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Starting Scenario

P “We have a DeviceManager that have to

handle objects that is able to connect to the
GPS Network”

P Objectives of current lecture:

* Improve and complicate the starting scenario
* Through refactoring and patterns

* Interactive Improvements
* Let's do it together

P As usual let's do Program Comprehension first
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Step 1: Extend Controllers

» Q: We want to add a new type of Controller
class InternalGalileoController

P Let's look at UML:

What do you think about extensibility?
e Please focus on InternalGpsConnector

» A: (Refactoring)
Extract Interface
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» Q: Direct association between Client and
Product

Too much coupling

P Let's look at the code:
Where do you think is the “coupling point”?

»A[1]:
Collection of Super-Type Istances
» A [2] (design pattern):
Factory Method



Factory Method Pattern

»Intent:

Define an interface for creating an object

e Factory Method let's a class defer instantiation to
subclasses.

Defining a “virtual” constructor.
The new operator considered harmful.

» Needs to standardize the architectural model
for a range of products,

Allow for individual applications to define their own
domain objects and provide for their instantiation.



Factory Method Pattern
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Step 3: Improvements

»Let's think about current design
Brainstorming please :)

» Q: Instantiation of Factory
A (Pattern): Singleton

» Q: “Virtual Constructor Methods”
A: Multiple methods vs Single Method
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Abstract Factory Pattern

»Intent:

Provide an interface for creating families of related
or dependent objects

e Without specifying their concrete classes.

A hierarchy that encapsulates
e Many possible “platforms”
e Construction of a suite of “products”.

»Problem:

An application has to be portable
e Encapsulate platform dependencies.
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Step 4.1: Example

» Q: Change Product Family associated to Device
Controller

» What is the effort?

» Minimum effort, maximum effect

Client loosely coupled with products
e Instantiation and handling
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»Improvement in Product instantiation

» Extension to new product family:

Client point of view: Easy

Product point of view: 22?
» A (Pattern):
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Prototype Pattern

»Intent:

Specify the kinds of objects to create using a
prototypical instance

e create new objects by copying this prototype.

Co-opt one instance of a class for use as a breeder of
all Future instances.

»Problem:

Application “hard wires” the class of object to create
in each “new"” expression.
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Rules of Thumbs

»Sometimes creational patterns are competitors

» Often, designs:

Start out using Factory Method

e (less complicated, more customizable, subclasses
proliferate)

Evolve toward
e Abstract Factory
e Prototype
e Builder (more Flexible, more complex)

»Don't abuse on using Design Patterns!!
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