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EXERCISE 1
Calculator
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CALCULATOR CLASS

• Requirements:

• Input numbers cannot have 
more than 5 digits;

• The calculator can remember 
a given (unique) number;

• Only non-negative numbers 
are allowed.

• In case of negative numbers, 
an exception is thrown!

Calculator

+ add (double augend, double addend): double
+ subtract (double minuend, double subtrahend): double
+ multiply (double multiplicand, double multiplier): double
+ divide (double dividend, double divisor): double 
+ addToMemory(double number): void
+ recallNumber(): double

- memory: double
+ MAX_DIGITS_LEN: int = 5 <<final>> <<static>>



EXERCISE 1I
Stack



STACK: LIFO QUEUE
Stack

<<constructor>>
+ Stack(capacity: int) 

+ pop(): Process
+ push(Process p): void

Process

+ getName():String
+ setName(String n): void
+getPid(): Integer
+ setPid(Integer pid): void
+getPriority():Integer
+setPriority(Integer p): void

- name: String
- pid: Integer
- priority: Integer (default=-1)

*1

_list
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+ enqueue(Process p):void
+ dequeue():Process

<<abstract>>
Queue *1

_list
Process

FIFOQueue LIFOQueue PriorityQueue

+ addProcess(Process p, Queue q):void
+ schedule(Queue q):Process

Scheduler 1 *

_queues

Q: How would you test Scheduler? Remember: Unit tests run in isolation!



TEST SCAFFOLDING
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INTEGRATION TESTING 
PROBLEM

• Integrate multiple components implies to decide in which 
order classes and subsystems should be integrated and tested

• CITO Problem
• Class Integration Testing Order Problem

• Solution:
• Topological sort of dependency graph
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TESTING IN ISOLATION
Testing in Isolation benefits!
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TESTING IN ISOLATION

Test only a single method (behavior) without 
side effects from other objects

Test code that have not been written

Testing in Isolation benefits!



SCHEDULER EXAMPLE

+ enqueue(Process p):void
+ dequeue():Process

<<abstract>>
Queue *1

_list
Process

FIFOQueue LIFOQueue PriorityQueue

+ addProcess(Process p, Queue q):void
+ schedule(Queue q):Process

Scheduler 1 *

_queues



s:Schedulerclient

addProcess(P, Q)

q:Queue

enqueue(P)

SCHEDULER@addProcess



SOLUTION WITH STUBS

@Marco Zeuli



KEY IDEAS

• Wrap all the  details of Code
•  (sort of) Simulation

• Mocks do not provide our own implementation of the 
components we'd like to swap in

• Main Difference:
• Mocks test behavior and interactions between components

• Stubs replace heavyweight process that are not relevant to 
a particular test with simple implementations



MOCK OBJECTS

• Powerful way to implement Behavior Verification 
• while avoiding Test Code Duplication between similar tests.

• It works by delegating the job of verifying the indirect outputs 
of the SUT

• Important Note: Design for Mockability
• Dependency Injection Pattern



NAMING CONFUSION

• Unfortunately, while two components are quite distinct, they're 
used interchangeably.
• Example: spring-mock package

• If we were to be stricter in terms of naming, stub objects 
defined previously are test doubles

• Test Doubles, Stubs, Mocks, Fake Objects… how could we 
work it out ?



TEST DOUBLE PATTERN 

• Q: How can we verify logic independently when code it depends on 
is unusable?

• Q1: How we can avoid slow tests ?

• A: We replace a component on which the SUT depends with a “test-
specific equivalent.”



TEST STUB PATTERN 

• Q: How can we verify logic independently when it depends 
on indirect inputs from other software components ?

• A: We replace a real objects with a test-specific object that 
feeds the desired inputs into the SUT



MOCKS OBJECTS

• Q: How can we implement Behavior Verification for indirect 
outputs of the SUT ?

• A: We replace an object on which the SUT depends on with 
a test-specific object that verifies it is being used correctly by 
the SUT.



MOCK LIBRARIES
• Two main design philosophy:

• DSL Libraries
• Record/Replay Models Libraries

Record Replay Frameworks: First 
train mocks and then verify expectations

DSL Frameworks:
•Domain Specific Languages
•Specifications embedded in “Java” Code
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SOLUTION WITH JMOCK
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JMOCK FEATURES (INTRO)

• JMock previous versions required subclassing
• Not so smart in testing

• Now directly integrated with Junit4

• JMock tests requires more typing

• JMock API is extensible



JMOCK FEATURES

• JMock syntax relies heavily on chained method calls

• Sometimes difficult to decipher and to debug

• Common Patterns:
invocation-count(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));



1. TEST FIXTURE

• Mockery represents the context

• JUnitRuleMockery replaces the @RunWith(JMock.class) 
annotation

• JUnit4Mockery reports expectation failures as JUnit4 test failures



2. CREATE MOCK OBJECTS

• References (fields and Vars) have to be final

• Accessible from Anonymous Expectations



3. TESTS WITH EXPECTATIONS

• A test sets up it expectations in one or more expectation 
blocks

• An expectation block can contain any number of 
expectations

• Expectation blocks can be interleaved with calls to the 
code under test.



3. TESTS WITH EXPECTATIONS

• Expectations have the following structure:

invocation-count(mockobject).method(arguments);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state name));



WHAT ARE THOSE DOUBLE BRACES?

• Anonymous subclass of Expectations
• Baroque structure to provide a scope for setting expectations

•  Collection of expectation components
•  Is an example of Builder Pattern
•  Improves code completion



COOKBOOK: EXPECT A 
SEQUENCE OF INVOCATIONS

Expect that a sequence of method calls has 
been executed in the right order

@Marco Zeuli
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EXERCISE III
Roman Calculator



A SIMPLE EXAMPLE: 
THE ROMAN CALCULATOR

Everyone always uses the same one, which is a Roman 
Numerals, but I’m going to give it a little twist, which is that I’ll try 
and use a Roman Numeral calculator - not a Roman Numeral 
converter [...]

Source: https://github.com/hjwp/tdd-roman-numeral-calculator 



PYTHON

• Language for geeks

• Multi-paradigm

• Strong Typed

• Dynamic Typed

• Language for “serious” guys

• Object Oriented Language

• Strong Typed

• Static Typed

JAVAvs



DUCK TYPING

•Walks like a duck?

•Quacks like a duck?

•Yes, It’s a duck!

def half (n):
    return n/2.0

Q: What is the type of 
the variable n



IS THERE SOMEONE THAT 
(REALLY) USES PYTHON?

• IBM, Google, Microsoft, Sun, HP, 
NASA, Industrial Light and Magic

• Google it!

• site:microsoft.com python

• You’ll get more than 9k hits



CONTACTS

MAIL:
valerio.maggio@unina.it

http://wpage.unina.it/valerio.maggio
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