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A Fuzzy Approach based on Heterogeneous
Metrics for Scaling Out Public Clouds

Valerio Persico, Domenico Grimaldi, Antonio Pescapè, Alessandro Salvi, and Stefania Santini

Abstract—Thanks to resource elasticity, cloud systems allow to build high performance applications by dynamically adapting
resources to workload dynamics. In this paper, we present a novel approach for horizontally scaling cloud resources. The approach is
based on an optimized feedback control scheme that leverages fuzzy logic to self-adjust its parameters in order to cope with
unpredictable and highly time-varying public-cloud operating conditions. The proposed approach takes as input heterogeneous
monitoring metrics related to distinct aspects of interest (i.e., CPU and network load) merged through a fitness function. Therefore, it is
able to accomplish the application needs from different viewpoints. The extensive experimental evaluation performed in the Amazon
EC2 environment showed how the proposed approach is robust against a number of realistic workloads—also when VM failures
happen—and that it is flexible, as being suitable for applications with different needs. Finally, it also achieves better performance when
compared to previously proposed solutions.
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1 INTRODUCTION

C LOUD COMPUTING (hereinafter, cloud) is nowadays a
de facto standard in the IT world for providing ser-

vices to final users. An increasing number of Internet ser-
vices as well as private IT infrastructures have now been
moved to the cloud, mainly due to several economical and
technical benefits, e.g. on-demand services, reduced costs,
optimized hardware and software resources utilization, and
performance flexibility. Therefore, companies rely on cloud
for different purposes, such as running batch jobs and
hosting web applications, or for data storage and backup.
The pay-as-you-go pricing model is the characteristic that
more directly captures the appealing economic benefit to
the customer [1]. Indeed, the absence of up-front expenses
allows capital to be redirected to core business investments.
This is achieved through resource elasticity—i.e., the ability
to add or remove resources at a fine grain and with a lead
time of minutes rather than weeks—that allows matching
resources to workload much more closely. For instance, a
cloud customer can decide to start on-demand new servers
or allocate more storage capacity just when needed, and
without any up-front provisioning. In this way, it is possible
to dramatically raise the server utilization level that is
estimated to be very low without cloud-based approaches—
from 5% to 20% [2]—due to typical overprovisioning practices
needed to properly manage peak workload [1]. Therefore a
wide number of different solutions has been proposed to im-
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plement resource elasticity: they range from social-network
sentiment analysis [3] or market-based methods [4], [5], to
control strategies with diverse degrees of complexity and
working at different levels [6], [7], [8], [9], [10]. Approaches
for scaling cloud resources can be coarsely categorized as
either horizontal scaling (or scaling out, that consists in
adding new server replicas to distribute load among all
available replicas through load balancers) or vertical scal-
ing (also known as scaling up, and consisting in on-the-
fly changing the resources assigned to an already running
instance, for example, allocating more computational or
memory resources to a running virtual machine (VM)).

1.1 Motivation

Building high-quality cloud applications is a critical re-
search problem. Indeed, appropriately dimensioning re-
sources in real time is a crucial issue in practical scenarios,
where elasticity has to be put into effect to dynamically scale
resources according to changing demands. Implementing
a valuable resource-allocation mechanism is of the utmost
importance to obtain a suitable trade-off between cost and
performance [1]. Since applications may face large fluctuat-
ing loads [11], it would be desirable to free the cloud cus-
tomers from the burden of deciding how to adjust resources
in presence of unplanned and unpredictable spike loads. In
other words, it would be desirable to have an automatic
strategy to adapt the amount of resources to be allocated on
the base of the specific needs at any given time.

Approaches for automatically scaling out cloud re-
sources (i.e. autoscaling approaches) like threshold-based
rules are very popular. Cloud providers such as Amazon
EC2 and third-party tools like RightScale make these appeal-
ing policies available to cloud customers. However, setting
thresholds is a per-application task, and requires a deep
understanding of workload trends. Thus, several solutions
overcoming the limitations of threshold-based approaches
have been proposed in the literature involving several
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components of the infrastructure and taking advantage of
different kinds of techniques like queuing theory, reinforce-
ment learning, workload prediction, or control theory [11].
Notwithstanding the above, public-cloud customers have
very limited choice for the autoscaling policies to imple-
ment, being in fact restricted to the limiting opportunities
providers usually make available. To improve the qual-
ity of adaptation, modern autoscaling systems often cover
more sophisticated aspects, including modelling, determin-
ing granularity of control, and decision making [12].

Automatic resources allocation techniques deeply rely
on the accurate real-time estimation of the actual condi-
tions of the cloud system and its performance evaluated
through metrics representative of the QoS according to
the specific application requirements [12], [13]. Usually,
allocation rules evaluate cloud performance from a single
viewpoint, e.g., they consider just one metric at a time,
such as CPU utilization, memory consumption etc. [11].
The problem of identifying suitable metrics to rely on for
implementing autoscaling techniques is further exacerbated
when observed from the angle of public-cloud customers.
This is because of the limited information publicly exposed
through the poor provider-to-customer interface and the
ways it can be effectively leveraged. In more details, in ac-
cordance with the recent literature the metrics related to the
shared intra-datacenter network infrastructures should also
be considered towards complete application scalability [14].
Nonetheless cloud network resources and the related per-
formance are often overlooked, although this aspects could
be critical. This happens both when different VMs share
the same network (thus competing for resources in terms
of available bandwidth) and when each VM is associated
to a dedicated network slice. See [15] for further details.
Furthermore, recent experimental results [16], [17] confirm
that commercial providers guarantee to newly instantiated
VMs a fixed—although a priori unknown—network slice in
terms of bandwidth based on the cost.

In conclusion, it would be desirable for public cloud cus-
tomers to have advanced autoscaling strategies available, to
be provided with a powerful tool (i.e., able to capture the
needs of the application from multiple points of view) to
simply implement resource elasticity in public clouds.

1.2 Contribution

In this paper, we propose a novel Fuzzy-PID architecture to
automatically scale out cloud resources at VM-granularity
and according to heterogeneous metrics. These metrics are
merged to feed the control logic by adopting recent method-
ologies designed to extract a representative QoS index
from heterogeneous observations. The architecture lever-
ages fuzzy logic to support resource scaling decisions such
to guarantee a desired Service Level. The proposed control
strategy is able to counteract the presence of large fluctuat-
ing loads, with no need of either previous knowledge of the
system behavior or the estimation of disturbances acting on
the cloud environment: therefore it is suitable to be enforced
by general cloud customers in public clouds.

In more details, the metrics taken into account to imple-
ment our control strategy are related to different aspects—
i.e., computational and network capability—so that the re-
source provisioning mechanism accomplishes the needs of

applications running onto the cloud from several points
of view. The control strategy implements a Proportional
Integrative Derivative (PID) feedback control. Fuzzy logic
implements a gain-scheduling policy to adapt the control
action with respect to the conditions of the public cloud
environment which are not easy to predict by customers
having limited or null visibility of the underlying manage-
ment strategies enforced by cloud providers.

This work extends the literature about control solutions
for scaling cloud resources in the points summarized below:

i. heterogeneous metric observations are properly merged
together in a single performance index and allow to
take into account the current state of the managed cloud
applications from different angles at once;

ii. the designed architecture requires neither any detailed
knowledge of the dynamics of the controlled cloud
infrastructure nor a performance model of the appli-
cation; this does not limit its applicability to in-house
environments and makes the proposed solution also
suitable to be applied on public-clouds as it just relies
on the knowledge available to the general customer;

iii. the designed fuzzy-based gain scheduling algorithm
provides robustness with respect to synthetic and real-
trace workloads characterized by high rate of variabil-
ity and does not require any detailed knowledge or
any prior information about the current workload, its
on-line measurement/estimation, or the performance
model of the application;

iv. the proposed solution has been implemented and ex-
tensively validated in a real public-cloud environment
(AWS EC2), and therefore only taking advantage of the
knowledge available to the general customers; experi-
mental results show how the proposed approach is ro-
bust against a number of realistic workloads, also when
VM failures happen; compared to solutions proposed in
the literature, it achieves better performance;

v. the code and the material needed to evaluate the pro-
posed approach is publicly released, to foster the repli-
cation of the experimental analyses, thus allowing the
comparison to alternative approaches.

The paper is organized as follows. Sec. 2 provides an
overall picture of the related literature and positions the
paper accordingly. Sec. 3 describes the problem statement
introducing names and definitions and details the designed
architecture with all its composing blocks. Sec. 4 provides
details on the control strategy. In Sec. 5 we present the
evaluation of our proposal, first detailing the experimental
setup (Sec. 5.1), and then discussing all the results (Sec. 5.2).
Finally, conclusions are drown in Sec. 6.

2 RELATED WORK

Approaches for automatically scaling resources that lever-
age cloud elasticity have recently attracted the interest of
the scientific community. Therefore, a number of different
solutions has been proposed to deal with the dynamics
of cloud systems without human intervention. While their
main goal is to optimize either the QoS (e.g., in terms of
service performance or availability) or a cost objective (e.g.,
power consumption or number of active VMs), existing so-
lutions cover a set of specific goals, such as self-configuring,
self-healing, self optimizing, and self-protecting [12].
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The granularity of control plays a major role, as it
determines the objectives to be considered in the autoscaling
decision process. Based on the control granularity, we may
distinguish solutions working at different levels, such as
(i) cloud level (managing utility, profits, and availability of
the overall cloud system) [18]; (ii) physical machine level
(managing QoS interference caused by co-hosted VMs) [19];
(iii) VM level (assigning resources to VMs are usually
adapted in isolation) [10], [20], [21]; (iv) service level (aim
at independently scaling an application or one of its tier)
[13], [22]; sometimes, a one-to-one mapping between appli-
cations and VMs is also assumed therefore some proposals
can be categorized as working at either the VM or the service
level granularity [12]. Our solution manages cloud resources
at VM-granularity (i.e., activating or deactivating VMs that
considered as black boxes) to control the QoS of a service.

The granularity of the control also determines how the
autoscaling problem is addressed and how the proposed
solutions are evaluated. Indeed, the specific models and
the hypotheses sustaining each of the proposed solutions
also strongly impact their range of applicability and subse-
quently the evaluation process these solutions are subjected
to. To the best of our knowledge, a limited set of control
solutions proposed in the literature has been applied and
evaluated onto public clouds and has demonstrated the va-
lidity of proposed approach through prototype implemen-
tations running on Amazon EC2 or Microsoft Azure [18],
[23], [24], [25]. Due to system complexity some of the works
do not address the problem in real systems, but propose
the extensive use of cloud simulators to mimic the dynamic
response of the cloud system under the proposed control
action [11], [12], [26]. One of the main drawbacks of these
proposals is that they rely on performance models instead
of reality, hence results strongly depend on the reliability
of the simulations. In fact, the experimental validation of
cloud control strategies in a real environment has been often
addressed by designing custom in-house testbeds such as
private cloud deployments or simply server clusters [8], [20],
[27]. More in general, all these approaches—being tailored
for in-house testbeds—strongly leverage the precise knowl-
edge of the inner mechanisms of the cloud systems under
their control. Since the level of abstraction available in pub-
lic clouds obfuscates it for commercial and security reasons,
these approaches are not directly exploitable by common
customers in public cloud environments as is. The approach
we propose in this work is designed for being adopted even
when no privileged point of view beyond the limited one of
the cloud-customer is available. Therefore, differently than
the majority of the advanced solutions discussed above, it
is suitable to be put into practice also onto public-cloud
environments.

An open challenge related to the implementation of a
high scalable adaption mechanism a number of works try
to address is the characterization of the workload type and
its accurate online profiling, exploiting a Kriging model [9],
Kalman filters [10], taking into consideration a predicted
future load [28], or combining forecasting models using
genetic algorithms [29]. In fact, results depend on the histor-
ical data and the observation interval [30], and sometimes
require stable workloads to apply long learning [31]. Our
solution requires no assumption about the workload acting

on the system, its characteristics, or its trends.
The scientific literature adopted different control archi-

tectures to address autoscaling issues (see [12] and refer-
ences therein for a recent survey on the state-of-the-art).
Beyond threshold-based techniques (e.g., see [26], [11] and
reference therein), a number of the proposed techniques
exploits control theoretic approaches. Feedback Loop Con-
trol is the most commonly used architectural pattern [12],
although more advanced patterns have been also pro-
posed, such as Observe-Decide-Act (ODA) [32] or Monitor-
Analysis-Plan-Execute (MAPE) [33] which increase the over-
all complexity of the control architecture since they usually
require the design of observers for the correct on-line pre-
diction of the working conditions. Both Single and Multiple
Loop Control solutions have been proposed to address cloud
autoscaling. The latter are effective for isolating the logical
aspects of autoscaling, but can be difficult to be imple-
mented due to necessity of guaranteeing low coupling for
the proper design of each of the control loops [19], [21].

Control approaches usually leverage on mathematical
models able to capture the relationship between the allo-
cated resources and the high level metrics. For example
Padala et al. [8] propose a MIMO adaptive controller that
uses a second-order ARMA to model the non-linear and
time-varying relationship between the resource allocation
and its performance. Kalyvianaki et al. [10] designed different
SISO and MIMO controllers to determine the CPU allocation
of VMs. Solutions proposed by Lama et al. [33] and Ghanbari
et al. [34] use a Model Predictive Control (MPC) approach,
which involves optimizing a cost function to expresses the
local control objectives and resource constraints. Padala et
al. [35] propose an adaptive control strategy that exploits a
black-box system modeling technique. In all these works,
the determination of the system model in a dynamic cloud
environment is not trivial. Workload and cloud dynamics
make the identification of system models difficult [36] and
this limits the effectiveness of the approach in real-world
scenarios. Alternative control techniques, such as Propor-
tional (P) Proportional-Integral (PI), Proportional-Integral-
Derivative (PID) do not require a mathematical description
of the system for designing the controller. Therefore, they
have been analyzed to regulate one specific direct or indi-
rect QoS parameter in cloud applications (e.g., application
latency or CPU load) [6], [7], [23], [24], [37], [38]. The
effectiveness of these controllers is strongly related to the
values of the control parameters (such as control gains)
whose optimal tuning over extended operating conditions is
the main difficulty when applying these techniques in vague
and time-varying environments, strongly influenced by the
effect of unpredictable disturbances (e.g. varying work-
load) [39]. In addition, these approaches, do not consider
heterogeneous metrics depending also on the state of the
network resources associated to the VMs, and mainly scale
resources based on computational aspects (e.g., the state of
memory and CPU). Other model-free approaches exploit
fuzzy logic, since it easily allows the translation from logic
statements to a nonlinear mapping and it has been proven
to effectively deal with complex and nonlinear systems [40].
Thus it as been also recently proposed for cloud manage-
ment. For example, both Anglano et al. [20] and Rao et al. [41]
exploit a pure fuzzy logic feedback control for the regulation



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2651810, IEEE
Transactions on Parallel and Distributed Systems

4

of CPU with a dynamic vertical-scaling approach, validating
results through private virtualization platforms. However,
the former [20] leverages a stochastic approximation algo-
rithm for the on-line estimation of system features (hence
performance depends upon the quality of the prediction),
while the latter proposes a complex hierarchical structure
based on multiple control layers [41]. Horizontal scaling has
been instead proposed in Frey et al. [42], where the fuzzy
controlling scaling architecture again leverages on the on-
line forecast of the load. Here achievable performance de-
pends on the quality of the predictions, and have been tested
in simulation. The on-line estimate of the workload is also
needed in the fuzzy Q-learning control scheme described in
Jamshidi et al. [25] where a reinforcement learning algorithm
have been implemented in a MAPE paradigm. Moreover,
since learning process needs time to converge, the perfor-
mance of the scaling actions produced during initial learn-
ing epochs, or during rapid transients originated by abrupt
changing, at runtime may be poor. Fuzzy approaches have
been also analyzed for addressing different problems, such
as the consolidation and migration of VMs investigated in
Monil et al. [43], where the migration decision depends on
a stochastic detection algorithm that again implies the on-
line prediction of host utilization. Achievable results are
provided in a simulation. Wang et al. [21] analyze instead
the case of virtualized databases. Here the management of
resources is based on a cross-layer optimization algorithm
that uses the fuzzy language, not for the control design,
but for modelling the relationship between workload and
VM resource demand. One more time, results, obtained in a
Xen based virtualization environment, depend on the model
ability in predicting the demand, since the occurrence of
mispredictions affects the quick adaptation to the changes
in application workload.

The control approach we propose in this work inherits
the simplicity of single-loop PID and the flexibility and ro-
bustness of fuzzy logic for the self-adaptation of the control
parameters [44]. The strategy extends our solution proposed
in [38] that consists in a gain scheduling technique.

3 PROBLEM STATEMENT AND SYSTEM ARCHITEC-
TURE

In this section, we first describe the problem we aim to solve
(Sec. 3.1). Then, we introduce the overall architecture we
have designed to address it, together with the description of
its constituting blocks (Sec. 3.2).
3.1 Problem statement
Thanks to cloud elasticity, the cloud customer is able to decide
at runtime the resources she pays the provider for. In this
framework, the proposed approach aims at automatically
dimensioning the set of resources allocated to a cloud service, in
order to guarantee the desired performance level to final
users, in spite of the presence of dynamically fluctuating
workload. The solution is based on the Infrastructure as a
Service (IaaS) paradigm and therefore resources are consid-
ered at VM granularity: VMs are activated or terminated on
request, thus composing a cluster of dynamically changing
size. The goal is automatically activating and deactivating
VMs, to achieve the desired service level (SL) and avoid rev-
enue loss to the cloud-customer. Indeed, when the number

TABLE 1
Actors and terms.

Public
Cloud
Provider

• Makes available cloud resources according to the
pay-as-you-go paradigm

Cloud
Customer

• Configures and manages cloud services by lever-
aging cloud resources
• Is responsible for the service level guaranteed

Final User • Takes advantage of the cloud services provided by
the cloud customer
• Requires guaranteed service levels

Resources • Consist in VMs activated and deactivated at
runtime (IaaS model)
• Host services in charge of executing tasks on final
users’ request

System
Workload

• Generated by the execution of tasks, started by
requests from final users and executed by the VMs

Task • Needs both computing and network communica-
tions among VMs to be accomplished

Service
Level

• Is estimated by monitoring both CPU and network
load

(SL) • Impacts tasks completion time and latency per-
ceived by final users

Control
Objective

• Keeping the CPU and network load of the active
VMs close to the SLO in order to guarantee expected
performance to final users and avoid revenue loss to
the cloud customer

Fig. 1. Reference scenario.

of active VMs does not properly increase together with the
workload, the performance perceived by the final user could
dramatically fall down. On the other hand, over-sizing the
set of active VMs is source of revenue loss.

In more details, we consider a generic service, whose
interface exposes a number of functionalities to final users
through a web interface (see reference scenario in Fig. 1).
Final users can submit tasks to the application through a
front-end, that is in charge of scheduling users’ requests and
forwarding them to the server cluster. These functionalities
require communication among the VMs of the cluster for
being accomplished. Note that this service is representative
of some typical applications running onto the cloud, such
as applications for scientific computing (requiring commu-
nication among nodes to distribute shards of a complex
task among a set of nodes) [45] or multi-tier applications
(that separate roles—e.g., business logic and databases—
into multiple layers exchanging data) [46], [47], [48].

According to the reference scenario, whose actors and
terms are reported in Tab. 1, the problem we address con-
sists in keeping the performance of the cloud application
(i.e., its service level, SL) close to a desired performance
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Fig. 2. Fuzzy-PID architecture designed and implemented to solve the
resource allocation problem in public clouds. Different blocks can be
identified: the Control Block (C), the Fuzzy-Logic Block (FL), the Moni-
toring Block (M), the Actuation Block (A), and the Fitness Function Block
(F).

level (i.e., the service level objective, SLO). To this aim, our
solution dynamically activates and deactivates at runtime
the resources leased from the cloud provider.

3.2 System architecture

In this section we describe the overall architecture of the
system we have designed and implemented. As previously
discussed, the aim is to regulate the SL of the application
at the SLO. Note that at each cycle the SL is evaluated
merging the relevant QoS parameter values through a Fit-
ness Function F (as detailed in Sec. 3.2.2) providing a Key
Performance Indicator (KPI). Desired values for SL have to
be guaranteed in spite of unpredictable and time-varying
disturbances (i.e., the workload).

The overall architecture is shown in Fig. 2. Here, starting
from the metrics observations gathered and processed by
the Monitoring Block (M), the actual QoS index that repre-
sents the SL of the cloud application at each cycle k, say
yk, is evaluated through the Fitness Block (F ). yk is then
compared to the target, say the desired QoS index value
yd .The actual performance error, say ek = (yd − yk) and
its rate of variation (∆ek) act as input signals of the Fuzzy
PID Control Block (C). Control gains (kPk

, kIk , and kDk
) are

automatically and dynamically self-adapted through Fuzzy
Logic by the Fuzzy-Logic Block (FL), in order to dynami-
cally counteract the effects of uncertainties and workload
variations. The Actuation Block (A) connected to the public-
cloud resource management interface, implements a scaling
algorithm proportional to the amplitude of the control signal
to start or terminate a different number of VMs at each
cycle.

The remainder of the section is organized as fol-
lows: Sec. 3.2.1 presents the monitoring system (M block);
Sec. 3.2.2 shows the Fitness Function (F block). Sec. 3.2.3
introduces the PID controller we designed for the control
block (C block); Sec. 3.2.4 presents the actuation policy (A
block).
3.2.1 Monitoring
In order to fulfill the needs of a generic application, the
proposed approach takes advantage of heterogeneous met-
rics to capture the different aspects of interest, namely
CPU load (ranging from 0% to 100%) and network usage.
These are representative aspects of the state of the system:
on the one hand, CPU load well captures the impact of
computation on the performance as perceived by the end
user [23]; on the other hand, network usage gives hints

VM1

VM2

VM3

VMM

m1,k

m2,k

mN,k

o1,1,k
o2,1,k
oN,1,k

o1,2,k
o2,2,k
oN,2,k

o1,3,k
o2,3,k
oN,3,k

o1,M,k
o2,M,k
oN,M,k

Fig. 3. Monitoring Block.

about the state of the network interconnections among VMs
in the cluster. Note that recent experimental works on public
clouds, disclose the importance of this last aspect [14], [16],
[17] to achieve complete application scalability in shared
datacenters. It is worth noting that we only consider as
suitable metrics those available to the general customer
because of the point of view adopted. Therefore, the metrics
we consider are all available to the cloud customer at server
side, differently than other solutions subjected to less strict
constraints by design. For instance, we purposely do not
consider either performance metrics that capture the QoS
at the user side [41], or metrics related to layers beyond
the scope of the general customer (e.g., the physical ma-
chine layer). Moreover, thanks to the fitness function we
describe below, the proposed architecture is suitable to be
extended with different monitoring blocks, such to consider
all the heterogeneous metrics potentially available to cloud
customers at server side.

As shown in Fig. 2, the Monitoring Block (M) is inter-
faced to multiple VMs and produces heterogeneous metrics.
According to Fig. 3, for each of the M VMs that are active
at the cycle k, the Monitoring Block extracts one sample
for each of the N heterogeneous metrics, say oi,j,k where
i = 1, . . . , N , j = 1, . . . ,M . These M samples flow into
N separate processing modules, that fuse them in a single
metric observation, say mi,k. Under the assumption that the
samples concurring to compute a given metric observation
are equal with respect to the active VMs, we have:

mi,k =
M∑
j

oi,j,k
M

(1)

Note that the value of M may change from cycle to cycle.
Given the general structure in Fig. 3, in this work we

consider three different metrics (i = 1, 2, 3) namely the
CPU load (CPU) for the computational capability and the
amount traffic injected into or received (NETOUT and NETIN,
respectively) for the communication network. The former is
expressed as a percentage, while the others as the volume of
traffic per cycle.

Indeed, this approach is in line with the granularity of
the resources considered and with the idea that each element
of the cluster equally contributes to the amount of virtual
resources allocated to the application (i.e. computation and
communication resources).
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In public-cloud environments, different approaches can
be implemented to gather observations from different
VMs [49]. The different choices available reflect different
levels of flexibility and scalability. From the one hand, the
cloud customer can adopt her own monitoring module [50].
This approach can be applied to any public cloud, and com-
pletely relies on the customer, who is in charge of designing,
developing, and deploying monitoring probes able to gather
observations on each active VM. The main advantage of this
approach consists in the higher flexibility (i.e. the customer
can decide the metrics to monitor, and the granularity of the
measure based on the application needs). On the other hand,
the customer can also rely on monitoring modules directly
supplied by the provider, when available. In this case the
customer, being relieved of the design, implementation and
deployment burden, is restricted in some implementation
choices such as the available metrics or the granularity of
the measurements (that directly impacts the duration of
the cycles adopted by the overall architecture). In Sec. 5.1
we will detail how information gathering process can be
implemented.
3.2.2 Fitness Function
Based on the metric observations, the next step is to con-
struct an index that captures the overall state of the cloud
system at each cycle k. To this aim here we design a
fitness function block. The definition of a QoS index from
heterogeneous metrics is a well known problem in the recent
literature [51], [52], [53]. Here, with the idea in mind of
evaluating how close the current state of the cloud system
is with respect to an ideal reference behavior, we adopt
the general approach proposed in [51] and propose the
following fitness function:

Fk =
N∑
i

αi
mi,k

Ri
(2)

where mi,k and Ri are the metric observation at the sam-
pling time k and the reference value, respectively; αi ∈
[0, 1] are positive weights so that:

N∑
i

αi = 1 (3)

By construction, when the system is working at the
desired value for each metric (i.e. when mi,k = Ri,∀i,∀k)
we obtain Fk = F∗

k = 1. Otherwise, the output of the
function reaches values larger than 1 when each measure
mi,k is larger than the respective reference Ri, or values
smaller than 1 when each measure mi,k is smaller than the
respective reference Ri.

Given the overall constraints in (3) the value to be
assigned to each αi is crucial for the evaluation process, and
the priority given to each single metric that contributes to
the QoS index usually depends on the specific application,
as shown in the very recent literature on key performance
indices [51], [53].

In our proposal CPU, NETIN, and NETOUT are merged
through the fitness function, in accordance to the goals of
our work. It is worth noting that thanks to the nature of the
fitness function we adopt the proposed approach is suitable
to consider any of the the metric available to the general

customer in spite of the specific metric selection we make
here.
3.2.3 Control
Due to their well-known simplicity and flexibility, single
loop architectures are often adopted for auto-scaling [12].
However, in their classical formulation, they only allow to
cope with one resource at time, such as CPU [20], [38]. To
overcome this limit, our approach embeds the fitness func-
tion described in Sec. 3.2.2 within the control loop (Block F
in Fig.2). In so doing the autoscaling decision depends on a
set of heterogeneous metrics merged together and allows
to easily handle multi-objectivity criteria and to balance
different requirements without increasing the complexity of
the controller structure (e.g. via multiple loops).

The control goal is to adjust the allocated VMs without
human intervention, so as to drive performance indices to-
wards their targets and keep QoS violations to zero. Indeed,
the monitoring component checks the platform to display
changes and violations of the QoS requirements by evaluat-
ing the fitness function at each cycle k, say yk = Fk. Then,
the control algorithm uses a multi-input approach to decide
the number of VMs to be allocated (horizontal scaling) at
cycle k depending on the error ek (i.e. the difference between
the desired KPI value yd and its actual value yk) and its rate
of variation ∆ek = ek − ek−1 which provides additional
information and enhances the generalized damping of the
control system [54].

When dealing with regulation processes in vague and
unmodelled scenario, PID controllers are usually the first
choice: they have a very simple structure, are easy to
be implemented on-line, and show good results in terms
of response time and precision, if control gains are well
tuned [55]. However, controller tuning is difficult for un-
certain nonlinear systems (such as public clouds). Moreover,
fixed gains cannot cope with highly-variable environments
and this limits the effectiveness of the approach [39]. For
these reasons, in this work we implement a discrete PID
controller (Block C in Fig.2) that leverages on the fuzzy con-
trol paradigm (Block FL in Fig.2). The idea is to combine the
PID structure with a fuzzy-logic control scheme so that the
controller preserves its simple structure, but it is also able
to self-adjust its control parameters (or gains) depending
on the actual conditions [56]. Thanks to this approach, the
controller is cheaper to develop and implement, covers a
wider range of operating conditions, and is more readily
customizable in natural language terms [44].

Note that the number and the mix of the users requests
(i.e. the workload) are here considered as unknown dis-
turbances that cannot be predicted [36]. The amplitude of
the allocation adjustment uk (that depends on the value
of the control gains and have to avoid both under- and
over-provisioning of resources) is self-adaptive and it is
determined by the fuzzy logic.

In that the on-line performance mainly depends on the
proper selection of control gains, a crucial point for self-
adaptive resource management is the identification of ad-
missible gains regions (within which the gains can vary)
that can provide optimal behavior over extended cloud
operating regimes. Indeed, the desired dynamic response
should always have minimum settling time with a small
or no overshoot and undershoot when subjected to a small
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step perturbations, while the control action, and its rate of
variation, should always be accurately calibrated to guaran-
tee the closed-loop stability even in the presence of high-
frequency or high-amplitude disturbances. To this aim a
genetic algorithm (GA) is applied and the design problem
is formulated as an optimization problem, where GA is
employed to optimize the gains regions of the Fuzzy-PID
controller [57]. In so doing, not only the tuning procedure is
straightforward, avoiding the ever cumbersome and subjec-
tivity of trial-and-error-based heuristics, but also improves
the control sensitivity and closed-loop performance. Details
on control design and its analytic derivation are illustrated
in Sec. 4.
3.2.4 Actuation
In our horizontal scaling scenario the number of VMs to
be added or removed at cycle k, say VMk, is proportional
to the amplitude of the control signal uk according to the
following dead-zone with saturation (Block A in Fig.2):

VMk =


#VMmax if ū ≤ uk
αuk − β if ε ≤ uk < ū

0 if −ε < uk < ε
αuk + β if −u < uk ≤ −ε
−#VMmax if uk ≤ −u

(4)

where α and β are design parameters impacting the
aggressiveness of the actuation: their values are flexible and
can be opportunely set to choose how fast the controller
adds and removes VMs. Moreover, since small control sig-
nal variations can cause the system to oscillate around a
target [37] (e.g. due to the presence of some monitoring
uncertainties when working at steady state), to overcome
this critical problem our scaling mechanism incorporates
a symmetric dead-zone ε, according to good practice in
the nonlinear actuators literature [58]. Other works have
considered the oscillation problem, but instead they usually
adopt a static thresholding mechanism for their elasticity
management policy (see for example [59] and references
therein). Note that classical strategies that employ a constant
change in the actuator value (e.g. provisioning or termi-
nating only one VM at time [23]) can be ineffective in real
scenarios, since it may be too slow in scaling out in the case
of sudden peak loads, or it may result in unwanted longer
provisioning periods during scaling down.

When working with variable actuation policies, the con-
trolled system may reveal overshoots or instability depend-
ing from the workload conditions. For this reason, when
implemented, the physical actuator in (4) is subject to sat-
uration of its maximum and minimum limits (maximum
number of VMs to be added/removed at each cycle) [58].
These values can be set heuristically according to the sys-
tems observations. Here we consider a possible variation
of ±4 VMs per each cycle, on the base of our experi-
mental experience and previous experimental evaluations
(e.g. see [37] and references therein). Non-linear actuation
characteristic has been discretized with the classical sample-
and-hold method for its implementation in the platform.

It is worth noting that the designed actuation block man-
ages homogeneous VMs (i.e., having same characteristics,
such as family and the size, and expected performance). This
design choice is in line with recent literature [23] and has

the notable advantage of allowing to keep the complexity
of the architecture bounded, as in this way components
such as the control block, the actuation block, or the load
balancer do not require additional knowledge (e.g. perfor-
mance models) to suitably deal with heterogeneous VMs.
Different approaches would require changes to one or more
blocks of the designed architecture and are left as future
work.

4 FUZZY-PID CONTROL DESIGN

In this section we provide details about the control block we
have designed. In this work, we solve the regulation prob-
lem by complementing the PID controller with a fuzzy rule-
based scheme, in order to automatically adapt the control
action to the changing dynamics. The approach enables an
easy connection between fuzzy parameters and operation
of the PID controller. In more particular, here we describe
the design principle of the PID controller together with the
fuzzy reasoner implementing gain scheduling (Sec. 4.1) and
the optimization of the related working regions (Sec. 4.2).

The control algorithm (see block C in Fig.2) is based on
a discrete PID structure with variable gains, that can be
mathematically formalized as:

uk = kPk
ek + kIk∆t

k∑
q=1

eq +
kDk

∆t
∆ek, (5)

where uk is the control action at cycle k; ek = yd − yk is the
closed-loop error (i.e. the difference of the desired output
yd and the measured output yk); ∆ek = ek − ek−1 is the
error change (or better its first difference), ∆t is the sampling
interval set as one cycle and kPk

, kIk and kDk
are the control

gains.

4.1 Fuzzy Gain Scheduling

The fuzzy rules and reasoning block (see the block FL in Fig.
2) are used to modulate the control effort by self-adjusting
the control gains in (5) on the base of the values assumed by
the two inputs ek and ∆ek; i.e. kPk

= kP (ek,∆ek); kIk =
kI(ek,∆ek); kDk

= kD(ek,∆ek). To design the scheduling
algorithm, it is assumed that control gains are in prescribed
ranges, i.e., kPk

∈ [kmin
P , kmax

P ]; kIk ∈ [kmin
I , kmax

I ]; kDk
∈

[kmin
D , kmax

D ].
For convenience, the current values of PID gains at cycle

k are normalized into the range between zero and one, i.e.

k
′

Pk
=

kPk
−kmin

P

kmax
P

−kmin
P

,

k
′

Ik
=

kIk−k
min
I

kmax
I

−kmin
I

,

k
′

Dk
=

kDk
−kmin

D

kmax
D

−kmin
D

,

(6)

while the normalized error and its normalized increment are
given by

ẽk = Keek,
∆ẽk = K∆e∆ek,

(7)

being Ke and K∆e some scaling factors to be opportunely
chosen. The definition of the parameters regions and, hence,
the computation of the minimum and maximum value of
each PID gain is carried out by off-line solving a constrained
optimization problem as described in Sec. 4.2.
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The fuzzy logic gain scheduler is designed according to
the classical architecture of fuzzy logic systems [40] and
its structure is based on four main components, namely
the knowledge base, the fuzzification interface, the infer-
ence engine, also known as decision making logic, and the
defuzzification interface [40]. The knowledge base system
contains all the information required for the fuzzy system,
namely the fuzzy control rule base and the data base. The
inference engine performs inference procedures upon the
fuzzy control rules, while the fuzzification interface defines
a mapping from a real-value space to a fuzzy space and
the defuzzification interface implements a mapping from
a fuzzy space to a real-valued space. In what follows we
provide details on each of the components for our two-
inputs fuzzy PID configuration.

The knowledge base is combined by three separate rule
bases, with simple rules for each different gain. Given the
normalized variables (eqs. 6–7), the rules base structure
takes the following form:{

If ẽk is Ai and ∆ẽk is Bj
Then k

′

Pk
is Cm, k

′

Dk
is Dλ and k

′

Ik
is Eγ

(8)

where i = 1, . . . , I and j = 1, . . . , J represent the fuzzy
states of the antecendents (being I and J the number of lin-
guistic values associated to the antecendents); m = 1, . . .M ;
λ = 1, . . . ,Λ; and γ = 1, . . . ,Γ are the fuzzy states asso-
ciated to the consequent (being M , Λ and Γ the number
of linguistic values associated with the control gains); and
A,B,C,D,E are the fuzzy sets.

By opportunely setting Ke and K∆e in (7) (see Table
3a) , both the universes of disclosure of ẽ(k) and ∆ẽ(k)
have been scaled to [−1,+1], while the corresponding mem-
bership functions are shown in Fig.4. Here “NB” stands
for “Negative Big”, “NM” is “Negative Medium”, “NS” is
“Negative Small”, “Zero” is “ZO”, “PS” represents “Positive
Small”, and “PM” and “PB” stand for “Positive Medium”
and “Positive Big”, respectively. Note that to cope with the
real control problem, we adopt non-equal span membership
functions since for highly nonlinear processes a fuzzy con-
troller with equal-span triangular membership function is
not adequate to achieve good control results [60].

Fig. 4. Membership function for ẽ(k) and ∆ẽ(k).With respect to the outputs of the gain scheduling fuzzy
modules, Cm, Dλ can be either “Big” or “Small” (“B” and
“S”, respectively), while Eγ can be instead “Very Big”,

“Big”, “Small” and “Very Small” (i.e. “VB”, “B”, “S” ,
“VS”), and they are modelled as singleton membership
functions [40].

The rule base of the Fuzzy-PID in (8) is depicted in
Tab. 3a for k

′

Pk
, in Tab. 3b for k

′

Dk
, and in Tab. 3c for k

′

Ik
.

These tables show that the fuzzy reasoning block incorpo-
rate 49 standard rules. The selection of fuzzy rules is one of
the important things to be considered to achieve smoother
response and less oscillation at the transient state. It also im-
pacts overshoot and undershoot of the disturbance, so as to
improve the cloud system stability. To this aim the rule base
is here similar to those in [61], [62], for which satisfactory
results have been demonstrated. Since these rules play very
important role in the achievable performance, they have
been also investigated comprehensively by experimentally
studying step responses of the cloud system under different
dynamic conditions.

TABLE 2
Fuzzy tuning rules.

∆ẽk
NB NM NS ZO PS PM PB

NB B B B B B B B
NM S B B B B B S
NS S S B B B S S

ẽk ZO S S S B S S S
PS S S B B B S S
PM S B B B B B S
PB B B B B B B B

(a) Fuzzy Tuning Rules for k
′
P .

∆ẽk
NB NM NS ZO PS PM PB

NB S S S S S S S
NM B B S S S B B
NS B B B S B B B

ẽk ZO B B B B B B B
PS B B B S B B B
PM B B S S S B B
PB S S S S S S S

(b) Fuzzy Tuning Rules for k
′
D .

∆ẽk
NB NM NS ZO PS PM PB

NB VS VS VS VS VS VS VS
NM S S VS VS VS S S
NS B S S VS S S B

ẽk ZO VB B S VS VS B VB
PS B S S VS S S B
PM S S VS VS VS S S
PB VS VS VS VS VS VS VS

(c) Fuzzy Tuning Rules for k
′
I .

Concerning the fuzzy implication operator implemented
by the inference engine, the choice fell out upon the
zero-order Sugeno-type approach modeled by the operator
min(;), since this method has been shown to be compu-
tationally effective and to work well with optimization and
adaptive techniques, which makes it very attractive for the
implementation control approaches in a real world envi-
ronments [40]. Accordingly, the crisp normalized output is
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then generated through a weighted average of rule outputs.
Finally, the crisp control gains values to be provided at each
time instant k are derived from the normalized ones (6).

4.2 Optimization of the gains regions
The values of the PID gains, selected via fuzzy logic, can
vary within prescribed ranges identified by their minimum
and maximum admissible value, i.e. kmax

P , kmin
P , kmax

I , kmin
I ,

kmax
D , kmin

D . Usually, admissible ranges are set heuristically
according to the experience of designers (e.g., it is well
known that higher value of kPk

results in faster system
response, but larger over-shoot, while higher value of kDk

results in slower system response, but smaller over-shoot).
Conventional techniques to determine these gains are: trial
and error method, Zeigler-Nichols method [55], but these
conventional methods are time consuming (e.g. due to the
heuristic determination of all the possible set of three) and
may not yield optimum controller gain set, while a wrong
selection may also induce a loss of stability in some critical
cases.

Here an optimization technique is employed to get the
optimum values of controller gains in order to extract better
dynamic performance from the Fuzzy-PID controlled cloud
system. The cost function to be minimized over a finite
control horizon expresses the closed-loop performance as
follows:

min
K

J(e,K) = min
K

Np∑
k=1

[ψ1ek
2 + ψ2uk

2], (9)

where K = [kP , kI , kD]T and Np ∈ N+ is the predic-
tion horizon. Note that the weights ψ1 and ψ2 have been
introduced in the objective function with a provision of
balancing the impact of the error and the control effort. We
choose equal weights for the two objectives to be met by
the controller, since the minimization of the error index is as
equally important as the control effort is. The quadratic cost
is hence minimized to find out the optimal ranges of control
parameters which simultaneously reduces the regulation
error ek and the required control action uk. In other words,
the minimization of the squared control signal reduces the
cost involved into the regulation process, trying to activate
the less of VMs as possible while meeting performance
requirements.

The offline optimization procedure exploits a non-linear
single-input single-output dynamic system model described
as

y(k) = g(ϕ(k)) (10)

where ϕ is a regression vector consisting on past inputs and
past outputs as

ϕ(k) = [y(k − 1), . . . , y(k −Ny), u(k − 1), . . . , u(k −Nu)],

being Ny and Nu the number of past output and input sam-
ples, respectively. Note that an on-line solution of the opti-
mization problem in (9) is computationally time consuming,
and increases the complexity of the controller during its
practical use.

Since the large variability exhibited by system dynam-
ics in the different operating points, the range of cloud
operations has been divided into several different zones
according to different workloads and time slots. The output

and input samples are hence related to systems observations
during step responses in different operating conditions for
various initial conditions (30 in total). An hybrid genetic al-
gorithm (HGA) (previously designed and used from authors
in different applicative fields, e.g. see [63] and reference
therein) is used to solve the optimization problem in the
overall parameter space. The HGA is combination of GA
and nonlinear least-square method (LS). The main idea is to
merge the global-search properties of GAs with the fast local
convergence of LS methods. The optimization procedure is
initialized by selecting the gains with the classical closed-
loop Ziegler and Nichols method and provides the opti-
mization of the gains regions until a minimum of the chosen
criterion is achieved within a prefixed tolerance or the max-
imum number of iterations is reached. Results of the opti-
mization procedure are: kPk

∈ [90, 120]; kIk ∈ [0.001, 0.05];
kDk
∈ [0.001, 0.002].

5 EVALUATION

In this section we first describe the experimental setup,
then we present the results achieved thanks to the proposed
Fuzzy-PID approach.
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Fig. 5. Experimental setup: workloads.
5.1 Experimental set-up
In order to evaluate our proposal in a public-cloud en-
vironment we set up a testbed composed of three main
elements: (i) the cloud service, deployed and running on a
public-cloud infrastructure; (ii) the master node, hosting all
the blocks of the architecture proposed (see Fig. 2) and
managing cloud resources through their interaction; (iii) the
final-user emulation node, in charge of issuing requests to the
cloud application and imposing the workload to the system.
In the following we present all the implementation details
for each of the elements above. For the sake of repeatability
and to foster further research, we publicly release all the
code behind the evaluation of our solution1.
5.1.1 Cloud application
Our solution has been extensively tested on a Amazon EC2
IaaS environment. Although the approach we propose does
not depend on the specific provider, Amazon EC2 represents
a valid test bench for the proposed solution as Amazon
is claimed to be one of the leading providers [64]. The
cloud application is deployed onto a group of VMs (i.e.,
the cluster) programmed to dynamically change its size at
each cycle k, as demanded by the master node. The cluster
is composed of a set of same-type VMs, connected to a
load-balancer instructed to equally distribute the incoming
requests across them. Each VM is in charge of hosting a

1. http://traffic.comics.unina.it/cloud
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web server, in order to serve the HTTP requests generated
by final users and forwarded by the load balancer. When a
VM receives a request from the load balancer acts as root
node for the request, starts a number of CPU-consuming
and network-intensive tasks, sharing among all the VMs
in the cluster the burden generated by the request. Each
VM communicates with other peers in the cluster: based on
the cardinality of the cluster, a different amount of traffic
is generated towards and from each VM. Each VM at the
end of the process, returns the control to the root node, that
generates the reply directed to the final user.

For all our experimentations, we adopted general pur-
pose micro VMs (t2.micro) representing a feasible choice
for our long experimental sessions thanks to their limited
cost. The selection of this particular kind of VMs does not
represent a limitation, since the proposed control approach
does not depend on the type of the VMs employed and no
assumption has been made on provisioning dynamics. In
order to distribute the incoming HTTP requests to the VMs
of the cluster in a balanced fashion, we properly configured
the AWS Elastic Load Balancing service made available by
the provider itself. Finally, the network-intensive tasks are
executed by synthetically generating real network traffic
among the VMs of the cluster through the adoption of D-
ITG traffic generator [65].
5.1.2 Master node
For what concerns the master node, two blocks have to be
properly configured and tuned.
Monitoring Block. For the experimental evaluation, the
samples to construct metric observations have been gath-
ered through the monitoring solution supplied by the cloud
provider itself i.e. Amazon Cloudwatch [66], since it is suit-
able to obtain all the metrics of interest for the proposed
approach. We also developed a provider-independent so-
lution, in order to foster the replication of the proposed
approach to other public cloud providers.
Fitness Function Block. With respect to the weights of
the fitness function (see eq. 2) where not explicitly stated
otherwise, we balance the computational capability and
the network communication aspects, hence we assigned
an overall weight of 0.5 to both the CPU and network-
related metrics NETIN and NETOUT, (subdivided as 0.25
each). This is an exemplar priority choice, made for a generic
application.
5.1.3 Final user emulation
To issue web requests that impose a workload on the
system, a geographically separated node was configured.
The realistic workload has been generated by exploiting
Httpmon, an HTTP request generator purposely designed for
executing experiments related to computing capacity short-
age avoidance in cloud computing [67]. The tool allows to
emulate web users by generating request patterns in which
the time between two consecutive requests is exponentially
distributed. We instructed Httpmon to use the open model,
i.e. to issue requests without depending on the system’s
response.

To evaluate our approach, we consider three different
workloads: (i) a constant workload (CONSTANT) and two
realistic benchmarks: (ii) the WorldCup98 web-server workload
(FIFA98) [68]—note that it is a meaningful benchmark ex-
tensively used in the cloud scientific literature ( [11], [69]).

and (iii) the WikiBench workload (WIKIPEDIA)—related to
the application used to host wikipedia.org which allows
one to stress-test systems designed to host Web applications
and cloud platforms. An example of the HTTP requests
issued with the three workloads is depicted in Fig. 5. Note
that because of the pattern followed by the adopted tool,
the CONSTANT workload may not result in an amount of
requests exactly constant over time. For each experiment,
each workload has a duration of 120 minutes. The overall
experimental activity (control tuning and extensive valida-
tion) amounted to 100 hours.

5.2 Experimental Results

Here the effectiveness of the proposed architecture is in-
vestigated. Through representative experimental examples
(i) we evaluate the proposed Fuzzy-PID architecture against
three different workloads (i.e. CONSTANT, FIFA98, and
WIKIPEDIA workloads) also considering the impact on
each metric individually; (ii) we disclose the stability and
robustness of the approach with respect to different choices
of the weights αi that balance the different variables within
the fitness function; (iii) we evaluate the robustness in the
presence of VM failures; (iv) we compare the proposed
solution against recently proposed approaches;

5.2.1 Performance in the presence of different workloads
Here we evaluate the ability of the proposed approach to
counteract changes in workload variations, i.e. to increase
or decrease the number of VMs according to workload in-
tensity, so to regulate the current SL measured as yk = F(·)
at its desired SLO (yd = F∗ = 1). Note that to this aim the
strategy does not exploit any online measure or prediction
of the workload that is assumed to be unknown in the
regulation process.

The analysis is therefore carried out for the three work-
loads introduced in Sec. 5.1.3. Results depicted in Fig. 6
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Fig. 6. Performance in the presence of the three different workloads
in Fig. 5 (start-up transient and regime). (a): time history of the regulation
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Fig. 7. Performance with respect to each metric considered individually (WIKIPEDIA workload). (a): time history of CPU; (b): time history of NETIN;
(c): time history of NETOUT.

show similar performance in all cases. Specifically the sys-
tems guarantees the required SLO despite the different
workload features in terms of intensity (i.e. number of
requests per second) and frequency (i.e. rate of variation).
As expected, overshooting appears only at switching-on
transient (during the first 9 cycles) but it is negligible at
steady state when controller gains are adapted, in spite of
still occurring workload variations. Nevertheless the aver-
age error is always lower than 30%. Note that, because of the
pay-as-you-go model, the number of VMs to be allocated at
the time 0, is the solution of a trade-off between maximum
acceptable error and cost to be paid, that is beyond the
scope of the paper. Better switching-on performance can
be easily achieved relaxing the management policies that
here consider only two VMs to be allocated at start-up,
implementing a conservative choice. This initial condition
reflects the communication needs of the application, that at
least relies on two VMs to run.

The cost associated to the control action depends on
the workload and its variability (see Fig. 8), although the
performance is similar in all cases, hence confirming the ro-
bustness of the approach. This cost can be easily computed
by evaluating the area under the control signal #VMs
reported in Fig. 6b. The overall control cost depends on
the workload. The best performance in terms of cost is
achieved with the WIKIPEDIA workload, as it is associated
with the lowest cumulative number of requests, although
it is characterized by a higher variability with respect to
CONSTANT workload.

5.2.2 Analysis with respect to single metrics

Although the aim of the proposed approach is to guarantee
a prefixed SL evaluated by a sole index computed merging
heterogeneous metrics, in our experimental analysis we also
evaluate its ability in appropriately regulating each of the
metrics of interest individually. Results in Fig. 7 refer as a
representative example to the WIKIPEDIA workload case.

Specifically, the Fuzzy-PID approach guarantees that
CPU converges to the target CPU (30%), with an average
CPU measurement that never exceeds the 28% of the target
value, as depicted in Fig. 7a. A similar behavior is obtained
for both NETIN and NETOUT, as reported in Fig. 7b and
Fig. 7c (where 50 MB is the target value chosen for both).
Similar results obtained for the other workloads have been
omitted for the sake of brevity.

TABLE 3
Different choices of the fitness function weights considered. 1128 While

set 1 and 2 balance computational and network aspects, set 3 only
consider CPU.

Set αCPU αNETIN αNETOUT

1 0.5 0.25 0.25
2 0.7 0.15 0.15
3 1 0 0

5.2.3 Sensitivity analysis with respect to fitness function
weights

To further analyze the flexibility of the approach we also
performed a sensitivity analysis with respect to fitness func-
tion weights. As exemplar cases, here we report results for
two alternative weight sets (see set 2 and set 3 in Tab. 3) for
FIFA98 workload.

Results depicted in Fig. 9a show how the regulation error
is driven and kept to zero, independently from the specific
choice of the weights set. Also in this case, the average
percentage error never exceeds the 30%. Conversely, the
history of the VM activation is impacted by the choice of
the weights (see Fig.9b). Indeed, the number of active VMs
is greater when we balance the CPU and network capability
aspects (set 1). Less control effort is instead necessary for the
application considered when a grater priority is given to the
CPU load (set 2). The lower values of active VMs at each
cycle is obtained for set 3, i.e., when only considering the
CPU capability as metric of interest. Further work is needed
to investigate the trade-off between costs and performance
raising from the choice of metrics and weights, and its
optimization.

Although the overall performance is always guaranteed,
the regulation of each single metric to its desired value is
impacted by the choice of the weights. For example, results
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Fig. 9. Sensitivity analysis for alternative fitness-function weights sets as
in Tab. 3 (FIFA98 workload). (a): time history of the error with the respect
to the SLO ek = (yd−yk); (b): time history of the active VMs (#VM(k).
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Fig. 10. Sensitivity analysis for alternative fitness-function weights sets as in Tab. 3 for each metric considered individually (FIFA98 workload). (a):
CPU time history; (b): NETIN time history; (c): NETOUT time history.

in Fig. 10 disclose that better performance is obtained when
only one single metric is taken into consideration (set 3).
Note that to highlight the flexibility of the approach with
respect to the specific choice of the reference value, the CPU
requirement for this experiment has been set to 50%, while
the NETIN and NETOUT SLO is kept unchanged.

5.2.4 Robustness in the presence of VM failures
To analyze the robustness with respect to failures, we con-
sider the Fuzzy-PID architecture under the action of the
CONSTANT workload (see Fig. 5) to better capture the
effects of sudden and unwanted VM termination.

The system is at its steady-state equilibrium point yk =
yd = 1 when we cause a hard failure to happen: specifically
more thn 1/3 of VMs that are running crash at cycle k = 11
(4 out of the 14 active VMs, see Fig. 11b).

Due to this critical event, the regulation error increases
(see Fig. 11a) and, accordingly, the control action varies, on-
line adapts its gains, and counteracts the effect of the failures
(see Fig. 11b). In so doing, the error is then again driven to
zero at cycle k = 14, as shown in Fig.11a.
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Fig. 11. Robustness in the presence of VM failures. (a): time history of
the error with the respect to the SLO ek = (yd − yk); (b): time history of
the active VMs (#VM(k)).

5.2.5 Comparison against PID and Gain Scheduling
Finally, in this section we evaluate the proposed Fuzzy-PID
approach comparing it to a simple PID control strategy [23]
and a plain gain-scheduling algorithm (GS) [38].

It is worth noting here that the architecture presented
in this paper solves a more wide problem introducing
heterogeneous metrics, while previous attempts in the state
of the art (as already detailed in Sec. 2) usually only con-
sidered CPU-related aspects. So, in order to perform a fair
comparison, we choose to downgrade our architecture by
selecting the trivial weight set (i.e., the set 3).
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Fig. 12. Comparison among Fuzzy-PID, PID, Gain Scheduling con-
trollers (FIFA98 workload). (a) Time history of the error (ek = (yd− yk))
between the actual SL (measured in terms of CPU) and its SLO. (b)
Integral of Squared Errors—ISE.

Results in Fig. 12a show that the Fuzzy-PID controller
provides better performance than previously proposed ap-
proaches, due to its greater ability in self-adaptation of
the gains with respect to time-varying conditions of the
public-cloud system. In order to better evaluate how the
three approaches meet strict SLO (ek = 0), here we exploit
the Integral of Squared Errors (ISE) [58]. Results in figure
Fig. 12b show that the Fuzzy-PID approach guarantees a
lower ISE than PID and GS.

6 CONCLUSION

In this paper we have proposed a novel control architec-
ture to automatically scale out public-cloud resources, only
leveraging the base of knowledge available to the customer.
In more details, we have investigated the effectiveness of
a Fuzzy-PID architecture—taking as input heterogeneous
monitoring metrics related to CPU and network capabilities
and merged through a fitness function—to cope with highly
dynamic cloud operating conditions, whose characteristics
are not known in advance. The results of the experimenta-
tion performed within Amazon public-cloud environment
show that the proposed approach is robust against different
realistic workloads, also in presence of VM failures. More-
over, we found that the proposed architecture is flexible,
thus proving to be suitable customers with different needs.
Finally, when compared to previous control solutions ap-
plied to autoscaling, such as PID and GS, the proposed
architecture is able to provide better performance thanks
to its ability in self-adaptation to workload changes. As
a future work, we plan to extend (i) the proposed archi-
tecture exploiting its modularity; (ii) the comparison with
other scaling architectures (e.g., those proposed in [7], [8])
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considering also for them the adoption of heterogeneous
metrics.
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[40] R. Babuška, Fuzzy modeling for control, vol. 12. Springer Science &
Business Media, 2012.

[41] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “Qos guarantees and service
differentiation for dynamic cloud applications,” IEEE Transactions
on Network and Service Management, vol. 10, no. 1, pp. 43–55, 2013.

[42] S. Frey, V. Huwwa, and C. Reich, “Fuzzy controled qos for scalable
cloud computing services,” in CLOUD COMPUTING 2013, The
Fourth International Conference on Cloud Computing, GRIDs, and
Virtualization, 2013.



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2651810, IEEE
Transactions on Parallel and Distributed Systems

14

[43] M. A. H. Monil and R. M. Rahman, “Vm consolidation approach
based on heuristics, fuzzy logic, and migration control,” Journal of
Cloud Computing, vol. 5, no. 1, p. 8, 2016.

[44] A. I. Al-Odienat and A. A. Al-Lawama, “The advantages of pid
fuzzy controllers over the conventional types,” American Journal of
Applied Sciences, vol. 5, no. 6, pp. 653–658, 2008.

[45] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing
tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[46] H. Goudarzi and M. Pedram, “Multi-dimensional sla-based re-
source allocation for multi-tier cloud computing systems,” in
Cloud Computing (CLOUD), 2011 IEEE International Conference on,
pp. 324–331, IEEE, 2011.

[47] W. Iqbal, M. N. Dailey, and D. Carrera, “Sla-driven dynamic
resource management for multi-tier web applications in a cloud,”
in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, pp. 832–837, IEEE, 2010.

[48] “Web application hosting in the aws cloud best practices.”
https://media.amazonwebservices.com/AWS Web Hosting
Best Practices.pdf. Online; accessed Nov ’15.

[49] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud mon-
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