
SCAFFOLDING WITH JMOCK
Software Engineering Class

Valerio Maggio, Ph.D.
valerio.maggio@unina.it

Prof. Adriano Peron
June 6, 2013

mailto:valerio.maggio@unina.it
mailto:valerio.maggio@unina.it

EXERCISE 1
Calculator

A BIG THANK YOU GOES TO..

Luciano Conte

Vittorio Parrella

Marco Zeuli

CALCULATOR CLASS

• Requirements:

• Input numbers cannot have
more than 5 digits;

• The calculator can remember
a given (unique) number;

• Only non-negative numbers
are allowed.

• In case of negative numbers,
an exception is thrown!

Calculator

+ add (double augend, double addend): double
+ subtract (double minuend, double subtrahend): double
+ multiply (double multiplicand, double multiplier): double
+ divide (double dividend, double divisor): double
+ addToMemory(double number): void
+ recallNumber(): double

- memory: double
+ MAX_DIGITS_LEN: int = 5 <<final>> <<static>>

EXERCISE 1I
Stack

STACK: LIFO QUEUE
Stack

<<constructor>>
+ Stack(capacity: int)

+ pop(): Process
+ push(Process p): void

Process

+ getName():String
+ setName(String n): void
+getPid(): Integer
+ setPid(Integer pid): void
+getPriority():Integer
+setPriority(Integer p): void

- name: String
- pid: Integer
- priority: Integer (default=-1)

*1

_list

BRIEF RECAP OF:
“PROGRAMMING CLASS”

FIFO QUEUE

enqueue()

BRIEF RECAP OF:
“PROGRAMMING CLASS”

FIFO QUEUE

enqueue()

BRIEF RECAP OF:
“PROGRAMMING CLASS”

FIFO QUEUE

enqueue() dequeue()

BRIEF RECAP OF:
“PROGRAMMING CLASS”

FIFO QUEUE

enqueue() dequeue()

BRIEF RECAP OF:
“PROGRAMMING CLASS”

enqueue() dequeue()

LIFO QUEUE

BRIEF RECAP OF:
“PROGRAMMING CLASS”

enqueue() dequeue()

LIFO QUEUE

BRIEF RECAP OF:
“PROGRAMMING CLASS”

enqueue() dequeue()

LIFO QUEUE

BRIEF RECAP OF:
“PROGRAMMING CLASS”

enqueue() dequeue()

LIFO QUEUE

+ enqueue(Process p):void
+ dequeue():Process

<<abstract>>
Queue *1

_list
Process

FIFOQueue LIFOQueue PriorityQueue

+ addProcess(Process p, Queue q):void
+ schedule(Queue q):Process

Scheduler 1 *

_queues

Q: How would you test Scheduler? Remember: Unit tests run in isolation!

TEST SCAFFOLDING

IN
TE

G
RA

TI
O

N
 T

ES
TI

N
G

IN
TE

G
RA

TI
O

N
 T

ES
TI

N
G

INTEGRATION TESTING
PROBLEM

• Integrate multiple components implies to decide in which
order classes and subsystems should be integrated and tested

• CITO Problem
• Class Integration Testing Order Problem

• Solution:
• Topological sort of dependency graph

INTEGRATION TESTING
EXAMPLE

ClassA ClassB

ClassC Subsystem

ClassA ClassB

ClassC Subsystem

INTEGRATION TESTING
EXAMPLE

ClassA ClassB

ClassC Subsystem

ClassA ClassB

ClassC Subsystem

TESTING IN ISOLATION
Testing in Isolation benefits!

TESTING IN ISOLATION

Test code that have not been written

Testing in Isolation benefits!

TESTING IN ISOLATION

Test only a single method (behavior) without
side effects from other objects

Test code that have not been written

Testing in Isolation benefits!

SCHEDULER EXAMPLE

+ enqueue(Process p):void
+ dequeue():Process

<<abstract>>
Queue *1

_list
Process

FIFOQueue LIFOQueue PriorityQueue

+ addProcess(Process p, Queue q):void
+ schedule(Queue q):Process

Scheduler 1 *

_queues

s:Schedulerclient

addProcess(P, Q)

q:Queue

enqueue(P)

SCHEDULER@addProcess

SOLUTION WITH STUBS

@Marco Zeuli

KEY IDEAS

• Wrap all the details of Code
• (sort of) Simulation

• Mocks do not provide our own implementation of the
components we'd like to swap in

• Main Difference:
• Mocks test behavior and interactions between components

• Stubs replace heavyweight process that are not relevant to
a particular test with simple implementations

MOCK OBJECTS

• Powerful way to implement Behavior Verification
• while avoiding Test Code Duplication between similar tests.

• It works by delegating the job of verifying the indirect outputs
of the SUT

• Important Note: Design for Mockability
• Dependency Injection Pattern

NAMING CONFUSION

• Unfortunately, while two components are quite distinct, they're
used interchangeably.
• Example: spring-mock package

• If we were to be stricter in terms of naming, stub objects
defined previously are test doubles

• Test Doubles, Stubs, Mocks, Fake Objects… how could we
work it out ?

TEST DOUBLE PATTERN

• Q: How can we verify logic independently when code it depends on
is unusable?

• Q1: How we can avoid slow tests ?

• A: We replace a component on which the SUT depends with a “test-
specific equivalent.”

TEST STUB PATTERN

• Q: How can we verify logic independently when it depends
on indirect inputs from other software components ?

• A: We replace a real objects with a test-specific object that
feeds the desired inputs into the SUT

MOCKS OBJECTS

• Q: How can we implement Behavior Verification for indirect
outputs of the SUT ?

• A: We replace an object on which the SUT depends on with
a test-specific object that verifies it is being used correctly by
the SUT.

MOCK LIBRARIES
• Two main design philosophy:

• DSL Libraries
• Record/Replay Models Libraries

Record Replay Frameworks: First
train mocks and then verify expectations

DSL Frameworks:
•Domain Specific Languages
•Specifications embedded in “Java” Code

MOCK LIBRARIES
• Two main design philosophy:

• DSL Libraries
• Record/Replay Models Libraries

Record Replay Frameworks: First
train mocks and then verify expectations

DSL Frameworks:
•Domain Specific Languages
•Specifications embedded in “Java” Code

SOLUTION WITH JMOCK

JMOCK MAIN FEATURES

JMOCK FEATURES (INTRO)

• JMock previous versions required subclassing
• Not so smart in testing

• Now directly integrated with Junit4

• JMock tests requires more typing

• JMock API is extensible

JMOCK FEATURES

• JMock syntax relies heavily on chained method calls

• Sometimes difficult to decipher and to debug

• Common Patterns:
invocation-count(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

1. TEST FIXTURE

• Mockery represents the context

• JUnitRuleMockery replaces the @RunWith(JMock.class)
annotation

• JUnit4Mockery reports expectation failures as JUnit4 test failures

2. CREATE MOCK OBJECTS

• References (fields and Vars) have to be final

• Accessible from Anonymous Expectations

3. TESTS WITH EXPECTATIONS

• A test sets up it expectations in one or more expectation
blocks

• An expectation block can contain any number of
expectations

• Expectation blocks can be interleaved with calls to the
code under test.

3. TESTS WITH EXPECTATIONS

• Expectations have the following structure:

invocation-count(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));

WHAT ARE THOSE DOUBLE BRACES?

• Anonymous subclass of Expectations
• Baroque structure to provide a scope for setting expectations

• Collection of expectation components
• Is an example of Builder Pattern
• Improves code completion

COOKBOOK: EXPECT A
SEQUENCE OF INVOCATIONS

Expect that a sequence of method calls has
been executed in the right order

@Marco Zeuli

@Marco ZeuliEX
PE

CT
 A

 S
EQ

U
EN

CE

O
F

IN
VO

C
AT

IO
N

S

EXERCISE III
Roman Calculator

A SIMPLE EXAMPLE:
THE ROMAN CALCULATOR

Everyone always uses the same one, which is a Roman
Numerals, but I’m going to give it a little twist, which is that I’ll try
and use a Roman Numeral calculator - not a Roman Numeral
converter [...]

Source: https://github.com/hjwp/tdd-roman-numeral-calculator

PYTHON

• Language for geeks

• Multi-paradigm

• Strong Typed

• Dynamic Typed

• Language for “serious” guys

• Object Oriented Language

• Strong Typed

• Static Typed

JAVAvs

DUCK TYPING

•Walks like a duck?

•Quacks like a duck?

•Yes, It’s a duck!

def half (n):
 return n/2.0

Q: What is the type of
the variable n

IS THERE SOMEONE THAT
(REALLY) USES PYTHON?

• IBM, Google, Microsoft, Sun, HP,
NASA, Industrial Light and Magic

• Google it!

• site:microsoft.com python

• You’ll get more than 9k hits

CONTACTS

MAIL:
valerio.maggio@unina.it

http://wpage.unina.it/valerio.maggio

REFERENCES (1)

Growing Object-Oriented
Software, Guided By Tests

Freeman and Pryce, Addison
Wesley 2010

JMock Project WebSite
(http://jmock.org)

REFERENCES (II)

xUnit Test Patterns:
Refactoring Test Code
Meszaros G., Pearson

Education 2007

