SCAFFOLDING WITH JMOCK

Software Engineering Class

Prof. Adriano Peron Valerio Maggio, Ph.D.
June 6,201 3 valerio.maggio@unina.it

mailto:valerio.maggio@unina.it
mailto:valerio.maggio@unina.it

ERERGIDE T

Craleulaitelr

A BIG [HANKYOU GOES TO..

Luciano Conte

?—

Vittorio Parrella

——

Marco Zeul

[— ———

CALCULATOR CLASS

- Requirements:

Input numbers cannot have
more than 5> digits;

The calculator can remember
a given (unigue) number;

Only non-negative numbers
are allowed.

In case of negative numbers,
an exception is thrown!

Calculator

- memory: double
+ MAX_DIGITS_LEN: int = 5 <<final>> <<static>>

+ add (double augend, double addend): double

+ subtract (double minuend, double subtrahend): double
+ multiply (double multiplicand, double multiplier): double
+ divide (double dividend, double divisor): double

+ addToMemory(double number): void

+ recallNumber(): double

P ERCISE

Stack

STACK: LIFO QUEUE

Stack

<<constructor>>
+ Stack(capacity: int)

+ pop(): Process
+ push(Process p): void

_ist

Process

- name: String
- pid: Integer
- priority: Integer (default=-1)

+ getName():String

+ setName(String n): void
+getPid(): Integer

+ setPid(Integer pid): void
+getPriority():Integer
+setPriority(Integer p): void

BRIEF RECAP OF:
"PROGRAMMING CLASS”

FIFO QUEUE

GG T

enqueue()

BRIEF RECAP OF:
"PROGRAMMING CLASS”

FIFO QUEUE

G (G e T

enqueue()

BRIEF RECAP OF:
"PROGRAMMING CLASS”

FIFO QUEUE

G (G e T

dequeue()

BRIEF RECAP OF:
"PROGRAMMING CLASS”

FIFO QUEUE

G G C

dequeue()

BRIEF RECAP OF:
"PROGRAMMING CLASS”

LIFO QUEUE

G G C

enqueue()

BRIEF RECAP OF:
"PROGRAMMING CLASS”

LIFO QUEUE

G (G e T

enqueue()

BRIEF RECAP OF:
"PROGRAMMING CLASS”

LIFO QUEUE

G (G e T

dequeue()

BRIEF RECAP OF:
"PROGRAMMING CLASS”

LIFO QUEUE

G G C

dequeue()

DO o:.o1 TRY THIS
AT .
" v HOME!

; \ <<abstract>> "
Scheduler e Queue Process
@ fl[st

+ addProcess(Process p, Queue q):void
+ schedule(Queue q):Process

+ enqueue(Process p):void
+ dequeue():Process

| FIFOQueue | l LIFOQueue l | PriorityQueue '

Q: HOW WOU|C| you test Scheduler? Remember: Unit tests run in isolation! %

TEST SCAFFOLDING

INTEGRATION TESTING

/

public class TestUserAccount {

private Connection dbConnection;

@Before public void

setUp(){
this.dbConnection = new dbConnection("...");
this.dbConnection.connect();

}

@Test public void verifyAccountCredentials(){
Vi A

}

@After public void

tearDown(){
this.dbConnection.close();
this.dbConnection = nulll;

INTEGRATION TESTING

public class TestUserAccount {

@Before public void
CosetUp O .
: this.dbConnection = new dbConnection("...");E
this.dbConnection.connect(); !

}
..@Test public void verifyAccountCredentials(){ ___
2
e }. ... 1

@After public void
tearDown(){

INTEGRATION TESTING
PROBLEM

* Integrate multiple components implies to decide in which
order classes and subsystems should be integrated and tested

@@ Problem
» Class Integration Testing Order Problem

» Solution:
» lopological sort of dependency graph

INTEGRATION TESTING
EXAMPLE

INTEGRATION TESTING
EXAMPLE

—————_—J

TESTING IN ISOLATION

Testing In Isolation benefits!

TESTING IN ISOLATION

Testing In Isolation benefits!

T —

Test code that have not been written

EE—

TESTING IN ISOLATION

Testing In Isolation benefits!

r ‘

Test code that have not been written

Test only a single method (behavior) without
i ciicclsiiromiotiner objeets

e ———— —————WW

SCHEDULER EXAMPLE

*

Scheduler

+ addProcess(Process p, Queue q):void
+ schedule(Queue q):Process

dluEE:

| FIFOQueue l

<<abstract>>
Queue

+ enqueue(Process p):void
+ dequeue():Process

l LIFOQueue |

_list

Process

' PriorityQueue l

SCHEDULER@addProcess

‘ client l

(

addProcess(P, Q)

}

‘ s:Scheduler ‘

enqueue(P)

‘ q:Queue ‘

SOLUTION WITH STUBS

\.
public class DummyQueue implements Queue {

@0verride
public void enqueue(Process p) {
throw new RuntimeException();

}
}

public class TestScheduler {

@Test
public void addProcessCallMethodEnqueueOfQueue() {
Scheduler s = new Scheduler();
try {
DummyQueue q = new DummyQueue();
s.addQueue(q);
s.addProcess(new DummyProcess(), q);
fail("addProcess did not call the enqueue method of queue");
} catch (RuntimeException re) {}

N)y

@Marco Zeul

KEY IDEAS

* Wrap all the detalls of Code
* (sort of) Simulation

* Mocks do not provide our own implementation of the
components we'd like to swap In

 Main Difference:
» Mocks test behavior and interactions between components

» Stubs replace heavywelght process that are not relevant to
a particular test with simple iImplementations

MOCK OBJECTS

* Powerful way to implement Behavior Verification
» while avoiding Test Code Duplication between similar tests.

* It works by delegating the job of verifying the indirect outputs
of the SUT

» Important Note: Design for Mockability

» Dependency Injection Pattern

NAMING CONFUSION

» Unfortunately, while two components are qurte distinct, they're

used Interchangeably.
* Example: spring-mock package

* It we were to be stricter in terms of naming, stub objects
defined previously are test doubles

» Test Doubles, Stubs, Mocks, Fake Objects... how could we

work 1t out ?

TEST DOUBLE PAT TERN

Y
fJNA/V Test

Double

« Q: How can we verify logic iIndependently when code it depends on
IS unusable?

* QI: How we can avoid slow tests ?

* A:\We replace a component on which the SUT depends with a “test-
specific equivalent.”

TEST STUB PAT TERN

- Q: How can we verify logic independently when it depends
on Indirect inputs from other software components ¢

* A:\We replace a real objects with a test-specific object that
feeds the desired inputs into the SU

T —————— T

MOCKS OBJECTS

e
-
I\

>

Creation
Setup H
Installation
Exercise =
Exerci E:t U T
Ve nfy Final Venfication
leardown

Indirect
Output

Mock
Object

Expectations

Verify

T
/—j :!
S/
‘9]
C.

* Q: How can we implement Behavior Verification for indirect

Sllieliis ot the SU ¢

* A: Ve replace an object on which the SUT depends on with
a test-specific object that verifies 1t Is being used correctly by

e SIORE

S —

B ——

MOCK LIBRARIES

* [wo main design philosophy:
- DSL Libraries
- Record/Replay Models Libraries

Record Replay Frameworks: First
train mocks and then verify expectations

DSL Frameworks:
*Domain Specific Languages
-Specifications embedded in “Java” Code

MOCK LIBRARIES

* [wo main design philosophy:
- DSL Libraries
- Record/Replay Models Libraries

DSL Frameworks:
*Domain Specific Languages
-Specifications embedded in “Java” Code

SOLUTION WITH MOCK

1mport org.jmock.Expectations;

import org.jmock.integration.junit4.JUnitRuleMockery;
import org.junit.Before;

import org.junit.Test;

public class SchedulerTestWithJMock {

private final JUnitRuleMockery context = new JUnitRuleMockery();
private final Queue queue = context.mock(Queue.class);
private final Process process = context.mock(Process.class);

private Scheduler s;

@Before public void

setUp(){
this.s = new Scheduler();
}

@Test public void
addProcessCallsMethodEnqueueOfQueue(){

context.checking(new Expectations(){{
oneOf(queue) .enqueue(process);

);

this.s.addQueue(queue);
this.s.addProcess(process, queue);

JMOCK MAIN FEATURES

JMOCK FEATURES (INTRO)

» [Mock previous versions required subclassing

* Not so smart In testing
» Now directly integrated with Junit4
» [Mock tests requires more typing

* IMock APl Is extensible

IMOCK FEATURES

* IMock syntax relies heavily on chained method calls

* Sometimes difficult to decipher and to debug

- Common Patterns:

1nhvocation-count(mockobject) .method(arguments);
1nSequence(sequence-name);
when(state-machine.1i1s(state-name));
will(Caction);

then(state-machine.i1s(new-state name));

e FIXTURE

import org.jmock.Expectations;

import org.jmock.integration.junit4.JUnitRuleMockery;
import org.junit.Before;

import org.junit.Test;

public class SchedulerTestWithJMock {

N private final JUnitRuleMockery context = new JUnitRuIeMockery();/,

- Mockery represents the context

» JUn1tRuleMockery replaces the @RunWith(JMock.class)

annotation

» JUnit4Mockery reports expectation failures as JUnit4 test failures

2. CREATE MOCK OBJECTS

. g . N
private final Queue queue = context.mock(Queue.class);
private final Process process = context.mock(Process.class);

N &

- References (fields and Vars) have to be final

» Accessible from Anonymous Expectations

3. TESTS WITH EXPECTATIONS

o .
context.checking(new Expectations(){{

one0f(queue).enqueue(process);

B)

2 4

* A test sets up It expectations in one or more expectation
blocks

* An expectation block can contain any number of
expectations

* Expectation blocks can be interleaved with calls to the
Eeal=ninder test.

3. TESTS WITH EXPECTATIONS

) .
context.checking(new Expectations(){{
one0f(queue).enqueue(process);

1);

i)

- Expectations have the following structure:

1nhvocation-count(mockobject).method(arguments);

1nSequence(sequence-name);
when(state-machine.i1s(state-name));
will(Caction);

then(state-machine.i1s(nhew-state name));

R —

WHAI ARE THOSE DOUBLE BRACES!

57 .
context.checking(new Expectations(){{
one0f(queue).enqueue(process);

1);

N

» Anonymous subclass of Expectations

* Baroque structure to provide a scope for setting expectations

« (ollection of expectation components

* |s an example of Builder Pattern
 Improves code completion

COOKBOOK: EXPECT A
SEQUENCE OF INVOCATIONS

Expect that a sequence of method calls has
been executed In the right order

| pemcer .
public interface DummySequencelnterface {
void first(Q);

void second();
void third();
}

public class Sequencelauncher {

public void startSequence(DummySequencelnterface seq) {
seq.first();
seq.second();
seq.third();
}
'\} 7 @Marco Zeul

EXPEC T A SEQUERS.
OF INVOCATIONS

>4

import
import
import
import
import
import
import
import

public

org

org.
org.
. jmock.
org.
org.
org.
JJjunit.

org

org

. jmock.

jmock.
jmock.

jmock.
junit.
junit.

Expectations;

Sequence;

auto.Auto;

auto.Mock;

integration. junit4.JUnitRuleMockery;
Before;

Rule;

Test;

class TestSequencelauncher {

@Rule
public final JUnitRuleMockery context = new JUnitRuleMockery();

@Mock DummySequencelnterface seqlnt;
@Auto Sequence seq;

private Sequencelauncher launcher;

@Before

public void setUp() {
launcher = new Sequencelauncher();

}

@Test //This test should pass
public void sequencelsPerformedInTheCorrectOrder() {
context.checking(new Expectations(){{

one0f(seqlnt).first(); inSequence(seq);

oneOf(seqlnt).second(); inSequence(seq);

one0f(seqlnt).third(); inSequence(seq);
s

launcher.startSequence(seqlnt);

}

@Test //This test should NOT pass
public void sequencelsNOTPerformedInTheCorrectOrder() {
context.checking(new Expectations(){{
one0f(seqlnt).second(); inSequence(seq);
one0f(seqlnt).first(); inSequence(seq);
one0f(seqlnt).third(); inSequence(seq);
D

launcher, startSequence(seqlnt);

/_

@Marco Zeul

I ————

EXERCISE I

Roman Calculator

A SIMPLE EXAMPLE:
THE ROMAN CALCULATOR

7 3
Fveryone always uses the same one, which I1s a Roman

Numerals, but 'm going to give It a little twist, which is that I'll try
and use a Roman Numeral calculator - not a Roman Numeral
converter |...]

r .

Source: https://github.com/hjwp/tdd-roman-numeral-calculator
. -

PYTHON Vs

» Language for geeks » Language for "“serious’” guys
* Multi-paradigm » Object Oriented Language
- Strong lyped - Strong [yped

* Dynamic lyped - Static lyped

DUCK TYPING

def half (n):
return n/2.0

i | 5
*\Walks like a duck?

» Quacks like a duck? Q:What is the Gy]

the variable n
——

*Yes, It’s a duck!
B o

S THERE SOMEONE THAT
(REALLY) USES PYTHON?

- IBM, Google, Microsoft, Sun, HE
NASA, Industrial Light and Magic

 Google it! >
* site:microsoft.com python

e You'll get more than 9k hits \J

CONTACTS

http://wpage.unina.it/valerio.maggio

MAIL:

Top About Pubications Teaching in ard Others Contact

eanai

lnbarnche [Shasd]
Interests (Short

bout ~

Ore b of me is & PhD. studert whose research

valerio.maggio@unina.it

t BSc. and MSc. degroes In Computer Science both with honours

n laude) ot the University of Naples “Fedenco II*

oo March 2010 I'm & Ph.D. Student in Computational and Compater

onoe al University of Naples “Fedenco I

cumerd redaach work is manly facused on the delralon and on e
scation of Information Retrieval and Machine Learning tectregues
Software Maintenance tasks such as Mvang Software Roeposdonos,
Tware Remodudadization ind Clone Detection

v advisors ae Doc. §. O Matno and Doc. A, Comazza who e
cochars of the XNOME (KNOwledge Maragement and

cwenng) Lad.

o
»
—_
1%

interosts ave fooused on both Machine Learning
and Software Engineering, thanks 10 my two
achvisors who fad e Hlerss! 0 such 1opecs since

was a MSc. student

Ancther haif of me is a paasiorate Python
programmer who loves TDD (Tes! Driven
Development) and Web Technologes

'm a membder of e Italian Python A

and an erthusiastic 0 Seveloper

Finally, the last hal! of me ...mmm, maybe too
Mty hilves | guess _ afywity . S0%e part of me
(propety menged withe the provious twol enyoys
drinking good tea and kstening 0 good

I»u'HH m.hdjan 20 'COde & §§ number é

i nur]] W = —n - E

matc 1ng analysls macth Z
s«methods crunchln &

GSOftW&I‘ epattcmalcronthm

L0 8 S retrieval learning
Q'l O ir-~.l}m;n1n(1 2re Iln-‘u] nzation E 3
w EFC SOClal EA' ,|'~;-H‘\W-I['41l7l; [teru ..I‘ y¢"§

-4 tht datat Jstring £ mode norpabiation &

s ™ - t; 5

network

-~

REFERENICES (1)

Growing Object-Oriented
Software, Guided By lests

Freeman and Pryce, Addison
Wesley 2010

[IMISERSRIfo|ECT VVEDSITE
(http://jmock.org)

v

4 l%;,_."

% p‘g
< ("l 2
3

GROWING
OBJECT-ORIENTED
SOFTWARE,

(GUIDED BY TLSTS

STEVE FREEMAN | ‘v AR
NAT PRYCE '

%0 S

REFERENCES (I

!
.0‘\\ "o'
%

T .
XUNIT TEsT o B xUnit Test Patterns:
PATTERNS Refactoring Test Code
Meszaros G., Pearson

Education 200/

