DIE UNIVERSITA'DEGLI STUDI DI NAPOLI FEDERICO II

On Network Throughput Variability in Microsoft Azure Cloud

Valerio Persico, Pietro Marchetta, Alessio Botta, Antonio Pescapè

University of Napoli "Federico II" (Italy)

IEEE GLOBECOM 2015

San Diego, CA, (USA) December 7 2015

(Public) Cloud Paradigm: XaaS

An increasing number of services rely on Public Clouds

- Pay-as-you-go resources and no upfront investments
- Real-time provisioning
- Autoscaling

Cloud infrastructures are backed by huge investments from the providers

- Research
- Complex infrastructures

Public-Cloud Network Performance

- About the Cloud... There is NO CLOUD, just other people's computers*
- About the network... Without high-performance networks, there would be no such thing as cloud computing**
- What about its performance?

- Taxonomy:
 - Cloud-to-user
 - Inter-datacenter
 - Intra-datacenter

Intra-datacenter network

Why its performance is so important?

- 75% of the cloud traffic (e.g., multi-tier applications, scientific computation, etc.)
- Bottleneck for computation
- Its variability can severely compromise customer experience

Intra-datacenter IP traffic*

*Cisco Global Cloud Index: Forecast and Methodology

Monitoring cloud networks through a *non-cooperative* approach

- Monitoring (and benchmarking) the public-cloud network without relying on information restricted to the provider
- Purpose
 - Validation of the (poor) information supplied by the provider
 - Augmented view to support services and applications
- In this work
 - 1. We propose a methodology
 - 2. We focus on Microsoft Azure intra-datacenter network
 - 3. We characterize the performance in terms of network throughput and its variability

What we know (as general customers)

- All cloud providers provide (high-performance) network connectivity to customer VMs
- Plenty of prior work aimed at various specific approaches to sharing network resources among customers and providing cloud network guarantees
- Only *qualitative* information disclosed by providers (at most)

What we do **not** know (as general customers)

- Providers seldom make any promise about network performance
 - Customers suffer from highly-variable, unpredictable network performance
- What is the optimization goal of the provider?
 - Saving datacenter power consumption?
 - Guaranteeing better performance to specific sets of users?
- Datacenter topology and virtual machine (VM) location are kept hidden

Reference architecture

Intra-Cloud Network

- Generation of Synthetic Traffic
- From a Sender Probe to a Receiver Probe
- Black-Box approach

Reference architecture

Intra-Cloud Network

- Generation of Synthetic Traffic
- From a Sender Probe to a Receiver Probe
- Black-Box approach

Factors to identify scenarios

- Region
 - California (US)
 - Ireland (EU)
 - Singapore (ASIA)
 - Sao Paulo (BRA)
- VM type and size

General purpose

- Medium (M)
- Large(L)
- ExtraLarge (XL)
- Configuration
 - Same VNET (VN)
 - Same Affinity Group (AG)
 - None (NO)
- Transport protocol
 - **TCP**
 - UDP

Factors to identify scenarios

Region

- California (US)
- Ireland (EU)
- Singapore (ASIA)
- Sao Paulo (BRA)

• VM type and size

General purpose

- Medium (M)
- Large(L)
- ExtraLarge (XL)
- Configuration
 - Same VNET (VN)
 - Same Affinity Group (AG)
 - None (NO)
- Transport protocol
 - **TCP**
 - UDP

Directly impact costs

Experimental details and results

- 800-hour-long experimental campaign
- Intra-datacenter throughput
- Throughput Variability
 - 1. over time
 - 2. across different scenarios
 - 3. in the same scenario

Variability over time Throughput [Mbps] Mediar Mear st-99th percentile Ťime [h]

Among different experiments (average over 5-minute-long experiments)

- CoV (Coefficient of Variation) < 0.1
- What about the variability inside the same experiment?

Variability over time

Inside the same experiment (1-second-samples)

- CoV is always lower than 0.2
- Some factors impact variability more than others

Variability across scenarios

TCP throughput [Mbps]

Variability in the same scenario

 Repeated experiments may provide very different values

 Considering the absence of variability over time, unlucky customers should not expect any significant improvement

Minimum throughput guaranteed

	М	L		XL			
US	186.6		374.6			929.5	
EU	185.4		364.1			728.5	
BRA	185.1		707.5			907.1	
ASIA	186.0		718.1			935.0	

Conclusion

 We propose a characterization of the achievable throughput of the intra-datacenter network for MS Azure through non-cooperative approaches

- Network throughput is stable over time
- Several factors under the direct control of the customer may influence the perceived performance
- Customers can derive deployment and usage guidelines
 - Performance prediction
 - Performance enhancement
 - Cost reduction

valerio.persico@unina.it http://wpage.unina.it/valerio.persico

