.main()

if _name__ == "__main__":
main()

Ran 1 test in 0.000s

OK

TDD Mantra

import unittest
import datetime
from DatePattern import *

class DatePatternTests(unittest.TestCase):

def testMatches(self):

~ p = DatePattern(2004, 9, 28)
d = datetime.date(2004, 9, 28)
self.failUnless(p.matches(d))

def main():
unittest.main()

if __name__ == '__main__":
main()

Feature 1: Date Matching

Now that first test
passes,

It's time to move to
the second test!

Any Guess?

TDD Mantra

Red bar

import unittest
import datetime
from DatePattern import *

class DatePatternTests(unittest.TestCa

Traceback (most recent call last):
def testMatches(self): line 15, in testMatchesFalse

po= DatePgtter‘n(2004, 9, 28) self.failIf(p.matches(d))
d = datetime.date(2004, 9, 28) AssertionError

self.failUnless(p.matches(d))

def testMatchesFalse(self): e
p = DatePattern(2004, 9, 28) Ran 2 tests in 0.001s
d = datetime.date(2004, 9, 29)

self.failIf(p.matches(d)) FAILED (failures=1)

TDD Mantra

Red bar Emme Green Bar

Failed Test

import datetime
class DatePattern:

def __init__(self, year, month, day):
self.date = datetime.date(year, month, day)

def matches(self, date):
return self.date == date

TDD Mantra

Failed Test

Red bar Emme Green Bar

import unittest
import datetime
from DatePattern import *

class DatePatternTests(unittest.TestCase)|

def testMatches(self):
p = DatePattern(2004, 9, 28)
d = datetime.date(2004, 9, 28)
self.failUnless(p.matches(d))

def testMatchesFalse(self):
p = DatePattern(2004, 9, 28)
d = datetime.date(2004, 9, 29)
self.failIf(p.matches(d))

Ran 2 test in 0.000s

OK

TDD Mantra

Feature 2: Date Matching as
a WildCard

import unittest
import datetime
from DatePattern import *

class DatePatternTests(unittest.TestCase)

def testMatches(self):
p = DatePattern(2004, 9, 28)
d = datetime.date(2004, 9, 28)
self.failUnless(p.matches(d))

def testMatchesFalse(self):
p = DatePattern(2004, 9, 28)
d = datetime.date(2004, 9, 29)
self.failIf(p.matches(d))

- What happens if | pass
a zero as for the year
parameter?

TDD Mantra

Red bar

def testMatchesYearAsWildCard(selfﬂ:
p = DatePattern(@, 4, 10)
d = datetime.date(2005, 4, 10)
self.failUnless(p.matches(d))

L..]

Ran 3 tests in 0.000s
FAILED (errors=1)

TDD Mantra

Red bar Emme Green Bar

Failed Test

import datetime
class DatePattern:

def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

def matches(self, date):
return ((self.year and self.year == date.year) and
self.month == date.month and
self.day == date.day)

TDD Mantra

Red bar Emme Green Bar

Failed Test

def testMatchesYearAsWildCard(self):
p = DatePattern(@, 4, 10)
d = datetime.date(2005, 4, 10)
self.failUnless(p.matches(d))

Ran 3 test in 0.000s

OK

TDD Mantra

Feature 3: Date Matching as
a WildCard

class DatePatternTests(unittest.TestCase):

def testMatches(self):
p = DatePattern(2004, 9, 28) -
d = datetime.date(2004, 9, 28) What happens If I pPass
self.failUnless(p.matches(d)) a Zzero as for the month

def testMatchesFalse(self): parameter?
p = DatePattern(2004, 9, 28)

d = datetime.date(2004, 9, 29)
self.failIf(p.matches(d))

def testMatchesYearAsWildCard(self):
p = DatePattern(@, 4, 10)
d = datetime.date(2005, 4, 10)
self.failUnless(p.matches(d))

TDD Mantra

Red bar

def testMatchesYearAndMonthAsWildCards(self):
p = DatePattern(@, 0, 1)
d = datetime.date(2004, 10, 1)
self.failUnless(p.matches(d))

L..]

Ran 4 tests in 0.000s
FAILED (errors=1)

TDD Mantra

Red bar Emme Green Bar

Failed Test

Iclass DatePattern:

def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

def matches(self, date):
return ((self.year and self.year == date.year) and
(self.month and self.month == date.month) and
self.day == date.day)

TDD Mantra

Red bar Emme Green Bar

Failed Test

def testMatchesYearAndMonthAsWildCards(self):
p = DatePattern(@, 0, 1)
d = datetime.date(2004, 10, 1)
self.failUnless(p.matches(d))

Ran 4 test in 0.000s

OK

TDD Mantra

OK
Red bar mmd Green Bar bammme

class DatePattern:

Failed Test
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day
class DatePattern:
o def matches(self, date):
def __init__(self, year, month, day): return (self.yearMatches(date) and
self.year = year self.monthMatches(date) and
23?22;& _ zz;th self.dayMatches(date))
def matches(self, date): def yearMatches(self, date):
return ((self.year and self.year == date.year) and if not self.year: return True
(self.month and self.month == date.month) and return self.year —= date.year
self.day == date.day)

def monthMatches(self, date):
if not self.month: return True
return self.month == date.month

— def dayMatches(self, date):

if not self.day: return True
return self.day == date.day

TDD Mantra

Failed Test

OK
Red bar mmd Green Bar bammme

Ran 4 test in 0.000s

OK

class DatePattern:

def

def

def

def

def

__init__(self, year, month, day):
self.year = year

self.month = month

self.day = day

matches(self, date):

return (self.yearMatches(date) and
self.monthMatches(date) and
self.dayMatches(date))

yearMatches(self, date):
if not self.year: return True
return self.year == date.year

monthMatches(self, date):
if not self.month: return True
return self.month == date.month

dayMatches(self, date):
if not self.day: return True
return self.day == date.day

OK
(CLREDE — N YN :Efd — Refactoring

Failed Test

» Code once, test twice

» Clean code that works

» KISS: Keep It Short & Simple
»YAGNI: You Ain't Gonna Need It

» DRY: Don't repeat yourself

' o RED: et fails @

Red Bar patterns:
Begin with a simple test.

If you have a new idea
add it to the test list
stay on what you're doing.

Add a test for any faults found.

If you can not go on throw it all away and
change it.

Green Bar patterns:
Writing the easier code to pass the test.

Write the simpler implementation to pass
current test

If an operation has to work on collections

write the first implementation on a single
object

then generalizes.

Tests for Documentation

»Test names describe features

public class TargetObjectTest

{
@Test public void testl() { [...]
@Test public void test2() { [...]
@Test public void test3Q) { [...]

}

public class TargetObjectTest

{

@Test public boolean 1isReady() { [...]
@Test public void choose(Picker picker) { [...]

doctest: Test through Documentation

e Lets you test your code by running examples embedded in the
documentation and verifying that they produce the expected results.

e |t works by parsing the help text to find examples, running them, then
comparing the output text against the expected value.

$ python -m doctest -v sample.py

def safe_division(a, b): Trying:
B (2,9 my_function(6, 2)
e resie Expecting:
>>> safe_division(6, 2) 3
3 ok
it Trying:
>>> safe_division(@, 3) ny. function(0, 3)
0 Expecting:
mmn
)
if (a=0o0rb =0) ok
& 0 1 items passed all tests:
return 2 tests 1in
return a/b sample.safe_division

2 tests in 1 items.
2 passed and 0 failed.
Test passed.

8. Conclusions

"POWERPOINT"
POISONING.

TDD handles “the fears”during software
development

Allows programmers to perfectly know the code
New feature only if there are 100% of passed tests

Fears has a lot of negative aspects:
makes it uncertain
removes the desire to communicate
makes it wary of the feedback
makes nervous

It keeps the code simple
Rapid development

The tests are both design and documentation
Easy to understand code

Bugs found early in development
Less debugging

Low cost of change

TDD Limits

» High learning curve

» Managers are reluctant to apply
» Requires great discipline

> Difficult to implement the GUI

> Difficult to apply to Legacy Code

10,000 lines of C# code...Check. [Now that my unit tests are written,
124 NET assemblies generated...Check. || T can start building my component!
52 Build Scripts written...Check. '

e

References

Growing Object-Oriented
Software, Guided By Tests

Freeman and Pryce, Addison VWesley
2010

GROWING
OBJECT-ORIENTED
SOFTWARE,

(GUIDED BY TESTS

STEVE FREEMAN BB
NAT PRYCE

References

Python Testing

Daniel Arbuckle, PACKT Publishing Python Testing
201 | S

