DIE UNIVERSITA'DEGLI STUDI DI NAPOLI FEDERICO II

On the Integration of Cloud Computing and Internet of Things

FiCloud-2014, August 27 2014 – Barcelona, Spain

Alessio Botta, Walter de Donato, <u>Valerio Persico</u>, Antonio Pescapè

The CloudloT Paradigm

Cloud Paradigm

- Everything as a Service (*aaS)
- Easy flexibility and scalability
- Pay-as-you-go model and reduced business risk

Internet of Things (IoT)

- Intelligent and self-configuring nodes
- Communicating-actuating network
- Enabler for ubiquitous and pervasive computing scenarios

The CloudloT Paradigm: a Survey

Why?

Many works merge Cloud and IoT paradigms

- Many works have surveyed Cloud and IoT separately
- To the best of our knowledge literature lacks a detailed analysis on the Integration of Cloud and IoT

Methodology of the Survey

Methodology of the Survey

Temporal Characterization of the Literature

- Research and Interest Trends about Cloud and IoT
- Source: Google Scholar

of publications

Methodology of the Survey

Complementarity of Cloud and IoT

Virtual Resources	Real world (everyday) Things
Ubiquitous	Pervasive Things
Unlimited Resources	Poor Resources
Internet for Service Delivery	Internet as a Point of Convergence

The Need for Integration: Storage

IoT involves

- a large set of information sources
- a huge amount of non-structured/semi-structured (BIG) data
- the need for collecting, searching, accessing, sharing, visualizing this data

Cloud is the most convenient and effective solution to accomplish these tasks

The Need for Integration: Computation

- Things have typically very limited computational and energy resources
 - Limited resources do not allow on-site processing
 - In some cases aggregation nodes are needed
- Cloud enables
 - task-offloading and energy saving
 - scalable, real-time, sensor-centric applications
 - data-driven decisions
 - prediction algorithms

The Need for Integration: Communication

 IoT typically requires that devices communicate (through dedicated hardware)

Cloud offers an effective and cheap solution

- to connect, track, and manage
- any thing from anywhere at any time
- using customized portals and built-in apps

The (Positive) Effects of Integration

New convergence scenario

• New opportunities for data aggregation, integration, and sharing

Analyses of unprecedented complexity

Increased revenues and reduced risk

Data-driven decision making algorithms

New capabilities and paradigms

- Sensor as a Service (SenaaS)
- Data as a Service (DaaS)

Methodology of the Survey

Application Scenarios

A wide set of applications is made possible or significantly improved by CloudIoT

Application Scenarios

A wide set of applications is made possible or significantly improved by CloudIoT

CloudloT and Healthcare

- CloudioloT as an enabler for cost-effective, efficient, timely, and ubiquitous medical services
 - Health information delivery
 - Managing healthcare sensor data efficiently
 - Reduced need for expertise in technology infrastructures through abstraction of technical details

CloudloT and Videosurveillance

- Intelligent Videosurvelliance is a tool of the greatest importance for several security related applications
- Requirements of storage
 - Centrally secured
 - Fault tolerant
 - Accessible on-demand
 - Accessible at high speed

- Requirements of processing
 - Video processing
 - Computer vision algorithms
 - Pattern recognition modules

- Cloud-based solution as an alternative to in-house self-contained approach
 - Storage, processing, deliver

CloudloT and Smart City

Ubiquitous connectivity and real-time applications for smart city

- Sensor platform
 - Heterogeneous sensing devices
 - Large-scale
- Cloud Architecture
 - Discovery, connection, and integration of things
 - Automatic management, analysis, and control
- Common middleware for future-oriented smart-city services
 - Collecting information from heterogeneous infrastructure
 - Exposing it in a uniform way

Methodology of the Survey

Platform and Services

Bridge the gap between Cloud and IoT

Solve issues related to the heterogeneity of Things and Clouds
Typically provide an API towards the applications

Different Approaches

Ready to use platforms
Platform aimed at creating a toolkit (e.g., to glue protocols for the things, the clouds or the applications)

Different Solutions

- Open Source and Commercial
- Working with Open Things or bound to Proprietary Things

(Examples of) Open Source Platforms

- Aimed at integrating the things with backends for managing sensors
- Showcased with video sensors (IP-cameras) on FutureGrid Cloud testbed
- <u>http://sites.google.com/site/opensourceiotcloud/</u>

OpenIoT

- Financed by EU
- Aimed at providing a middleware to configure and deploy algorithms for collecting filtering messages by things
- Focuses on mobility aspects
- <u>http://www.openiot.eu/</u>

loT Toolkit

- Aimed at developing a toolkit that glues several protocols available for the Cloud, for the things, and for the applications
- <u>http://iot-toolkit.com/</u>

(Some) CloudloT Services

Xively | Open Sen.se | Thing Speak

- Collect data from things and store data on Cloud
- Typically provide an API
- Starting from them, companies created toolkits for integrations
- <u>https://xively.com/</u>
- <u>http://open.sen.se/</u>
- <u>https://thingspeak.com/</u>

A Research Project

ClouT

Industrial, research partners, and city administrations (from EU and Japan)
Aimed at developing infrastructures, services, tools, and applications to manage user-centric applications based on IoT and Cloud Integration

Declared targets of the project Increased Safety m City even Emergen

Enhanced public transportation

Increased citizen participation

Safety management

City event monitoring

Emergency management

Methodology of the Survey

- CloudloT complex scenario
 - specific capabilities to be satisfied
 - heterogeneous topics imposing specific challenges
 - new concerns due to the lack of essential properties
 - E.g., trust in the service provider, knowledge about service level agreements etc.

- IoT services typically provided as isolated vertical solutions
- All system components tightly coupled to the specific application context
- Huge amounts of heterogeneous things to be properly addressed into the Cloud at different levels
- Efficient, scalable, and easily-extensible service delivery enabled by CloudIoT
- Volume, variety, velocity
- Overall application performance highly dependent on the properties of the data management service

- Defined as "the major enabler of IoT"
- Recent technological advances have made efficient, low-cost, and low-power miniaturized devices available for use in large-scale, remote sensing applications
- Timely processing of huge and streaming sensor data, subject to energy and network constraints and uncertainties
- Lack of mobility of common IoT devices
- New challenges introduced by smartphones as well as wearable electronics

- Machine to machine (M2M) communication among many heterogeneous devices with different protocols
- Heterogeneity can impact performance
- CloudIoT inherits the same (essential)
 monitoring requirements from Cloud
- Challenges related to monitoring are further affected by volume, variety, and velocity characteristics of IoT

Open Issues and Future Directions (1/2)

- Energy Efficient Sensing and Computing
 - Low-cost, low-power, and energy-constrained sensors
 - Compressive sensing and synchronous communication
- Fog Computing
 - Extension of computing to the edge of the network
 - Designed to support IoT applications
 - imposing latency constraints
 - requiring mobility and geo-distribution
- New Protocols
 - Need for Standards to facilitate the interconnection among heterogeneous smart objects
 - MAC and routing protocols are critical
 - Existing routing protocols (OSPF, IS-IS, AODV, OLSR) do not satisfy requirements of Low Power and Lossy Networks

Open Issues and Future Directions (2/2)

Participative Sensing

- Relying on users volunteering data is a severe limitation
- Missing samples is critical in people-centric sensing
- Proper incentives must be identified
- Complex Data Mining
 - High number of big producers, high frequency of generation
 - The gap between available and processed data is getting wider
 - Percentage that an organization can analyze is on decline

Thanks! Questions?

valerio.persico@unina.it

