

DIE UNIVERSITA'DEGLI STUDI DI TI • NAPOLI FEDERICO II

CloudSurf:

a platform for monitoring public-cloud networks

<u>Valerio Persico</u>^{*}, Antonio Montieri[◊], Antonio Pescapè^{*,◊} ^{*}University of Napoli "Federico II" (Italy) [◊]NM2 srl (Italy)

IEEE RTSI 2016

Bologna, Italy, September 9th 2016

(Public) Cloud Paradigm

An increasing number of services and applications rely on Public Clouds

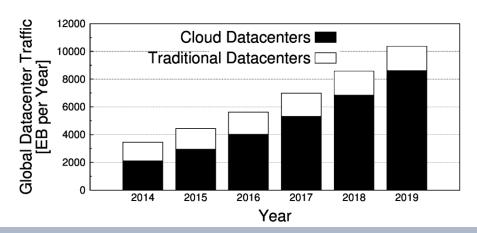
- XaaS: everything as a service
- Pay-as-you-go resources
- No upfront investments
- Real-time provisioning
- Ubiquitous access
- Autoscaling

Cloud infrastructures backed by huge investments from the providers

- Complex and continuously evolving infrastructures
- Hot research topic

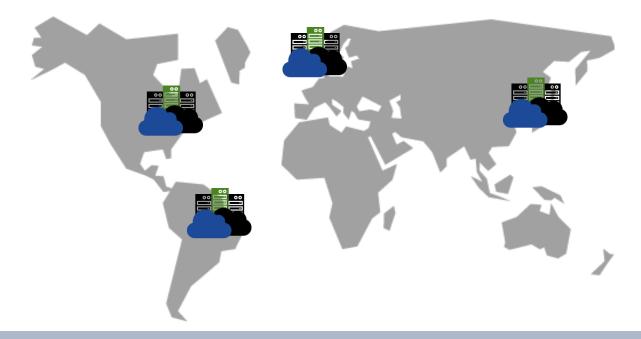
COMPUT	TATION	
Q _n	STORA	GE
0		NETWORKING
)	
{.(API	
~		
	́Г_	

Cloud Networking, a hot research topic


Cloud network performance is critical

- Without high-performance networks, there would be no such thing as cloud computing*
- The network can be the bottleneck for computation (e.g. scientific computing, video processing, etc.)
- Poor network provisioning can severely compromise user experience

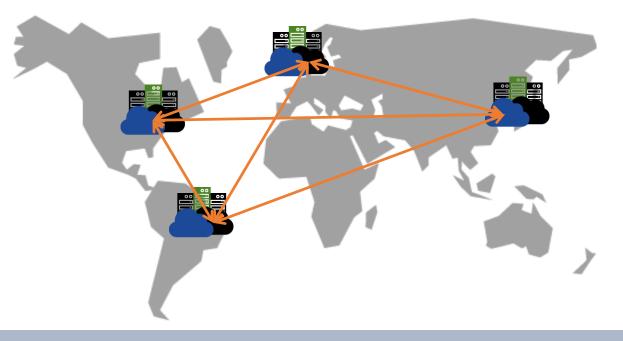
*Mogul and Popa, 2012 **Cisco Global Cloud Index: Forecast and Methodology 2014-2019


Cloud traffic is rapidly growing

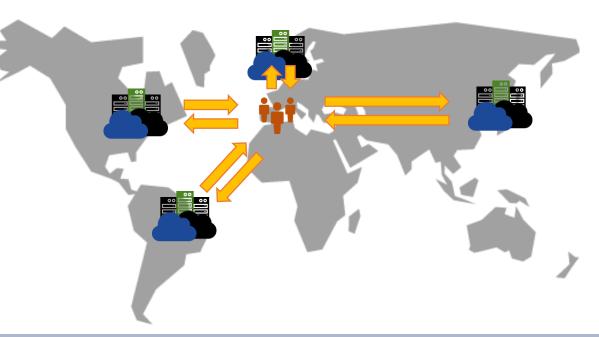
- Since 2008, most of the IP traffic has originated or terminated in a datacenter
- More than 83% of datacenter traffic will be cloud traffic by 2019**
- Public cloud is growing faster than private cloud

CLOUDSURF: A PLATFORM FOR MONITORING PUBLIC-CLOUD NETWORKS

Investments aim at improving the performance of the cloud network infrastructure in all its composing areas


Investments aim at improving the performance of the cloud network infrastructure in all its composing areas

Intra-datacenter


Investments aim at improving the performance of the cloud network infrastructure in all its composing areas

- Intra-datacenter
- Inter-datacenter

Investments aim at improving the performance of the cloud network infrastructure in all its composing areas

- Intra-datacenter
- Inter-datacenter
- Cloud-to-user

What kind of information about public-cloud networks customers are provided with?

Instance Type	vCPU	Memory (GiB)	Storage (GB)	Networking Performance
t2.micro	1	1	EBS Only	Low to Moderate
t2.small	1	2	EBS Only	Low to Moderate
t2.medium	2	4	EBS Only	Low to Moderate
m3.medium	1	3.75	1 x 4 SSD	Moderate
m3.large	2	7.5	1 x 32 SSD	Moderate
m3.xlarge	4	15	2 x 40 SSD	High
m3.2xlarge	8	30	2 x 80 SSD	High
		am veb	az serv	(ON ices™

Specifications	Extra Small	Small	Medium	Large	Extra Large
CPU	1.0 GHz	1.6 GHz	2 X 1.6 GHz	4 X 1.6 GHz	8 X 1.6 GHz
Memory	768 MB	1.75 GB	3.5 GB	7 GB	14 GB
VM Local Storage	20 GB	225 GB	490 GB	1,000 GB	2,040 GB
Network I/O Performance	Low	Moderate	High	High	High
Allocated Bandwidth	5 Mbps	100 Mbps	200 Mbps	400 Mbps	800 Mbps
Cost per Hour	\$0.05	\$0.12	\$0.24	\$0.48	\$0.96

CLOUDSURF: A PLATFORM FOR MONITORING PUBLIC-CLOUD NETWORKS

What kind of information about public-cloud networks customers are provided with?

Instance Type	vCPU	Memory (GiB)	Storage (GB)	Networking Performance
t2.micro	1	1	EBS Only	Low to Moderate
t2.small	1	2	EBS Only	Low to Moderate
t2.medium	2	4	EBS Only	Low to Moderate
m3.medium	1	3.75	1 x 4 SSD	Moderate
m3.large	2	7.5	1 x 32 SSD	Moderate
m3.xlarge	4	15	2 x 40 SSD	High
m3.2xlarge	8	30	2 x 80 SSD	High
web services™				

CLOUDSURF: A PLATFORM FOR MONITORING PUBLIC-CLOUD NETWORKS

Public cloud network monitoring

Effective, efficient, and accurate <u>monitoring</u> is constantly needed to manage increasing complexity

- Providers rarely make promises or expose details about the network
- Customers have to cope with the limited awareness about cloud networking environments
 - Performance unpredictability
 - Performance variability
 - Hidden datacenter topology and virtual machine (VM) location

Public cloud network monitoring

Effective, efficient, and accurate <u>monitoring</u> is constantly needed to manage increasing complexity

- Providers rarely make promises or expose details about the network
- Customers have to cope with the limited awareness about cloud networking environments
 - Performance unpredictability
 - Performance variability
 - Hidden datacenter topology and virtual machine (VM) location

- *Non-cooperative* monitoring approaches
 - do not require access to any restricted information
 - adopt the point of view of the general consumer
- Customers are able to
 - validate the (poor) information supplied by the provider
 - perform informed choices among different services or different providers

LOUDSURF: A PLATFORM FOR MONITORING PUBLIC-CLOUD NETWORKS

The blurred picture of the cloud network

Cooperative approaches

- privileged points of view (e.g., SNMP logs, datacenter traffic traces)
- data privacy-concerns
- datasets not publicly available

Non-cooperative approaches

- analyses rarely focused on the performance of the network
- different methodologies adopted (measurement tool, observation period)
- limited and non-univocally defined scenarios

CloudSurf

a platform to monitor public-cloud networks

Non-cooperative approaches

- adoption of the point of view of the general customer
 no need for access to information restricted to the provider

Comprehensiveness

- different providers
- different use scenarios

Predictability of experimental costs

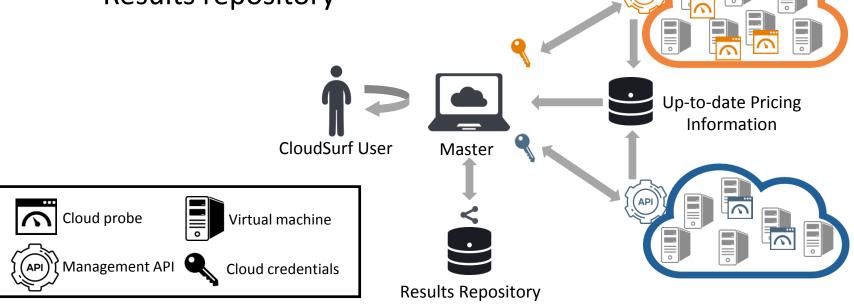
- computation cost
- network-usage cost

Results sharing

- community results repository

• Ease of use

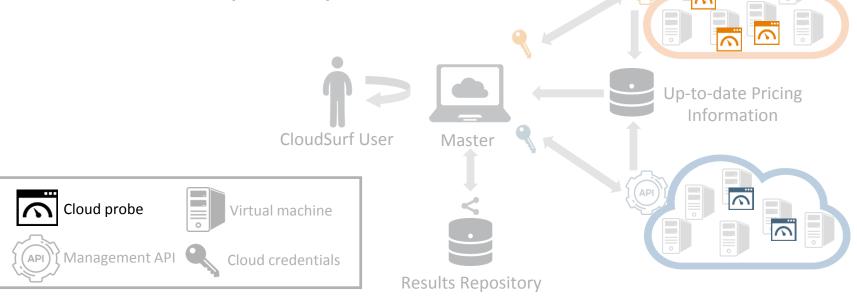
- on demand measurements
- no specific monitoring skills needed


Public availability http://traffic.comics.unina.it/cloudsurf

CloudSurf architecture

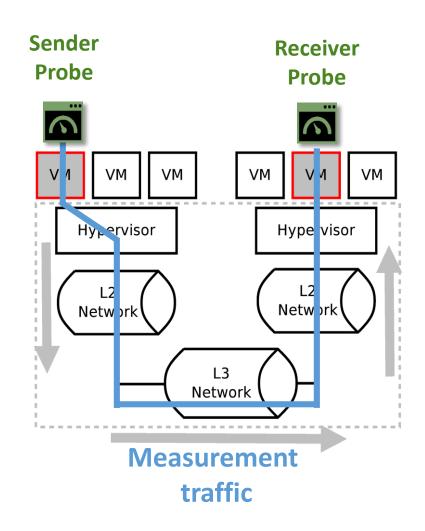
Main components

- Cloud probes
- Master
- Results repository


CloudSurf architecture

Main components

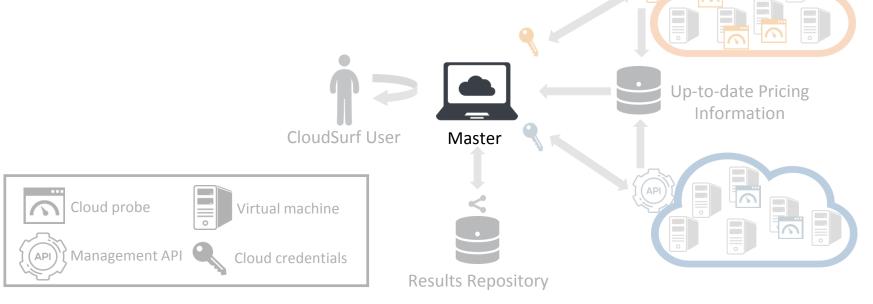
- Cloud probes
- Master



Cloud probes

Remote measurement servers

- deployed on demand by the <u>master</u> through the laaS model
- integrate active monitoring tools
- expose services through the XML-RPC protocol



CloudSurf architecture

Main components

- Cloud probes
- Master
- Results repository

Master

Orchestrates the overall monitoring process

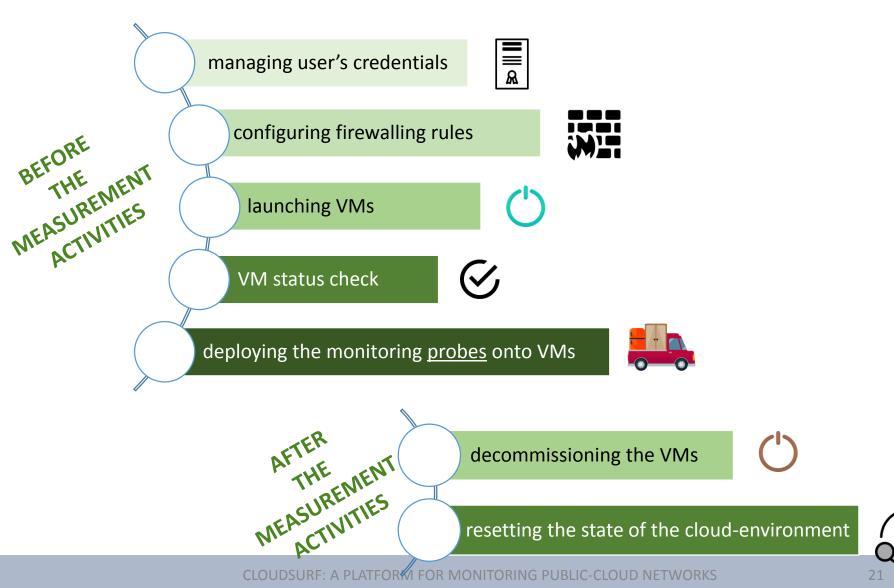
- Experiment-cost estimation
- Cloud-environment setup
- Probe deployment
- Experiment life-cycle management
- Is directly interfaced to the customer
 - Interactive mode vs. batch mode
 - Usage is independent from heterogeneous provider's APIs
 - A set of *factors* of interest uniquely identifies scenarios

Experiment-cost estimation

$$Exp_{cost} = \left[\frac{D}{3600}\right] \times \left(C_{VM}^{sender} + C_{VM}^{receiver}\right) + R \times C_{traffic}$$

- *D*[s]: experiment duration
- $C_{VM}^{sender}[!]$: hourly cost of the sender VM
- $C_{VM}^{receiver}[^{\notin}/_h]$: hourly cost of the receiver VM
- $R[^{GB}/_{s}]$: rate of measurement traffic
- $C_{traffic}[^{\notin}/_{GB}]$: data transfer charge

Master


Orchestrates the overall monitoring process

- Experiment-cost estimation
- Cloud-environment setup
- Probe deployment
- Experiment life-cycle management

Is directly interfaced to the customer

- Interactive mode vs. batch mode
- Usage is independent from heterogeneous provider's APIs
- A set of *factors* of interest uniquely identifies scenarios

Cloud-environment setup

Master

Orchestrates the overall monitoring process

- Experiment-cost estimation
- Cloud-environment setup
- Probe deployment
- Experiment life-cycle management

• Is directly interfaced to the customer

- Interactive mode vs. batch mode
- Usage is independent from heterogeneous provider's APIs
- A set of *factors* of interest uniquely identifies scenarios

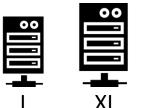
Factors to identify scenarios

- Region e.g.,
 - North Virginia (US)
 - Ireland (EU)
 - Singapore (AP)
 - Sao Paulo (SA)
- VM type and size e.g.,
 - General purpose, compute optimized, storage optimized
 - Medium (M), Large(L), Extra Large (XL)
- Configuration
 - Availability zone
 - Affinity Group
 - Virtual Network
- Transport protocol
- Communication channel

°

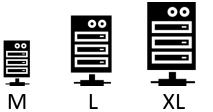
Μ

EXPERIMENTAL • VM relocation and probe placement Packet size and rate


FACTOR

23

DEPLOYMENT FACTORS


Factors to identify scenarios

- Region e.g.,
 - North Virginia (US)
 - Ireland (EU)
 - Singapore (AP)
 - Sao Paulo (SA)
- VM type and size e.g.,
 - General purpose, compute optimized, storage optimized
 - Medium (M), Large(L), Extra Large (XL)

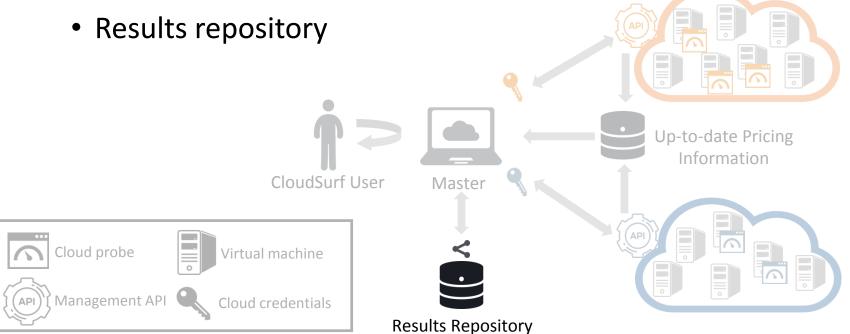
Configuration

- Availability zone
- Affinity Group
- Virtual Network
- Transport protocol
- Communication channel
- Packet size and rate
 VM relocation and probe placement

Factors to identify scenarios

- Region e.g.,
 - North Virginia (US)
 - Ireland (EU)
 - Singapore (AP)
 - Sao Paulo (SA)
- VM type and size e.g.,
 - General purpose, compute optimized, storage optimized
 - Medium (M), Large(L), Extra Large (XL)
- Configuration
 - Availability zone
 - Affinity Group
 - Virtual Network
- Transport protocol
- Communication channel

Μ


• Packet size and rate • VM relocation and probe placement

XL

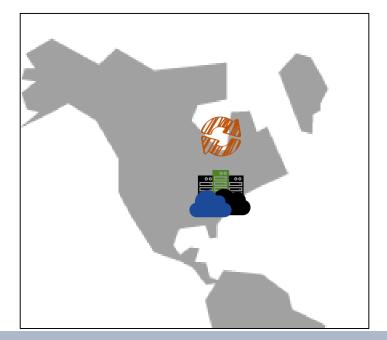
Results repository

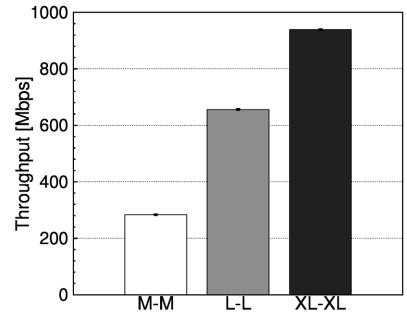
- Main components
 - Cloud probes
 - Master

Results repository

Community archive where results are uploaded by the master

- JSON-encoded homogenous format to reduce the heterogeneity of the raw output of the tools
 - Metadata of the experimental campaign
 - Instantaneous values
 - Synthetic information
- Users can access information related to a wider set of configurations and scenarios reducing experimental cost
 - More than 1,000 hours of experimental data already shared

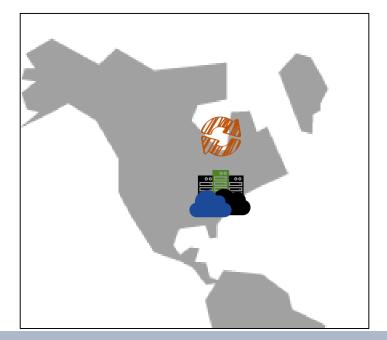

CloudSurf allows to improve the knowledge about public-cloud networks

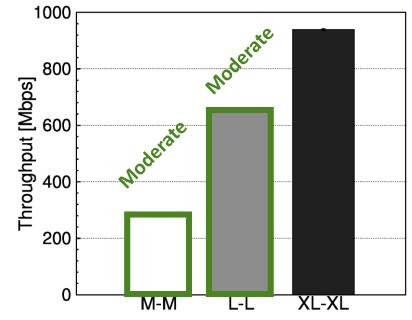

- How network resources are allocated to customer VMs?
- Which provider performs better?
- How performance varies across different geographical regions?
- Which cloud region serves better a given customer?

Performance figures advertised by providers are coarse-grained

Amazon intra-datacenter throughput

- TCP throughput
- 24-hour-long campaign
- repeated 5-minute long experiments

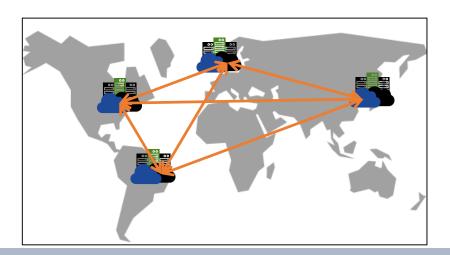


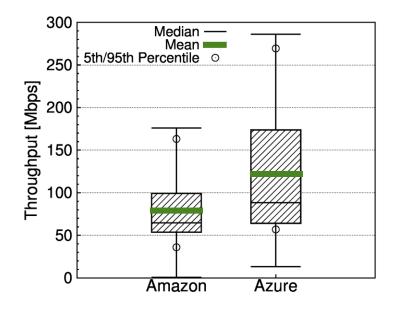

- Performance in terms of throughput varies with VM size (and cost)
- Negligible variability observed over time
- M-sized and L-sized VMs are both advertised to have *Moderate* network performance

Performance figures advertised by providers are coarse-grained

Amazon intra-datacenter throughput

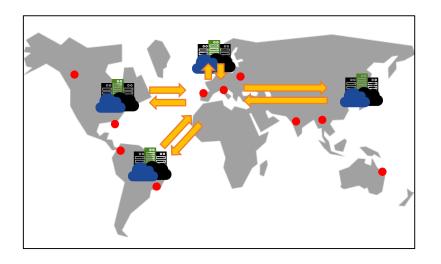
- TCP throughput
- 24-hour-long campaign
- repeated 5-minute long experiments



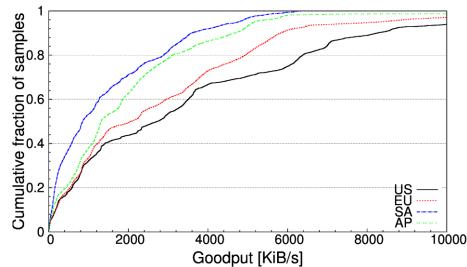

- Performance in terms of throughput varies with VM size (and cost)
- Negligible variability observed over time
- M-sized and L-sized VMs are both advertised to have *Moderate network performance*

Performance may heavily vary across different providers

Inter-datacenter TCP throughput


- Four different Amazon and Azure regions
 - Ireland
 - North Virginia
 - Singapore
 - Sao Paulo
- 300-hour-long campaign

- VM size is not influential
- Azure inter-datacenter network performs better in terms of throughput
 - +56%, on average


Some cloud regions are connected to users better than others

Cloud-to-user download performance

- Download 100MiB-content stored in 4 different cloud sites
- Vantage points spread worldwide (PlanetLab nodes)

- US and EU regions performs 45.5% better than SA and AP regions, on average.
- Counterintuitively, AP and SA are also associated to higher network-transfer costs with respect to EU and US.

Conclusion

- Cloudsurf implements non-cooperative monitoring approaches to monitor public-cloud networks
 - Comprehensive
 - Easy to use
 - Freely available at <u>http://traffic.comics.unina.it/cloudsurf/</u>
- Main features
 - Customizable experiments
 - Two providers supported (as for now)

- Intra-datacenter, Inter-datacenter, cloud-to-user network performance
- Community repository
- CloudSurf helps to improve the knowledge about public-cloud network performance

valerio.persico@unina.it http://wpage.unina.it/valerio.persico

http://traffic.comics.unina.it/cloudsurf/

