Design Patterns and

Refactoring

Course of Software Engineering
A.A.2011/2012

Valerio Maggio, PhD Student
Prof. Marco Faella

Starting Scenario

P “We have a DeviceManager that have to

handle objects that is able to connect to the
GPS Network”

P Objectives of current lecture:

* Improve and complicate the starting scenario
* Through refactoring and patterns

* Interactive Improvements
* Let's do it together

P As usual let's do Program Comprehension first

Step 1: Extend Controllers

Step 1: Extend Controllers

» Q: We want to add a new type of Controller
class InternalGalileoController

Step 1: Extend Controllers

» Q: We want to add a new type of Controller
class InternalGalileoController

P Let's look at UML:

What do you think about extensibility?
e Please focus on InternalGpsConnector

Step 1: Extend Controllers

» Q: We want to add a new type of Controller
class InternalGalileoController

P Let's look at UML:

What do you think about extensibility?
e Please focus on InternalGpsConnector

Step 1: Extend Controllers

» Q: We want to add a new type of Controller
class InternalGalileoController

P Let's look at UML:

What do you think about extensibility?
e Please focus on InternalGpsConnector

» A: (Refactoring)
Extract Interface

Step 2: Client Association

Step 2: Client Association

» Q: Direct association between Client and
Product

Too much coupling

Step 2: Client Association

» Q: Direct association between Client and
Product

Too much coupling

P Let's look at the code:
Where do you think is the “coupling point”?

Step 2: Client Association

» Q: Direct association between Client and
Product

Too much coupling

P Let's look at the code:
Where do you think is the “coupling point”?

»A[1]:

Collection of Super-Type Istances

Step 2: Client Association

» Q: Direct association between Client and
Product

Too much coupling

P Let's look at the code:
Where do you think is the “coupling point”?

»A[1]:
Collection of Super-Type Istances
» A [2] (design pattern):
Factory Method

Factory Method Pattern

»Intent:

Define an interface for creating an object

e Factory Method let's a class defer instantiation to
subclasses.

Defining a “virtual” constructor.
The new operator considered harmful.

» Needs to standardize the architectural model
for a range of products,

Allow for individual applications to define their own
domain objects and provide for their instantiation.

Factory Method Pattern

Product
AN

ConcreteProduct |‘— —_

Client |——»

Creator

FactoryMethod(JO— «f — — e e

AnQOperation()

JaN

ConcreteCreator

N
_ product=FactoryMethod() N

factoryMethod() O~

3 }Emm naw CmcrebeProduct\Al

Step 3: Improvements

»Let's think about current design
Brainstorming please :)

» Q: Instantiation of Factory
A (Pattern): Singleton

Step 3: Improvements

»Let's think about current design
Brainstorming please :)

» Q: Instantiation of Factory
A (Pattern): Singleton

» Q: “Virtual Constructor Methods”
A: Multiple methods vs Single Method

Step 4: Requirement Extension

Step 4: Requirement Extension

»We want to add a new family of connectors

Current products: Smartphone Connectors
e Gps and Galileo connections

New Products: Mobile Connectors
e Bluetooth and IRDA connections

Step 4: Requirement Extension

»We want to add a new family of connectors

Current products: Smartphone Connectors
e Gps and Galileo connections

New Products: Mobile Connectors
e Bluetooth and IRDA connections

» Q: How to handle creation loosely coupled with
client?

Step 4: Requirement Extension

»We want to add a new family of connectors

Current products: Smartphone Connectors
e Gps and Galileo connections

New Products: Mobile Connectors
e Bluetooth and IRDA connections

» Q: How to handle creation loosely coupled with
client?

» A (Pattern):
Abstract Factory

Abstract Factory Pattern

»Intent:

Provide an interface for creating families of related
or dependent objects

e Without specifying their concrete classes.

A hierarchy that encapsulates
e Many possible “platforms”
e Construction of a suite of “products”.

»Problem:

An application has to be portable
e Encapsulate platform dependencies.

Abstract Factory Pattern

winterface» e
o AbstractFactory

» CresteProductA()

) CreateProductB()

————

Q ConcreteFactory2

() CreateProductA()
» CreateProductB()

Q ConcreteFactory1

@ CreateProductA()
» CreateProductB()

shporte:: cgn S osgm s wEoss G client

| T) ProductA1
|
______ I nstantiate

|

| winstantiates

|

|

|

L =y QProductB1

Q ProductB2

Step 4.1: Example

» Q: Change Product Family associated to Device
Controller

» What is the effort?

Step 4.1: Example

» Q: Change Product Family associated to Device
Controller

» What is the effort?

» Minimum effort, maximum effect

Client loosely coupled with products
e Instantiation and handling

Step 5: Improvement

Step 5: Improvement

»Improvement in Product instantiation

Step 5: Improvement

»Improvement in Product instantiation

» Extension to new product family:

Client point of view: Easy

Product point of view: 22?

Step 5: Improvement

»Improvement in Product instantiation

» Extension to new product family:

Client point of view: Easy

Product point of view: 22?
» A (Pattern):
Prototype

Prototype Pattern

»Intent:

Specify the kinds of objects to create using a
prototypical instance

e create new objects by copying this prototype.

Co-opt one instance of a class for use as a breeder of
all Future instances.

»Problem:

Application “hard wires” the class of object to create
in each “new"” expression.

Prototype Pattern

winterfacen
0 e ' (Client
@ clone() (}h .

r____A____j Object p « prototype.clone();
(3 Concretelrototypes (9 Concretelrototype2
_T. clone() (]-;. clone()

return '
copy of seff W return copy of seff T

Rules of Thumbs

»Sometimes creational patterns are competitors

» Often, designs:

Start out using Factory Method

e (less complicated, more customizable, subclasses
proliferate)

Evolve toward
e Abstract Factory
e Prototype
e Builder (more Flexible, more complex)

»Don't abuse on using Design Patterns!!

References

» Gamma, E., Helm, R., Johnson, R. e Vlissides, J.,
Design Patterns: Elements of Reusable
Object-Oriented Software

» http://www.artima.com/lejava/articles/
designprinciples.html

