
Design Patterns and
Refactoring

Course of Software Engineering II
A.A. 2011/2012

Valerio Maggio, PhD Student
Prof. Marco Faella

2
Starting Scenario

▶“We have a DeviceManager that have to
handle objects that is able to connect to the
GPS Network”

▶Objectives of current lecture:
l Improve and complicate the starting scenario

l Through refactoring and patterns
l Interactive Improvements

l Let's do it together

▶As usual let's do Program Comprehension !rst

3
Step 1: Extend Controllers

3
Step 1: Extend Controllers

▶Q: We want to add a new type of Controller
○ class InternalGalileoController

3
Step 1: Extend Controllers

▶Q: We want to add a new type of Controller
○ class InternalGalileoController

▶Let's look at UML:
○What do you think about extensibility?
●Please focus on InternalGpsConnector

3
Step 1: Extend Controllers

▶Q: We want to add a new type of Controller
○ class InternalGalileoController

▶Let's look at UML:
○What do you think about extensibility?
●Please focus on InternalGpsConnector

3
Step 1: Extend Controllers

▶Q: We want to add a new type of Controller
○ class InternalGalileoController

▶Let's look at UML:
○What do you think about extensibility?
●Please focus on InternalGpsConnector

▶A: (Refactoring)
○ Extract Interface

4
Step 2: Client Association

4
Step 2: Client Association

▶Q: Direct association between Client and
Product
○ Too much coupling

4
Step 2: Client Association

▶Q: Direct association between Client and
Product
○ Too much coupling

▶Let's look at the code:
○Where do you think is the “coupling point”?

4
Step 2: Client Association

▶Q: Direct association between Client and
Product
○ Too much coupling

▶Let's look at the code:
○Where do you think is the “coupling point”?

▶A [1]:
○ Collection of Super-Type Istances

4
Step 2: Client Association

▶Q: Direct association between Client and
Product
○ Too much coupling

▶Let's look at the code:
○Where do you think is the “coupling point”?

▶A [1]:
○ Collection of Super-Type Istances

▶A [2] (design pattern) :
○ Factory Method

5
Factory Method Pattern

▶Intent:
○ De!ne an interface for creating an object
● Factory Method let's a class defer instantiation to

subclasses.

○ De!ning a “virtual” constructor.
○ The new operator considered harmful.

▶Needs to standardize the architectural model
for a range of products,
○ Allow for individual applications to de!ne their own

domain objects and provide for their instantiation.

Factory Method Pattern

7
Step 3: Improvements

▶Let's think about current design
○ Brainstorming please :)

▶Q: Instantiation of Factory
○ A (Pattern): Singleton

7
Step 3: Improvements

▶Let's think about current design
○ Brainstorming please :)

▶Q: Instantiation of Factory
○ A (Pattern): Singleton

▶Q: “Virtual Constructor Methods”
○ A: Multiple methods vs Single Method

8
Step 4: Requirement Extension

8
Step 4: Requirement Extension

▶We want to add a new family of connectors
○ Current products: Smartphone Connectors
●Gps and Galileo connections

○New Products: Mobile Connectors
●Bluetooth and IRDA connections

8
Step 4: Requirement Extension

▶We want to add a new family of connectors
○ Current products: Smartphone Connectors
●Gps and Galileo connections

○New Products: Mobile Connectors
●Bluetooth and IRDA connections

▶Q: How to handle creation loosely coupled with
client?

8
Step 4: Requirement Extension

▶We want to add a new family of connectors
○ Current products: Smartphone Connectors
●Gps and Galileo connections

○New Products: Mobile Connectors
●Bluetooth and IRDA connections

▶Q: How to handle creation loosely coupled with
client?

▶A (Pattern):
○ Abstract Factory

9
Abstract Factory Pattern

▶Intent:
○ Provide an interface for creating families of related

or dependent objects
●Without specifying their concrete classes.

○ A hierarchy that encapsulates
●Many possible “platforms”
●Construction of a suite of “products”.

▶Problem:
○ An application has to be portable
● Encapsulate platform dependencies.

Abstract Factory Pattern

11
Step 4.1: Example

▶Q: Change Product Family associated to Device
Controller

▶What is the e"ort?

11
Step 4.1: Example

▶Q: Change Product Family associated to Device
Controller

▶What is the e"ort?

▶Minimum e!ort, maximum e!ect
○ Client loosely coupled with products
● Instantiation and handling

12
Step 5: Improvement

12
Step 5: Improvement

▶Improvement in Product instantiation

12
Step 5: Improvement

▶Improvement in Product instantiation

▶Extension to new product family:

○Client point of view: Easy

○Product point of view: ???

12
Step 5: Improvement

▶Improvement in Product instantiation

▶Extension to new product family:

○Client point of view: Easy

○Product point of view: ???
▶A (Pattern):
○Prototype

13
Prototype Pattern

▶Intent:
○ Specify the kinds of objects to create using a

prototypical instance
● create new objects by copying this prototype.

○ Co-opt one instance of a class for use as a breeder of
all future instances.

▶Problem:
○ Application “hard wires” the class of object to create

in each “new” expression.

Prototype Pattern

15
Rules of Thumbs

▶Sometimes creational patterns are competitors
▶Often, designs:
○ Start out using Factory Method
● (less complicated, more customizable, subclasses

proliferate)

○ Evolve toward
●Abstract Factory
●Prototype
●Builder (more #exible, more complex)

▶Don't abuse on using Design Patterns!!

16
References

▶Gamma, E., Helm, R., Johnson, R. e Vlissides, J.,
Design Patterns: Elements of Reusable
Object-Oriented Software

▶http://www.artima.com/lejava/articles/
designprinciples.html

