
Benchmarking Big Data Architectures for Social
Networks Data processing using Public Cloud Platforms

Valerio Persico?�∗ , Antonio Pescapé?†� , Antonio Picariello?† , Giancarlo Sperĺı?

?University of Naples “Federico II”, via Claudio 21, Naples, Italy
† CINI - ITEM National Lab, Complesso Universitario Monte S.Angelo, Naples, Italy

� NM2 s.r.l., Via S. Lucia 20, Naples, Italy

Abstract

When considering popular On-line Social Networks (OSN) containing hetero-

geneous multimedia data sources, the complexity of the underlying processing

systems becomes challenging, and requires to implement application-specific but

still comprehensive benchmarking. The variety of big data architectures (and

of their possible realization) for both batch and streaming processing in a huge

number of application domains, makes the benchmarking of these systems crit-

ical for both academic and industrial communities.

In this work, we evaluate the performance of two state-of-art big data ar-

chitectures, namely Lambda and Kappa, considering OSN data analysis as ref-

erence task. In more details, we have implemented and deployed an influence

analysis algorithm on the Microsoft Azure public cloud platform to investigate

the impact of a number of factors on the performance obtained by cloud users.

These factors comprise the type of the implemented architecture, the volume of

the data to analyze, the size of the cluster of nodes realizing the architectures

and their characteristics, the deployment costs, as well as the quality of the out-

put when the analysis is subjected to strict temporal deadlines. Experimental

campaigns have been carried out on the Yahoo Flickr Creative Commons 100

Million (YFCC100M). Reported results and discussions show that Lambda out-

∗Corresponding author
Email addresses: valerio.persico@unina.it (Valerio Persico?�∗),

antonio.pescape@unina.it (Antonio Pescapé?†�), picus@unina.it (Antonio Picariello?†),
giancarlo.sperli@unina.it (Giancarlo Sperĺı?)

Preprint submitted to Future Generation Computer Systems May 30, 2018

performs Kappa architecture for the class of problems investigated. Providing

a variety of analyses—e.g., also investigating the impact of dataset size, scaling,

cost—this paper provides useful insights on the performance of these state-of-art

big data architectures that are helpful to both experts and newcomers interested

in deploying big data architectures leveraging cloud platforms.

Keywords: On-Line Social Networks, Lambda and Kappa Architectures,

Influence Analysis, Social Networking Benchmarking, Public Cloud

Benchmarking

1. Introduction

Today, millions users generate and exchange information by means of On-

line Social Networks (OSNs). The development of big data technologies has

enhanced OSNs features, enabling users to share their own life, generating and

interacting with tons of multimedia content (text, audio, video, images) and5

providing it with feedbacks, comments, or feelings [30, 3]. As a matter of fact,

this technological development led to the proliferation of a huge amount of data

whose statistics are impressive: on average, everyday Facebook users publish

4.5 billion posts, share more than 4.7 billion status updates, and watch over

1 billion videos; Instagram—which recently reached the 300 million monthly10

active user marks—sees 2.5 billion likes and 70 million new photo uploads per

day; concerning YouTube (where 100 hours of new contents are uploaded each

minute) more than 1 billion unique users visit the site each month consum-

ing over 6 billion hours of video. In spite of the social value of OSN data,

the multimedia content of such nets may be valuable in a number of public15

and strategic applications such as marketing, security, but also medicine, epi-

demiological analyses, counter-terrorism, and so on. Therefore, the analysis of

multimedia OSNs represents an extremely interesting real-application domain,

characterized by extremely huge and heterogeneous datasets (e.g., type of social

network, time variance of data) introducing particularly challenging problems.20

The big data paradigm has been designed for achieving the optimal man-

2

agement and analysis of such large quantities of data (big data analytics). The

performance of such analytics—possibly influenced by a number of heteroge-

neous factors such as the type of data, the class of problem to address, or the

underlying processing systems—is of the utmost importance as impacting both25

the effectiveness and the cost of the overall knowledge extraction process [16]. In

this context, big data benchmarks are therefore useful to generate application-

specific workloads and tests in order to evaluate the analysis processes for data

matching the well known Volume, Velocity, Variety and Veracity (i.e. 4V) prop-

erties.30

In this paper, we focus on the real-time analysis of massive OSN streams

containing both textual and multimedia information coming from multiple data

sources, leveraged to feed analytics and advanced applications. We exploited

two state-of-art big data streaming architectures, namely Lambda and Kappa,

designing and deploying them on Microsoft Azure public-cloud Platform-as-a-35

Service. We produced meaningful evaluation results implementing for both ar-

chitectures a novel influence maximization and diffusion algorithm [2] in charge

of the automated real-time analysis of multimedia streams. It is worth noting

that the problem of stream analysis (although not being a problem novel per

se) is particularly challenging when applied in presence of several multimedia40

streams, due to the very nature of multimedia data, which is complex, hetero-

geneous, and of large size. This makes the analysis of multimedia streams com-

putationally expensive, so that, when deployed on a single centralized system,

computing power becomes a bottleneck. Moreover, the size of the knowledge

base could be so big to prevent its storage on a single node [28].45

The main contributions of the paper are as follows:

• considering the influence analysis problem as an interesting case study for

OSNs, we have implemented a state-of-art algorithm [3] for addressing this

problem on both Lambda and Kappa architectures and we have selected

it as reference task;50

• through purposely designed experimental campaigns, we have evaluated

3

Lambda and Kappa architectures against the reference task; indeed the

evaluation has been performed adopting cutting-edge technologies lever-

aging state-of-the-art open-source analytics frameworks (such as Apache

Storm and Apache Spark), which are more and more adopted in both55

industry and academia fields, proving to be the de facto standard tech-

nologies [5, 6];

• the evaluation deployment involved Microsoft Azure cloud PaaS services,

thus allowing to obtain easily-reproducible configurations and results as

well as estimating the actual costs related to the analyses according to60

real provider fees;

• the performance of Lambda and Kappa architectures has been evaluated

along different dimensions, primarily considering timeliness, deployment

costs, and outcome quality; with this goal in mind a number of different

factors has been identified and taken into account during the experimental65

campaigns to investigate the performance of the considered architectures,

such as the volume of the input dataset, the size of the deployed cluster,as

well as the characteristics of the nodes composing the cluster.

In the light of the considerations above, we believe that this paper provides

insightful information to both research and industry practitioners interested in70

deploying big data analytics systems onto the cloud. In addition, the obtained

results are helpful to both newcomers (possibly interested in the qualitative

impact of the analyzed factors on the performance) as well as experts (that can

leverage provided information to optimize their own deployments).

The paper is organized as follows. In Section 2 a state of the art in big data75

benchmarking and performance evaluation on cloud infrastructures is reported.

Section 3 describes Lambda and Kappa architectural models for OSN appli-

cations. In Section 4 we introduce the benchmarking task based on Influence

diffusion problems. In Section 5 we describe the dimensions along which the

architectures taken into account are evaluated, discussing the choices leading to80

4

the analyses, whose experimental results are reported and discussed in Section 7.

Finally, discussions, lessons learned, and conclusions are reported in Section 8.

2. Related work

Due to the tremendous interest in big data by academia, industry, and a

larger and larger user base, a variety of solutions and products has been re-85

leased in recent years. With their gradual maturity, a growing need to evalu-

ate and compare these solutions has been observed. Therefore, benchmarking

big data systems has notably attracted the interest of the scientific commu-

nity. Indeed, benchmarking solutions hugely facilitate performance comparison

between equivalent systems, providing useful information for procurement deci-90

sions, configuration tuning, features planning, deployment validation, and many

other efforts in engineering, marketing, and customer support [9].

2.1. Big data benchmarking frameworks

Only few years ago, the scientific literature advocated cautious approach to

developing “big data benchmarks” for fairly and properly evaluating big data95

systems, as little was known about real life use cases to design enough general

solutions [9]. However, in more recent years, several big data benchmarking

frameworks have been proposed.

Chen et al. [8] focused on the MapReduce framework and provided a charac-

terization of its workloads when partially driven by interactive analyses. They100

showed how these workloads display diverse behaviors, thus invalidating some

common assumptions. Moreover, their results were helpful to create a data-

processing benchmark for MapReduce. The joint effort from academia and

industry, led Ghazal et al. [12] to the proposal of BigBench. It is based on a fic-

titious retailer selling products to customers via physical and on-line stores, and105

considers structured, semi-structured, and unstructured data. In more details,

the proposal covers a data model, a synthetic data generator, and the related

workload description. BigBench aimed at overcoming previous efforts in the

5

area of big data benchmarks (e.g.,YCSB [10] and PigMix [29]) that were con-

sidered as island solutions and not policed by any industry consortia. Similarly,110

Wang et al. [39] proposed BigDataBench proposing a benchmarking methodol-

ogy focused on web-search engine workloads. Ming et al. [26] focused on data

generation and developed Big Data Generator Suite to efficiently generate scal-

able big data while employing data models derived from real data to preserve

data veracity.115

Differently from the contributions cited above, rather than proposing a gen-

eral approach for developing general benchmarking strategies, our work focuses

on the performance of state-of-art big data architectures when dealing with

specific workloads related to popular influence analysis tasks in OSNs.

2.2. Performance evaluation of big data systems and cloud infrastructures120

Some proposals in the literature aimed at benchmarking specific implemen-

tations of big data systems.

Möller and Özcep [27] evaluated the accuracy and the response time of a

stream-data management system based on Apache Storm leveraging a workload

the simulates toll charging in a fictional urban area. Wei et al. [40] benchmarked125

Apache Spark with a popular parallel machine learning training application.

Singh [35] focused on monitoring data and proposed an evaluation for a big

data system (leveraging Apache Hadoop and Apace Spark among others) inves-

tigating latency and fault tolerance. Satra [34] carried out repeated runs of a

movie review sentiment analysis task in Apache Spark on Google Compute En-130

gine clusters of various sizes. In a similar way, we focus on evaluating analytics

performance on a public-cloud infrastructure.

In some cases, the performance of big data architectures was also compared

to dedicated serial stand-alone implementations (i.e., not leveraging frameworks

such as MapReduce, Spark, or Storm [40, 34]. However, as the implementation135

of these specialized softwares is proved to require much more effort (also pos-

sibly impacting scalability, maintainability, etc. in a negative way) we do not

consider them in our experimental evaluation, as they cannot be considered a

6

valid alternative in general terms.

2.3. Architectures for the analysis of social-network Big Data140

A number of contributions in the literature specifically focused on social-

network data and architectures designed for processing it.

Tan et al. [36] focused on the interplay among connected people, business en-

tities, and connected computers (such as cloud infrastructures) and discuss how

it has opened new solutions with regard to how humans can interpret connected145

data. Erling et al. [11] described a social network benchmark and presented

database benchmarking innovation in terms of graph query functionality tested,

correlated graph generation techniques, as well as a scalable benchmark driver

on a workload with complex graph dependencies. Gribaudo et al. [15] presented

a modeling approach providing an evaluation tool to support design choices150

about parameters and eventually lead to better designs of applications based on

lambda architectures. Basanta-Val et al. [6] propose an architecture extending

Spark to support time critical map-reduce and Storm with a backward time-

critical stack for performing time-critical analytics.

In this paper, we focus on a real application designed for performing in-155

fluence analysis on OSNs and implemented leveraging different architectural

philosophies as well as state-of-art analytics frameworks.

3. Big Data Architectures

In this section, we briefly summarize the characteristics of the two big data

architectures we consider in this work—namely, Lambda and Kappa—that are160

adopted for executing analytics.

3.1. Lambda architecture

Lambda architecture was introduced by Marz and Warren [25] and provides

a set of architectural principles to ingest and process both stream and batch

data, in a single big data architecture. In Figure 1 the main components of165

the architecture are depicted. This infrastructure defines layers both for batch

7

Master Dataset

Batch View

Batch View

Real-Time
View

Real-Time
 View

New
Data

Query

Query

Batch Layer Serving Layer

Speed Layer

 1

 2 3

4

5

Figure 1: Lambda Architecture.

processing (that can be seen as a data lake system) and streaming data analysis.

Lambda architecture balances latency and throughput using batch processing

to provide accurate view of historical data and on-line data obtained by the

ingestion phase (number 1 in Figure 1) from heterogeneous sources. The Batch170

Layer (2), also called cold path allows to process pre-computed large amount

of data; in addition, a Speed Layer (4), also called hot path, processes incoming

data for rapid consumption using an incremental approach in order to reduce

the computational costs. In particular, the Batch Layer combines incoming

data with historical ones, processing them by means of appropriate analytical175

models. However, it also introduces high latency, due to its high computation

time. The Serving Layer (3) indexes the batch views so that they can be

queried in low-latency, ad-hoc way. Any incoming query (5) can be answered

by merging results from batch views and real-time views. The views can be

stored in distributed databased to handle reads.180

8

Raw Data

Data Storage

Serving Layer

Streaming Layer

Results

Queries

Real-Time Engine

Serving Backend

 1

 2

 3

Figure 2: Kappa Architecture.

3.2. Kappa architecture

Kappa architecture was first described by Kreps [22] for data streams. The

key idea is to use a single real-time layer to process stream and batch data (Data

storage box in Figure 2), avoiding the problems due to the use of two different

frameworks. For this reason, Kappa architecture focuses on data processing185

more than storage and it is considered an event-streaming platform. Kappa

architecture is natively designed for handling data streams, such as actions of

OSN users, events generated by devices connected in the Internet of Things, or

transaction processing systems.

As shown in Figure 2, this infrastructure is composed of: a Stream Processing190

module (2), that ingests ordered data events (1) and a Serving Layer (3),

that manages the query results. Kappa architecture is based on the idea to

compute the incoming data through a stream processor able to process data at

high rate and fed them into an auxiliary stores for serving the analytics clients.

195

9

4. Task definition

The estimation of influence exerts among users is an important task in OSNs,

contributing to to properly defining the social communities and improving the

performance of recommender systems. In this section we first introduce the OSN

model we refer to (Section 4.1); then, we provide the details of the algorithm200

we have implemented for analyzing interactions among OSN users (Section 4.2).

This algorithm represents the reference task executed by the big data architec-

tures we benchmark. The workload imposed to the big data architectures under

investigation depends upon both the task executed and the amount of data to

process.205

4.1. OSN model

Several approaches have been proposed to model social networks through

different kinds of graphs that are usually incrementally built over the time.

Kempe et al. [19] discussed about temporal network in which labels on edges

are time dependent. In particular, some approaches are based on the analysis of210

interactions made by users. Goyal et al. [14] proposed a model that learns how

influence flows across the network based on propagation traces for estimating

expected influence spread. More recently, Hines et al. [17] proposed a Marko-

vian influence-graph model, analyzing the data from many cascading failure

simulations in which the outage probabilities depend on the analysis of previ-215

ous outages. Amato et al. [2] proposed an OSN data model based on sliding

windows leveraging user-to-content actions to estimate the likelihood that one

users exerts influence on another one for influence analysis applications.

In this work, we leverage for benchmarking purposes the model and the al-

gorithm introduced in [2]. The novelty of the analyzed method concerns the220

learning phase based on the analysis of users’ behaviors from past logs; more in

details this approach is the first attempt to estimate influence probability lever-

aging user content actions such as users’ reactions or comments on user gen-

erated content (e.g., post, pictures and so on). The algorithm has widespread

10

applicability as a wide range of applications potentially benefits from its out-225

comes. For instance, recommender systems could improve the performance of

recommendation combining the interest of each user with the products pur-

chased by its social circle, viral marketing strategy can obtain benefits from the

choice of a users subset that can influence the largest number of people, adver-

tising campaigns can be focused on people that share common interests etc. Its230

basic working principles are summarized in the following.

The algorithm aims at assessing the likelihood that a user ui can be in-

fluenced by a user uj . The algorithm implements an iterative approach based

on coalescence windows of different sizes, describing different points of views of

the analyzed networks. In more details, the algorithm divides the time axis in235

different time windows, before analyzing each of them separately. Finally, the

results are properly combined in the influence graph.

In simple terms, an analyzed OSN stream consists of a set of log tuples (s).

Each tuple corresponds to an action (s.action) performed by a user (s.user) on

a given object (s.object) at a given time instant (s.timestamp) with additional240

attributes associated to it.

In particular, analyzing an OSN stream, it is possible to define the reaction

operator between two actions made on the same objects or similar ones. This

operator is the main element to define the influence probability that is composed

by the following two components: reactivity and shareability. The reactivity of245

user ui with respect to user uj , is the ratio between number of reactions of ui

with respect to the actions made by uj (ruiuj
) and total number of reactions of

ui (aui
):

Reactivityij =
|ruiuj

|
|aui
|

(1)

This ratio represents how the user ui is reactive with respect to uj . Indeed,250

it is easy to note that this value is equals to one if the user ui reacts on each

content published by uj .

11

The shareability of user uj with respect to user ui corresponds to the ratio

between the number of reactions of ui with respect to uj (ruiuj
) against total

number of actions of uj (auj
):255

Shareabilityij =
|ruiuj

|
|auj |

(2)

This ratio represents how the user ui reacts to the action of uj , describing

the capability of user uj to influence directly user ui. The highest influence

from user uj to user ui is when every action performed by user uj is reacted by

user ui, as well as the user ui is limited only to react on actions made by uj .260

4.2. Algorithm implementation

Details of the procedure for assessing influence are reported in Algorithm 1.

It is possible to note that the analyzed algorithm is mainly impacted by the

two iterative constructs shown at the lines 20–21 lying in O(n2) asymptotically.

Furthermore, starting from line 18 to line 29 it is shown in details the instruction265

for graph updating, in which firstly the initial analysis time is modified (line 19),

successively the weights of the edges are updated (lines 20–26) and finally data

structures are cleared (lines 27–29).

5. Performance Evaluation

Big data systems are required to provide timely, cost-effective, and quality270

answers to data-driven questions [21]. Therefore, we consider three main dimen-

sions along which the architectures taken into account are evaluated: timeliness,

cost, and quality of the output. Here we discuss the choices leading to the anal-

yses whose experimental results are detailed in Section 7.

For what concerns timeliness, works in the scientific literature have proposed275

and adopted several metrics to investigate the efficiency of big data systems.

These metrics are often categorized in (i) architectural and (ii) user-perceivable

12

Algorithm 1 τ -algorithm

1: procedure τ -algorithm(S,∆t,ts)

2: - - Input: S (Tuples temporal stream)

3: - - Input: ∆t (Interval analysis)

4: - - Input: ts (Start time of analysis)

5: - - Output: G=(V,E) (Direct graph)

6: - - Temporary : P (Square matrix whose element pij represents the influence

exerts from ui on uj)

7: - - Temporary : s (Analyzed tuple)

8: - - Temporary : ti (Timestamp)

9: - - Temporary : R (Square matrix whose element ruiuj represents the number

of reactions of ui with respect to uj)

10: - - Temporary : A (Vector whose element auj is the total number of actions of

uj)

11: - - Temporary : Ho,u (Hash map stores users that interact with a given object)

12: ti ← ts

13: R ← ∅

14: A ← ∅

15: Ho,u ← ∅

16: while (There are tuples to analyze (S 6= ∅)) do

17: s ← dequeue(S)

18: if s.timestamp≥ ti + ∆t then

19: ti ← ti + ∆t

20: for i ∈ {1, · · · , |V |} do

21: for j ∈ {1, · · · , |V |} do

22: pij ←
ruiuj

aui
∗
ruiuj

auj

23: if (eij ∈ E) then w(eij) ← w(eij)+pij
2

24: else

25: E ← E ∪ eij

26: w(eij) ← pij
2

27: Ho,u ← ∅

28: R ← ∅

29: A ← ∅

30: if (s.object ∈ Ho,u) then

31: as.user ← as.user+1

32: for (v ∈ Hos.object,u) do

33: rvs.user ← rvs.user + 1

34: if (s.user /∈ V) then

35: V ← V ∪ {s.user}

13

metrics [39]. The former are typically used by architectural research and com-

prise [39, 4]: million instruction per second (MIPS); L1-cache misses for 1000

instructions (MPKI); CPU Utilization; memory Utilization; disk Utilization;280

network I/O. The latter may depend upon the specifications of the workload

running onto the system and encompass [39, 7]: the number of processed re-

quests per second, used to measure the throughput of on-line service workload;

the number of operations per second, used to evaluate Cloud OLTP workloads;

the quantity of data processed per second, used for analytic workloads; num-285

ber of edges per second, that can be leveraged in the case of graph-data input.

While architectural metrics can be leveraged even when comparing system per-

formance under different workloads (e.g., database servers vs. MapReduce work-

loads), user-perceivable metrics can be more conveniently observed and used by

users, as they provide a general view on the system modeled as a black box.290

In accordance with the specifications of the considered application, since our

main goal is to provide a view of the performance of the implemented big data

architectures that can be directly understood and leveraged also by the users,

hereafter we consider the total processing time as the main metric for evaluating

the timeliness.295

It is worth noting that this choice is also encouraged by the PaaS cloud

deployment we leverage (additional details are reported in Section 6.2), that

partially or totally hides architectural information, as preventing direct access

to the virtual machines (VMs) composing the cluster. For instance, because

of the PaaS abstraction layer, we are not allowed to directly measure neither300

the CPU and memory utilization of each VM, nor to characterize the network

interconnecting them within the provider datacenter, as done in recent litera-

ture [31, 32].

Moreover, as the size of the input dataset is expected to impact the time-

liness of the system, we run the considered task varying the number of tuples305

composing the dataset across different orders of magnitude. This allows us to

evaluate and compare the scalability of the two architectures as function of the

volume of the data provided as input, as well as to assess the potential impact

14

of bootstrap phases onto timeliness.

Focusing on the real-time resource scalability enabled by the cloud paradigm,310

for what concerns costs, our analysis aims at investigating (similarly as done

in [4]) how the performance of the implemented architectures varies when differ-

ent amounts of resources are available—or equivalently, when the deployment is

subjected to different budget constraints. In more details, we consider how the

timeliness of the architectures varies both when resizing the cluster (horizontal315

scaling) and under different configurations for the nodes in the cluster (vertical

scaling) [33].

Finally, we also focus on the quality of the outcome of the architectures in-

vestigating how it degrades when it is subjected to different temporal deadlines.

More specifically, for this analysis, we evaluate how the information processed320

by the algorithm until a given time point are valuable to identify the main

influencer in the social network.

The dimensions taken into account are briefly summarized in Table 1, with

the related metrics and research questions. The main results of the analyses

derived from the Table are discussed in Section 7.325

Table 1: Summary of the performance dimensions investigated with related metrics and re-

search questions.

Dimension Metric adopted Research Questions

Timeliness Total processing time
Which architecture performs better?

How does performance vary with input size?

Cost
Deployment cost per

analysis

How does performance vary with cluster size?

How does VMs characteristics impact performance?

Outcome

quality

Top-k influencer Re-

call

How good is the outcome when the architectures are

subjected to different time constraints?

6. Experimental Testbed

In this section, for the sake of repeatability of the analyses, we provide the

details of the experimental testbed we set up. We first describe the imple-

mentation details of the architectures in Section 6.1; then we detail the cloud

15

Spark
SQL

Apache Spark

Spark
Streaming

MLlib
Machine
Learning

GraphX

Figure 3: Spark modules.

deployment in Section 6.2; finally, we describe the procedures adopted for ob-330

taining the input datasets in Section 6.3.

6.1. Architecture implementation

Lambda architecture has been implemented using Spark, able to perform

fast computation through in-memory processing. Spark is an open-source, gen-

eral purpose, scalable, high available and reliable computing platform, initially335

designed to outperform its counterpart Apache Hadoop. Spark analyses lever-

age a read-only collection of data items—called Resilient Distributed Dataset—

partitioned and distributed over a cluster of machines. Spark provides APIs

for programming entire clusters, including support for SQL queries, streaming

data, machine learning and graph processing. Spark makes available different340

analyses through a number of modules (Figure 3), such as Spark Core (on which

all the other applications are built), Spark Streaming, MLlib, and GraphX.

For what attains Kappa architecture, several distributed platforms have been

proposed for processing streaming data from heterogeneous data sources, such as

Apache Kafka, Apache Flink or Apache Storm. We leverage Storm, a distributed345

platform that processes raw stream of data. Storm provides several features,

such as cluster balancing (when a new node is added to the cluster), fault

tolerance (that guarantees data processing), etc. As shown in figure 4, it is

composed of several Worker Nodes (also called Supervisors) that execute tasks;

and at least one Master Node (executing the daemon Nimbus) in charge of350

assigning tasks to the machines and monitoring their performance. All these

16

Storm Cluster Zookeeper Cluster

Zookeeper
Nimbus

Supervisor

Logviewer

Supervisor

Logviewer

Supervisor

Logviewer

WebUI

Zookeeper

Zookeeper

Node 1
Master Node

Slave Node 1 Slave Node 2 Slave Node n

Node n

Node 2 - Leader

Figure 4: Storm Architecture.

nodes are coordinated by an orchestrator, namely Zookeeper.

Among the several implementations available for both architectures, we have

chosen Apache Spark and Apache Storm, as they are the two main technolo-

gies [18] used in several research fields and commercials firms. For instance,355

from a research point of view, Spark and Storm technologies have been recently

used in several application fields, such as in industrial environments for data

processing [5] and in the network field with network monitoring purposes [42].

From a commercial viewpoint, Spark1 and Storm2 are adopted by several big

companies such as Spotify, Twitter, and Samsung.360

It is worth noting that, in spite of the large number of choices available,

in this work we aim at comparing Lambda and Kappa architectures leverag-

ing two state-of-art implementations, rather than investigating the performance

discrepancies possibly generated by the different implementations of a given

architecture.365

1https://spark.apache.org/powered-by.html
2http://storm.apache.org/Powered-By.html

17

6.2. Cloud deployment

For the experimental evaluation, we have deployed the implemented archi-

tectures onto the public-cloud infrastructure [1] made available by Microsoft

Azure one of the market leaders representing a choice largely adopted by most

of the customers [23].370

Among all the data centers located world-wide, we chose to deploy our ar-

chitectures in the West Europe region. Although some specific performance

indexes may be subjected to variation when changing region [32], this varia-

tion is expected not to dramatically affect the observed timeliness. Also, costs

imposed by the provider may change across regions. Converting costs from a375

region to another can be easily done leveraging proper conversion coefficients

derived from current fees, however.

In more details, the evaluation has been carried out on Azure HDInsight, a

cloud distribution of the Hadoop stack on Microsoft Azure. This choice well

fits with our needs, as this PaaS service includes the support to the Hadoop380

technology stack together with related software and utilities, including Apache

Spark and Apache Storm, among the others. It is worth noting that similar

deployments can be obtained also using other public-cloud platforms. For in-

stance, leveraging Amazon Web Services (AWS), Lambda architecture can be

easily deployed onto Elastic Map Reduce. On the other hand, since Kappa ar-385

chitecture is not natively supported on AWS at time of writing, its configuration

could be less straightforward.

During the deployment phase, HDInsight allows to customize the cluster act-

ing on a list of parameters, such as (i) the number of VMs composing the clusters

(ii) the number of cores, (iii) the type of processor, and (iv) the size of the RAM.390

Different configurations for VMs are provided for responding to common require-

ments (e.g., running compute-intensive or memory-intensive tasks). Leveraging

these configuration parameters, we are able to evaluate the performance of the

architecture both considering horizontal scaling (i.e., when additional VMs join

the cluster) and vertical scaling (i.e., when enhancing the characteristics of each395

VM).

18

6.3. Dataset

For our experimental analyses, we took advantage of the Yahoo Flickr Cre-

ative Commons 100 Million (YFCC100M), a Flickr multimedia collection dataset

used for academic purposes, shared under a Creative Commons license [38].400

For all our experimentation we leveraged the Flickr API3 to crawl the fol-

lowing information (actions) concerning to each image: Photo Publishing (au-

thor ID, photo ID, Timestamp); Comment Publishing (author ID, comment ID,

photo ID, Timestamp); Favorites (author ID, photo ID, Timestamp). Table 2

summarizes the information about the dataset.405

Table 2: Overall YFCC100m dataset characterization.

Action #

Photo Pub. 67.812.283

Comment Pub. 19.033.208

Favorites 13.418.945

Avg. actions per user 91

In order to evaluate the performance of the architectures against different

volumes of data provided as input, we partitioned the YFCC100M dataset,

obtaining datasets of four different sizes. Resulting datasets consist of 1M,

10M, 60M, and 100M tuples, and are labeled as Small (S), Medium (M), Large

(L), and Extra-Large (XL) respectively. It is worth noting that to obtain the410

instances of S, M, L and XL datasets, we performed a different random sampling

of the initial dataset at each run to avoid introducing bias possibly due to specific

samples in the data. Moreover, at each run both architectures were fed with

the exactly same dataset. The methodology described, allows us to perform a

fair analysis and obtain comparable results.415

3https://www.flickr.com/services/api

19

7. Experiments and Results

We report here the results obtained through our experimental campaigns.

In Section 7.1 we discuss the timeliness of the architectures when they are

fed with different volumes of data in input; in Section 7.2 we evaluate how

the performance improves when increasing the number of nodes composing the420

architectures (horizontal scaling) as well as when deploying VMs with enhanced

characteristics (vertical scaling); in Section 7.3 the trade-off between cost and

performance is analyzed; finally in Section 7.4 we experimentally assess how

quality degrades when the analysis is subjected to strict time constraints.

7.1. Timeliness with respect to data volume425

In this section we analyze the performance of the big data architectures in

terms of timeliness, leveraging overall running time for Algorithm 1 as evaluation

metric. First, this analysis aims at investigating the performance figures of the

architectures when they are fed with different volumes of data. Secondly, it also

provides comparative insights.430

To provide a fair comparison, we have implemented both architectures with

two executor nodes (namely, Supervisor and Worker nodes for Storm and Spark

frameworks, respectively). As a result, according to the nodes and topologies

these architectures require to be deployed (see Section 3), the overall VMs de-

ployed for implementing Lambda and Kappa architectures is different for this435

analysis. Regarding the characteristics of each node in terms of memory and

computing capabilities, we have referred to those suggested by the provider in

the quick setup procedure to obtain representative configurations. It is worth

to note that, when strictly following these suggestions would have led to slight

different setups, we opted for the more costly choice, in order to satisfy the440

minimum requirements for both architectures. In more details, we deployed A7

VMs for executing tasks. According to best practices, this choice is slightly

overkill in terms of memory for Kappa architecture, but allowed us to design a

fair comparison in terms of VM resources.

20

Table 3: Cluster configuration for timeliness analysis. In order to reproduce configurations

usually deployed by cloud users, we have referred provider’s setup suggestions when selecting

VMs type.

Node Role Type
CPU

(cores)

RAM

(GB)

Cost

(e/h)

Storm

Zookeper
Coordinating

cluster
A3 4 7

3.73

Nimbus
Assigning tasks

to Supervisors
A3 4 7

Supervisor Executing task A7 8 56

Spark
Head

Assigning tasks

to workers
A3 4 7

2.92

Worker Executing task A7 8 56

The general setup for the two architectures is as follows: Kappa Architecture445

consists of 2 nodes for assigning tasks and 2 nodes for carrying out tasks (execu-

tors); Lambda Architecture is made up of 3 nodes for coordinating the cluster,

2 nodes for assigning tasks, and 2 nodes for executing tasks. Additional details

about the clusters implementing the two architectures can be found in Table 3.

The hourly cost for running Kappa and Lambda architectures according to the450

above configurations was 3.73 and 2.92 e/h, respectively.

To investigate performance variance, for each architecture we run the analy-

sis three times for each dataset size. The same choice applies also for remaining

analyses, if not stated otherwise. The choice of running three experiments for

each investigated scenario has been guided by the results of a preliminary cam-455

paign, where a limited number of scenarios was tested up to ten times. Results

statistics obtained with three runs provided a good fit with those obtained

through longer campaigns in both average and inferred variability. Taking ad-

vantage of low variability, we were encouraged in limiting the number of it-

erations, thus achieving a good trade-off between results accuracy and costs.460

Figure 5 reports the results in terms of running time (mean and standard devi-

ation) for both architectures when they are fed with S-, M-, L-, and XL-sized

21

1M 10M 60M100M

Cluster Configuration (Number of tuples)

0

1000

2000

3000

R
u

n
n

in
g

 T
im

e
 (

s
)

Kappa

Lambda

Figure 5: Performance in terms of running time for Lambda and Kappa architectures (mean

and standard deviation). Results reports that Lambda architectures perform up to 18% better,

on average.

datasets.

First, the performance in terms of timeliness is highly impacted by the vol-

ume of the input dataset for both architectures. Kappa architecture suffers465

more from the increasing input volume. In more details, with respect to the re-

sponse time observed with S dataset, we observed a +303% (+293%), a +1486%

(+1377%), and a +2209% (+1940%) for Kappa (Lambda) architecture when M,

L, and XL datasets are provided as input, respectively. In particular, the in-

memory computation of Lambda architecture allows to better handle different470

amount of data having enough computational resources. However, consider-

ing that M, L, and XL datasets orders of magnitude larger, both architectures

exhibit sublinear scaling.

For what concerns performance variability, results report that its absolute

value (in terms of standard deviation) grows with dataset size. For both archi-475

tectures we observed the largest coefficient of variation (CoV)4 when providing

the L dataset as input. However, also in this case, CoV value is small, be-

ing equal to around 2.4% for both architectures, thus highlighting predictable

4The coefficient of variation is the ratio of the standard deviation over the mean (CoV =

σ
µ

).

22

timeliness when analyzing datasets of the same size.

Comparing the results obtained by the two architectures, Figure 5 shows480

how Lambda architecture reports better performance in terms of timeliness,

on average. Indeed, the bigger the input volume, the larger the performance

discrepancy is. Lambda architecture performs from 12% to 18% better, on

average. An explanation for this results can be found in the in-memory com-

putations performed by Spark (which also requires to equip executor VMs with485

more memory, and therefore impacts deployment cost).

Since deployment cost is a major issue, we have investigated related aspects

through purposely designed campaigns and discuss the results in the following

sections.

7.2. Scalability with respect to cluster configuration490

The aim of the analysis provided in this section is to evaluate the perfor-

mance of Algorithm 1 on varying cluster configurations, (i) acting on the number

of VMs composing the cluster and thus reflecting different budget constraints,

and (ii) deploying VMs with different characteristics.

To provide this experimental evaluation, we fed the architectures with L-495

sized datasets (see Section 6.3) while varying either the number of executor

nodes or their type.

Horizontal scaling. In the context of the horizontal scaling, we provide the

results of two distinct campaigns. In both campaigns we have considered de-

ployments with 2, 4, and 6 executor nodes. The upper bound has been defined500

according to the limitations imposed by the specific agreement stipulated with

the provider. While in the first experimental campaign we blindly chose the

type of the executors among those suggested in the online quick setup pro-

vided by HDInsight, in the second one we implemented the advices we obtain

when contacting the support asking for suggestions about our specific use cases.505

Therefore, in the first campaign we leveraged A7 executors, while for the sec-

ond one we selected Dv2 VMs (that are memory-optimized). In accordance with

23

Table 4: Cluster configuration for horizontal-scalability analysis.

(a) Standard deployment.

Storm Spark

Hor-S std

2× A3 nimbus

3× A3 zookeper

2× A7 supervisor

2× A3 head

2× A7 worker

Hor-M std

2× A3 nimbus

3× A3 zookeper

4× A7 supervisor

2× A3 head

4× A7 worker

Hor-L std

2× A3 nimbus

3× A3 zookeper

6× A7 supervisor

2× A3 head

6× A7 worker

(b) Optimized deployment.

Storm Spark

Hor-S opt

2× A3 nimbus

3× A3 zookeper

2× D4v2 supervisor

2× D12v2 head

2× D13v2 worker

Hor-M opt

2× A3 nimbus

3× A3 zookeper

4× D4v2 supervisor

2× D12v2 head

4× D13v2 worker

Hor-L opt

2× A3 nimbus

3× A3 zookeper

6× D4v2 supervisor

2× D12v2 head

6× D13v2 worker

the selected configurations, we will refer to these to as standard and optimized

deployments, respectively. Additional details about cluster configuration are

provided in Table 4a and Table 4a for the former and the latter experimental510

campaign, respectively. Table 5 reports details about the memory-optimized

VMs.

For ease of discussion, we dubbed the configurations for each deployment

(that differ in the number of executor nodes) as small, medium, and large. In

more details, we label these configurations as Hor-S std, Hor-M std, Hor-515

L std, and Hor-S opt, Hor-M opt, Hor-L opt, for standard and optimized

deployments, respectively.

It is worth noting that, according to best practices [24], configuring Lambda

24

Table 5: Cluster Configuration for horizontal-scaling campaign (VM types).

Node Type
CPU

(cores)

RAM

(GB)

Storm

Nimbus A3 4 7

Zookeper A3 4 7

Supervisor D4v2 8 28

Spark
Head D12v2 4 28

Worker D13v2 8 56

and Kappa architectures is subjected to different implementation constraints.

Therefore, the deployments above led to slightly differing costs, because of the520

peculiarities of the architectures. Although this analysis is mainly intended to

investigate how performance of each architecture varies when subjected to dif-

ferent budget constraints (rather than directly comparing performance obtained

by the two architectures) we have planned these experimental campaigns such

that hourly costs for configurations in the same deployment class (i.e. L, M, or,525

H) are coarsely comparable. The deployment for Kappa architecture resulted

more expensive with respect to Lambda with the same number of executors

(with a discrepancy of 0.81e/h, at most) due to the cost overhead imposed by

nodes other than executors to be deployed.

Results reported in Figure 6 show how performance dramatically improves530

when running the algorithm on larger clusters, both when considering Kappa

and Lambda architectures. As shown in Figure 6a, when increasing the number

of executors from 2 (low-performing configuration) to 4 (medium-performing

configuration) the running time reduces by 18.03% and 18.31% for Kappa and

Lambda architectures, respectively. When adding two more executor nodes to535

the cluster, the running time further decreases by 8.96% and 6.34% more for

the former and the latter, respectively.

The comparison of Figure 6a to Figure 6b unveils how a qualitatively similar

trend is observed also with the optimized deployment. Moreover, results also

show how Lambda architecture benefits from the optimized deployment more.540

This result is explained by the higher quota of in-memory operation performed

25

with respect to Kappa architecture.

In more general terms, observing the trends of performance on increasing the

cluster size, additional benefit is expected to be registered when further adding

VMs. However Figure 6a and Figure 6b prompt that the marginal improvement545

generated by increasing the clusters is progressively reduced for both architec-

tures and both deployments considered, because of the management overhead

introduced by larger clusters.

Vertical Scaling. To obtain a more detailed view about the impact of deploy-

ing VMs with different characteristics, we purposely designed an experimental550

campaign to evaluate the impact of vertical scaling. The related results are

discussed here.

In more details, for this analysis we have deployed clusters with two memory-

optimized executors, whose type has varied among D4v2, D5v2, and D14v2.

These VM types differ in both the number of cores as well as memory available.555

Resulting configurations (dubbed Ver-S, Ver-M, and Ver-L) are detailed in

Table 6. Also in this case, configuration choices impact hourly deployment

costs. Low-, medium-, and high-performing configurations cost 3.45, 3.65, and

5.51 (4.4, 4.6, 6.46) e/h respectively for Kappa (Lambda) architecture.

Results in Figure 7 show how Kappa and Lambda architectures significantly560

improve performance when enhancing VMs characteristics. Running time varies

from around 1800s to 1200 (1000) for Kappa (Lambda) architecture, generating

improvements up to 33.19% (42.12%).

Average performance discrepancy between the two architectures varies ac-

cording the type of the VMs in the cluster. While, for low-performing config-565

urations the performance of Kappa and Lambda architecture vary only by 2%,

the highest discrepancy was observed for the medium-performing configuration

(18%). Interestingly, Lambda deployed with Ver-M configuration outperforms

Kappa implemented with Ver-L configuration.

26

2 4 6

Number of executor nodes

1000

1500

2000

R
u

n
n

in
g

 T
im

e
 (

s
)

Kappa

Lambda

(a) Standard deployment.

2 4 6

Number of executor nodes

1000

1500

2000

R
u

n
n

in
g

 T
im

e
 (

s
)

Kappa

Lambda

(b) Optimized deployment.

Figure 6: Results for horizontal-scalability analyses. Figure 6a reports results related to

Hor-S-std, Hor-M-std, and Hor-L-std detailed in Table 4a, while Figure 6b reports results

related to Hor-S-opt, Hor-M-opt, and Hor-L-opt detailed in Table 4b.

27

Table 6: Cluster configuration for vertical-scalability analysis.

Storm Spark

Ver-S

2× A3 nimbus

3× A3 zookeper

2× D4v2 supervisor

2× D12v2 head

2× D4v2 worker

Ver-M

2× A3 nimbus

3× A3 zookeper

2× D5v2 supervisor

2× D12v2 head

2× D5v2 worker

Ver-L

2× A3 nimbus

3× A3 zookeper

2× D14v2 supervisor

2× D12v2 head

2× D14v2 worker

VER-S VER-M VER-L

Cluster Configuration

1000

1500

2000

R
u

n
n

in
g

 T
im

e
 (

s
)

Kappa

Lambda

Figure 7: Results for vertical-scalability analysis. Results are related to Ver-S, Ver-M, and

Ver-L detailed in Table 6.

7.3. Cost analysis570

The analyses above leveraged different configurations that led to different

hourly deployment costs. However, we found that lower hourly costs are also

associated to higher running time, which impacts the overall cost of the analysis

in accordance with the pay-as-you-go billing model. In this section we deepen

the impact of the different configurations tested on the cost for analyzing L-sized575

datasets.

Figure 8a compares the hourly cost associated to each deployment to the

results in terms of running time. As shown in the figure, we have considered

deployments ranging from 2.92 to 9.2 e/h. A general trend can be observed,

28

2 4 6 8 10
500

1000

1500

2000

2500

3000
R

u
n
n
in

g
 T

im
e
 (

s
)

Kappa - STD

Lambda - STD

Kappa - OPT

Lambda - OPT

(a) Hourly cost vs. running time.

1 1.5 2 2.5 3 3.5 4 4.5
500

1000

1500

2000

2500

3000

R
u

n
n

in
g

 T
im

e
 (

s
)

Kappa - STD

Lambda - STD

Kappa - OPT

Lambda - OPT

(b) Overall cost vs. running time.

Figure 8: Results for cost analysis. The dimension of the points in the figures reflects dif-

ferent cluster configurations (as detailed in Table 4a), i.e. larger points are related to larger

configurations and vice versa). Higher hourly deployment costs generates dramatically lower

running time, thus positively impacting overall cost.

29

as the highest the hourly cost associated to the deployment, the shorter the580

running time is.

When considering the overall cost associated to each analysis (i.e., the prod-

uct of the running time and the hourly cost) additional conclusions can be

drawn. Indeed, Figure 8a shows how the overall best performance in terms

of running time is achieved by Lambda architecture (around 1000 s), obtained585

leveraging a cluster with 6 memory-optimized executors leased at 9.2e/h (the

overall highest hourly cost). However, this setup generates a total cost equal to

2.46e, that is lower than 4 out of 11 other configurations tested. Every other

deployment with lower hourly costs generates higher overall costs, because of

the longer running time. The deployment associated to the highest cost for590

running the overall analysis is Kappa architecture with 6 A7 executors. In this

case, the performance advancement generated by the higher hourly cost does

not disclose benefits in terms of running time, also impacting overall costs.

More in general, experimental results witness how leveraging memory-optimized

VMs guarantees cost saving, in spite of the higher hourly cost, to both architec-595

tures. Moreover, although the proper trade-off has to be evaluated according to

specific of both user and application, both overall costs and running time ben-

efits from leveraging larger clusters and its impact is more evident on Lambda

architecture.

7.4. Quality vs. timeliness600

In this section, we assess the quality of the outcome of Algorithm 1 when it is

executed on Lambda and Kappa architectures under differing time constraints.

To provide this qualitative comparison, we refer to the partial outcomes of the

algorithm for addressing the influence analysis problem obtained at different

points in time.605

Two steps are usually required to deal with this influence analysis problem:

first, a diffusion model has to be defined, to describe how the influence spreads

between users over the networks; secondly, top-k influential users have to be

chosen. In this evaluation we consider (i) the Independent Cascade (IC) diffusion

30

model [13] (a stochastic model in which each active node has one attempt to610

activate its neighborhood), and (ii) IMM [37] algorithm (a two phase algorithm

exploiting a set of estimation probabilistic techniques [41] to reduce the number

of required sample).

To provide qualitative evaluation we use a recall measure to compare the

obtained results with respect to a given ground truth, computed by using Monte

Carlo method [20]. Formally, the recall measure is defined as:

R =
|Û ∩ Ũ |
|Û |

where Û is the set of influentials in the ground-truth and Ũ corresponding to

the set of influentials obtained with respect to time constraints.615

To provide this analysis we consider L-sized dataset and the same cluster

configuration shown in section 7.1. Figure 9 shows the recall values on vary-

ing time constraints (sampled each 5 minutes). Since the proposed algorithm

iteratively updates the interaction probability between two users, after an ini-

tial startup due to an absence of prior knowledge it provides good results with620

respect to the ground truth. In more details, with only 5-minutes processing

the recall is higher than 60%. After 15 minutes the recall is always higher than

75%.

This analysis shows that both architectures properly support the OSN ap-

plication taken into account.625

8. Discussion and Conclusion

In this paper we have analyzed the performance of two state-of-art big data

analytics architectures (Kappa and Lambda) when deployed onto a public-cloud

PaaS. To achieve this goal we have considered (i) Apache Spark and Storm (pro-

viding the de-facto standard implementation for Kappa and Lambda, respec-630

tively); (ii) an implementation of the popular influence analysis task to generate

the workload; (iii) Flickr YFCC100M big-data dataset as input; (iv) Microsoft

31

0 5 10 15 20 25 30

Average Time (minute)

50

60

70

80

90

R
e

c
a

ll
(%

)

Kappa

Lambda

Figure 9: Recall evaluation.

Azure HDInsight PaaS as deployment environment (as it is provided by one of

the market leaders and thus being a popular choice among customers).

Beyond the specific outcomes of this work, in this paper we proposed a de-635

tailed and reproducible methodology that can be adopted to evaluate big data

architectures along different and complementary dimensions. Guided by the

scientific literature and by known advantages carried by the cloud paradigm as

well as potential criticalities related to the application of the reference task, we

have identified three main evaluation dimensions: timeliness, cost, and outcome640

quality. According to the PaaS abstraction, we have set running time as the

reference metric for evaluating timeliness, and have identified a number of fac-

tors under the direct control of cloud PaaS customers (i.e. number of deployed

nodes and their characteristics in terms of computing resources).

Experimental campaigns have been designed to evaluate the impact of input-645

data volume, cluster size, VMs characteristics (also considering optimized de-

ployments proposed by the provider), costs for deploying the architectures and

carrying out the analyses, and the impact of time constraints on the quality

of the outcomes. We believe that the methodology proposed and detailed in

the paper can be a useful reference for further works aiming at investigating650

the performance of big data architectures also deployed on public-cloud Paas

32

other that Azure. Moreover, differently than other approaches proposed in the

literature, the one adopted in this paper does not require accessing to provider-

restricted information and thus can be adopted even by cloud customers (e.g.,

to evaluate the performance of the available services against the related costs).655

For instance, adopting the proposed methodology researchers and practition-

ers can compare PaaS services made available by different providers to support

different big data distributed architectures, compare them, and evaluate the

trade-off between performance and cost.

Beside the methodological contribution discussed above, focusing on OSNs660

and on the popular influence analysis task and leveraging state-of-art implemen-

tations, this paper analyzes in depth the performance of two state of the art big

data architectures. Research outcomes provide useful insights to both practi-

tioners involved in architecture design as well as to cloud customers willing to

conveniently lease cloud resources. While results have been obtained leverag-665

ing a single cloud provider, most of the design factors taken into account (e.g.,

number of nodes per cluster, memory and CPU resources) are general enough to

be meaningful for other providers or even for in-house deployments. This could

not strictly apply for what concerns optimized configurations that may change

across different providers. However, it is worth noting that most of the opti-670

mizations (such as those related to memory, computation, and disk) are made

available by a growing number of market players. Moreover, obtained results

can be easily generalized to other analysis tasks characterized by the same com-

putational complexity. Therefore, notwithstanding some minor limitations, the

results discussed below are general enough to be valid in scenarios wider that675

those specifically investigated (i.e., other tasks, other cloud providers, other ar-

chitecture implementations). In the following, the main take-home messages

and lesson learned from our analysis are discussed.

Both architectures disclose predictable performance. Experimental cam-

paigns reported that in each specific scenario (identified by size of the cluster,680

type of VMs, and size of the input) performance variability e extremely low,

with standard deviation (CoV) always lower than 52.93 s (0.13), in spite of the

33

random sampling done.

Both architectures provide good scalability with respect to the size of the

dataset. Although the size of the dataset is the factor with the major impact685

on performance—being able to generate huge variation in terms of processing

time—both architectures show sublinear scaling. Indeed, when providing in

input a 100× larger dataset (100M instead 1M tuples) the average increase in

terms of running time observed for Kappa (Lambda) is +2209% (+1940%), at

most. Kappa suffers worst performance degradation on increasing input size690

than Lambda.

On the other hand, Kappa scales better when implementing the architectures

with resource-richer nodes (vertical scaling). In other words, although both ar-

chitectures significantly improve performance when enhancing VMs characteris-

tics, the relative performance improvement observed for Kappa when enhancing695

architecture implementation is larger than that observed for Lambda (−30% for

Lambda architecture versus −32% for Kappa). Analyzing horizontal-scaling we

found that benefits are achieved when adding executor nodes, although the

marginal improvement trend significantly decreases already with 6 executors.

More in general, Lambda outperforms Kappa. For what concerns the class700

of problem analyzed and considering results in the analogous scenarios, Lambda

always provided better performance than Kappa deployments. The performance

discrepancy between the two architectures varies according to the specific sce-

narios, and is as high as 26% in the case of we choose the Ver-L configuration.

Regarding deployment costs, cheaper implementations in terms of hourly705

cost cause poor performance and require longer executions times for completing

the analysis task, thus leading to higher overall cost. Cost analysis shows that

high-performance deployments are associated to higher hourly cost. On the

other hand, these same deployments may lead to shorter execution time, thus

unveiling a positive impact on overall expenditure.710

Finally, the last analysis shows that both architectures properly support the

considered OSN application.

We believe that the insights provided in this paper are potentially useful to

34

both research and industry practitioners, interested in deploying big data ana-

lytics systems onto the cloud. Moreover, because of the variety of the analyses715

proposed results are helpful to both newcomers and experts of the field.

Acknowledgements

This work is partially funded by art. 11 DM 593/2000 for NM2 srl (Italy).

References

[1] Microsoft Azure website. http://azure.microsoft.com, December 2017.720

[2] F. Amato, V. Moscato, A. Picariello, and G. Sperĺı. Diffusion algorithms

in multimedia social networks: a preliminary model. In ASONAM ’17:

Proceedings of the 2017 IEEE/ACM International Conference on Advances

in Social Networks Analysis and Mining 2017, pages 844–851, New York,

NY, USA, 2017. ACM.725

[3] Flora Amato, Vincenzo Moscato, Antonio Picariello, and Giancarlo Sperĺı.

Multimedia social network modeling: A proposal. In Semantic Computing

(ICSC), 2016 IEEE Tenth International Conference on, pages 448–453.

IEEE, 2016.

[4] Chaitanya Baru, Milind Bhandarkar, Carlo Curino, Manuel Danisch,730

Michael Frank, Bhaskar Gowda, Hans-Arno Jacobsen, Huang Jie, Dileep

Kumar, Raghunath Nambiar, et al. Discussion of bigbench: a proposed

industry standard performance benchmark for big data. In Technology

Conference on Performance Evaluation and Benchmarking, pages 44–63.

Springer, 2014.735

[5] Pablo Basanta-Val. An efficient industrial big-data engine. IEEE Transac-

tions on Industrial Informatics, 2017.

35

http://azure.microsoft.com

[6] Pablo Basanta-Val, Neil C Audsley, Andy J Wellings, Ian Gray, and Nor-

berto Fernández-Garćıa. Architecting time-critical big-data systems. IEEE

Transactions on Big Data, 2(4):310–324, 2016.740

[7] Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri

Erling, and Peter Boncz. Graphalytics: A big data benchmark for graph-

processing platforms. In Proceedings of the GRADES’15, page 7. ACM,

2015.

[8] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical pro-745

cessing in big data systems: A cross-industry study of mapreduce work-

loads. Proceedings of the VLDB Endowment, 5(12):1802–1813, 2012.

[9] Yanpei Chen et al. We don’t know enough to make a big data benchmark

suite-an academia-industry view. Proc. of WBDB, 2012.

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,750

and Russell Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM symposium on Cloud computing, pages 143–

154. ACM, 2010.

[11] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gu-

bichev, Arnau Prat, Minh-Duc Pham, and Peter Boncz. The ldbc social755

network benchmark: Interactive workload. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, pages 619–

630. ACM, 2015.

[12] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess,

Alain Crolotte, and Hans-Arno Jacobsen. Bigbench: towards an industry760

standard benchmark for big data analytics. In Proceedings of the 2013

ACM SIGMOD international conference on Management of data, pages

1197–1208. ACM, 2013.

[13] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A

36

complex systems look at the underlying process of word-of-mouth. Mar-765

keting letters, 12(3):211–223, 2001.

[14] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. Learning in-

fluence probabilities in social networks. In Proceedings of the third ACM

international conference on Web search and data mining, pages 241–250.

ACM, 2010.770

[15] M. Gribaudo, M. Iacono, and M. Kiran. A performance modeling frame-

work for lambda architecture based applications. Future Generation Com-

puter Systems, 2017. ISSN 0167-739X. doi: https://doi.org/10.1016/

j.future.2017.07.033. URL http://www.sciencedirect.com/science/

article/pii/S0167739X17315364.775

[16] Rui Han, Lizy Kurian John, and Jianfeng Zhan. Benchmarking big data

systems: A review. IEEE Transactions on Services Computing, 2017.

[17] Paul DH Hines, Ian Dobson, and Pooya Rezaei. Cascading power outages

propagate locally in an influence graph that is not the actual grid topology.

IEEE Transactions on Power Systems, 32(2):958–967, 2017.780

[18] Ziya Karakaya, Ali Yazici, and Mohammed Alayyoub. A comparison of

stream processing frameworks. In Computer and Applications (ICCA),

2017 International Conference on, pages 1–12. IEEE, 2017.

[19] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference

problems for temporal networks. In Proceedings of the thirty-second annual785

ACM symposium on Theory of computing, pages 504–513. ACM, 2000.

[20] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread

of influence through a social network. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, pages 137–146. ACM, 2003.790

37

http://www.sciencedirect.com/science/article/pii/S0167739X17315364
http://www.sciencedirect.com/science/article/pii/S0167739X17315364
http://www.sciencedirect.com/science/article/pii/S0167739X17315364

[21] T. Kraska. Finding the needle in the big data systems haystack. IEEE

Internet Computing, 17(1):84–86, Jan 2013. ISSN 1089-7801. doi: 10.

1109/MIC.2013.10.

[22] Jay Kreps. Questioning the lambda architecture. Online article, July, 2014.

[23] Lydia Leong, Douglas Toombs, and Bob Gill. Magic quadrant for795

cloud infrastructure as a service, worldwide. http://www.gartner.com/

technology/reprints.do?id=1-2G2O5FC&ct=150519&st=sb, 2015.

[24] Nathan Marz and James Warren. Big Data: Principles and Best Practices

of Scalable Realtime Data Systems. Manning Publications Co., Greenwich,

CT, USA, 1st edition, 2015. ISBN 1617290343, 9781617290343.800

[25] Nathan Marz and James Warren. Big Data: Principles and best practices

of scalable realtime data systems. Manning Publications Co., 2015.

[26] Zijian Ming, Chunjie Luo, Wanling Gao, Rui Han, Qiang Yang, Lei Wang,

and Jianfeng Zhan. BDGS: A Scalable Big Data Generator Suite in Big

Data Benchmarking, pages 138–154. Springer International Publishing,805

Cham, 2014. ISBN 978-3-319-10596-3. doi: 10.1007/978-3-319-10596-3 11.

URL https://doi.org/10.1007/978-3-319-10596-3_11.

[27] Ralf Möller and Özgür Özcep. Implementation of the linear road benchmark

on the basis of the real-time stream-processing system storm. Hamburg

University of Technology, 2014.810

[28] Duc T Nguyen and Jai E Jung. Real-time event detection for online be-

havioral analysis of big social data. Future Generation Computer Systems,

66:137–145, 2017.

[29] Keren Ouaknine, Michael Carey, and Scott Kirkpatrick. The pigmix

benchmark on pig, mapreduce, and hpcc systems. In Big Data (BigData815

congress), 2015 IEEE International Congress on, pages 643–648. IEEE,

2015.

38

http://www.gartner.com/technology/reprints.do?id=1-2G2O5FC&ct=150519&st=sb
http://www.gartner.com/technology/reprints.do?id=1-2G2O5FC&ct=150519&st=sb
http://www.gartner.com/technology/reprints.do?id=1-2G2O5FC&ct=150519&st=sb
https://doi.org/10.1007/978-3-319-10596-3_11

[30] Alex Pentland. Social Physics: How social networks can make us smarter.

Penguin, 2015.

[31] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapé.820

Measuring network throughput in the cloud: the case of amazon ec2. Com-

puter Networks, 93:408–422, 2015.

[32] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapé. On

network throughput variability in microsoft azure cloud. In Global Commu-

nications Conference (GLOBECOM), 2015 IEEE, pages 1–6. IEEE, 2015.825

[33] Valerio Persico, Domenico Grimaldi, Antonio Pescapé, Alessandro Salvi,

and Stefania Santini. A fuzzy approach based on heterogeneous metrics for

scaling out public clouds. IEEE Transactions on Parallel and Distributed

Systems, 28(8):2117–2130, 2017.

[34] N Satra. Is ‘Distributed’worth it? Benchmarking Apache Spark with830

Mesos. http://www.cl.cam.ac.uk/~ey204/pubs/ACS/Mini_Projects/

Neil_Spark.pdf, 2015.

[35] Samneet Singh. Empirical evaluation and architecture design for big mon-

itoring data analysis. Concordia University, 2016.

[36] Wei Tan, M Brian Blake, Iman Saleh, and Schahram Dustdar. Social-835

network-sourced big data analytics. IEEE Internet Computing, 17(5):62–

69, 2013.

[37] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in

near-linear time: A martingale approach. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’15,840

pages 1539–1554, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2758-

9. doi: 10.1145/2723372.2723734. URL http://doi.acm.org/10.1145/

2723372.2723734.

[38] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde,

Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The845

39

http://www.cl.cam.ac.uk/~ey204/pubs/ACS/Mini_Projects/Neil_Spark.pdf
http://www.cl.cam.ac.uk/~ey204/pubs/ACS/Mini_Projects/Neil_Spark.pdf
http://www.cl.cam.ac.uk/~ey204/pubs/ACS/Mini_Projects/Neil_Spark.pdf
http://doi.acm.org/10.1145/2723372.2723734
http://doi.acm.org/10.1145/2723372.2723734
http://doi.acm.org/10.1145/2723372.2723734

new data in multimedia research. Communications of the ACM, 59(2):

64–73, 2016.

[39] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang,

Yongqiang He, Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, et al.

Bigdatabench: A big data benchmark suite from internet services. In High850

Performance Computer Architecture (HPCA), 2014 IEEE 20th Interna-

tional Symposium on, pages 488–499. IEEE, 2014.

[40] Jinliang Wei, Jin Kyu Kim, and Garth A Gibson. Benchmarking apache

spark with machine learning applications, 2016.

[41] David Williams. Probability with martingales. Cambridge university press,855

1991.

[42] Baojun Zhou, Jie Li, Xiaoyan Wang, Yu Gu, Li Xu, Yongqiang Hu, and

Lihua Zhu. Online internet traffic monitoring system using spark streaming.

Big Data Mining and Analytics, 1(1):47–56, 2018.

40

	Introduction
	Related work
	Big data benchmarking frameworks
	Performance evaluation of big data systems and cloud infrastructures
	Architectures for the analysis of social-network Big Data

	Big Data Architectures
	Lambda architecture
	Kappa architecture

	Task definition
	OSN model
	Algorithm implementation

	Performance Evaluation
	Experimental Testbed
	Architecture implementation
	Cloud deployment
	Dataset

	Experiments and Results
	Timeliness with respect to data volume
	Scalability with respect to cluster configuration
	Cost analysis
	Quality vs. timeliness

	Discussion and Conclusion

