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Abstract—Wireless sensor networks (WSNs) are currently
adopted in a vast variety of domains. Due to practical energy
constraints, in this field minimizing sensor energy consumption
is a critical challenge. Sleep scheduling approaches give the
opportunity of turning off a subset of the nodes of a network—
without suspending the monitoring activities performed by the
WSN—in order to save energy and increase the lifetime of the
sensing system. Our study focuses on partial coverage, targeting
scenarios in which the continuous monitoring of a limited portion
of the area of interest is enough. In this paper, we present PCLA,
an efficient algorithm based on Learning Automata that aims
at minimizing the number of sensors to activate, such that a
given portion of the area of interest is covered and connectivity
among sensors is preserved. Simulation results show how PCLA
can select sensors in an efficient way to satisfy the imposed
constraints, thus guaranteeing better performance in terms of
both working-node ratio and WSN lifetime. Also, we show how
PCLA outperforms state-of-the-art partial-coverage algorithms.

Keywords-Partial Coverage, Sensor Scheduling, Learning Au-
tomata (LA), Wireless Sensor Networks (WSNs)

I. INTRODUCTION

Wireless sensor networks (WSNs) have gained the attention
of the research community in the last years and can currently
be adopted in a vast variety of domains such as surveillance,
health care, and environmental monitoring [1]. Indeed, they
have revealed to be a pillar for the Internet of Things and the
variety of smart applications stemming out from it [2]–[4].

Wireless network performance [5], [6] and sensing system
lifetime are critical concerns in many typical applications,
even though WSNs are made up of nodes of low energy.
The placement of nodes in improper places and difficulties
in changing batteries further exacerbate the lifetime issue.
Therefore, strategies for the optimal energy consumption are
essential, especially considering that WSNs cannot properly
work after a fraction of nodes has run out of energy. Node
activity scheduling, i.e. the ability of temporarily turning
off just a part of deployed nodes without suspending the
monitoring activities performed by the WSN, represents a way
to save energy under given constraints (e.g., area coverage,
redundancy requirements, etc.) [7].

While full coverage applications of WSNs require 100%
of the area of interest to be monitored, monitoring only a
limited percentage of it is enough for some other applications.
This approach is commonly known as partial coverage [8].
For instance, the requirements of a WSN aimed at monitoring
the environmental temperature or the humidity can be satis-
fied when just 90% of the zone of interest is covered [9].
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Fig. 1: Partial Coverage with four sub-regions.

Being subjected to more relaxed constraints, partial coverage
scheduling is able to guarantee a longer lifetime to a WSN
sacrificing some aspects in return. Figure 1 reports a generic
example for the partial coverage approach. The figure shows a
zone of interest divided into four portions requiring different
levels of coverage. For instance, on the one hand, A2 has 90%
coverage requirement being a critical area. On the other hand,
monitoring 50% of B2 is enough. If having control on sensors
placement, more sensors in critical areas could be scattered.
For instance, more nodes could be deployed in A2 and less
in B2, such that the equipment cost can be reduced and
network lifetime can be prolonged under the same hardware
cost. Unfortunately, this situation is uncommon: once sensors
have been randomly scattered (e.g, from an airplane), a proper
solution has to be found ex post.

Considering that each sensor is able to cover a certain area,
according to its sensing range, partial coverage approaches
aim at identifying which sensors have to be activated, such
that the overall covered area for each sub-regions respects
existing constraints. Moreover, given that wireless sensors
have a limited communication range, often applications have
connectivity requirements, i.e. each active sensing node has
to be placed in the communication range of at least another
active node.

In this paper, we investigate the problem of partial coverage
in WSNs and propose PCLA (Partial Coverage with Learning
Automata), a novel and efficient algorithm to face it. In this
study, we assume that all sub-regions have equal coverage
requirements and each node has the same sensing and commu-
nication capabilities. The proposed solution takes advantage
of Learning Automata (LA) to properly schedule sensors
into active and inactive state in order to extend the network
lifetime. In more details, PCLA by using a number of nodes
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first creates a backbone. Then, these nodes use their neighbors
to meet the network coverage requirements and connectivity.
Simulation results show how PCLA can select sensors in
efficient way to satisfy partial coverage requirements, thus
guaranteeing better performance in terms of number of active
nodes and improving WSN efficiency.

The reminder of this paper is organized as follows. In
Section II we survey the related literature; Section III reports
the formal definition of partial coverage problem and its
related concepts; Section IV introduces LA; Section V presents
the PCLA algorithm to solve the Partial Coverage problem.
Simulation results are illustrated in Section VI. Finally Sec-
tion VII reports the concluding remarks.

II. RELATED WORK

This section aims at providing an overall picture of the
literature related to the problem of the partial coverage (known
also as p-percent coverage) in WSNs. Coverage problems in
WSNs have been widely studied during recent years. Wang
[1] recently surveyed them. Area coverage problems can be
divided into full coverage and partial coverage. Some recent
works about this topic can be found in [7], [10]. Although
several works about full coverage in WSNs exist, to the best
of our knowledge a limited number of solutions has been
proposed in the area of partial coverage. Gao et al. [11]
devised two algorithms for partial coverage of WSNs to extend
the network lifetime. Their first algorithm is a centralized
approach to prolong the network lifetime, while the second
solves the problem in a distributed fashion. Both their algo-
rithms can maintain the network connectivity while monitoring
the network area. Li et al. in [12] devised two methods
to preserve partial coverage in WSNs. Their algorithms can
guarantee both coverage and connectivity requirements but
failed to achieve low time complexity. The concept of Con-
nected Dominating Set (CDS) has widely used. A CDS-based
algorithm can be found in [13]. Authors used CDS concept to
create a virtual backbone in a network. Their approaches are
not used in partial coverage. Wu et al. [14] also presented two
algorithms for addressing this problem. The first algorithm is
named pPCA and is a greedy based. The second one is called
CpPCA-CDS and implements a distributed approach. CpPCA-
CDS approach is based on CDS to address connected partial
coverage problem in WSNs. The main drawback of this work
is that its performance depends on DFS search. Therefore,
time complexity of their algorithm increases with applying
DFS search to find the solutions. In some works authors have
also used neighbors information to preserve partial coverage
and connectivity in WSNs. Yardibi and Karasan [8] developed
a Distributed Adaptive Sleep Scheduling Algorithm (DASSA)
for WSNs with partial coverage. In their devised approach
each node uses the remaining energy levels and a feedback
from the sink node to schedule the activity of its neighbor
nodes. However, if a node could not obtain this information
from the sink node it is unable to schedule its neighbor nodes.
Probabilistic way is another approach to study partial coverage
in WSNs. The approach proposed by Gupta et al. in [15]
is fully distributed and each sensor node does not need any

geographical information to find redundant nodes and put them
to the sleep state. However the algorithm does not guarantee
the connectivity of sensor nodes. Identification of redundant
sensors based on a geometric approach is considered in [16].
Hafeeda and Ahmadi [17] studied the coverage problem under
both disk sensing and probabilistic sensing models and devised
Probabilistic Coverage Protocol (PCP). The PCP computes the
maximum possible distance between sensors to ensure that
there are no holes in coverage.

In this paper, we focus on the partial coverage problem in
WSNs. We use LA to find a proper subset of sensor nodes to
assure partial coverage. The main objective of PCLA is to use
the smallest number of sensors at any given time to monitor the
network area with the desired percentage of coverage. PCLA
is able to preserve both coverage and connectivity. In more
detail, PCLA uses the coverage graph of the network to select
backbone nodes. The selected backbone nodes rely on their
neighbors to obtain and preserve partial coverage.

III. PRELIMINARIES AND DEFINITIONS

In this section, we introduce the main concepts and supply
the basic definitions for partial coverage problem.

A WSN is modeled by an undirected connected graph,
namely Coverage Graph CG = (V,E), where V =
{S0, S1, . . . , SN} includes all the nodes randomly deployed
in the network including the sink S0. Each node can sense
every event that occurs within its sensing range Rs, and can
communicate with other nodes within its communication range
Rc. Sensing and communication ranges are defined as the
disks with radius Rs and Rc, respectively. E represents the
set of the communication links between these nodes. For any
node u and v, the edge (u, v) ∈ E if and only if u and v are
within the communication range of each other.

Given a region of interest ϑ whose area is equal to Aϑ, and
a WSN made up of randomly scattered nodes, each having a
sensing range Rs—and thus able to cover an area πR2

s—the
partial coverage problem consists in identifying a convenient
subset of nodes to be activated such that the active nodes are
able to cover a given portion Ps of the area of interest.

Some useful metrics in this framework are: (i) the Average
Region Coverage Degree [14], i.e. Dϑ =

NπR2
s

Aϑ
, where N is

the number of sensors deployed in region ϑ, each having a
sensing range Rs; (ii) the Working-node Ratio [14], i.e. the
fraction |Ψ|N , where Ψ is the set of the active nodes able to
cover the fraction Ps of the area of interest ϑ. The former
is an index of the resources (i.e. sensing nodes) scattered on
the region of interest and takes into account also their sensing
capabilities (i.e. the sensing range); the latter is an index of
the efficiency of the coverage algorithm.
Formal definition for Partial Coverage problem. Given a
two-dimensional region of interest ϑ and a WSN made up of
N sensors, the WSN partial coverage problem can be defined
as “finding a connected set of nodes Ψ ⊆ V such to minimize
φ = |Ψ|

N and guarantee the coverage of the desired portion
PsAϑ of the region of interest”.
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Objective: Minimize number of nodes in φ, subjected to:
- Ψ is a connected set of nodes;
- Ψ covers at least the area PsAϑ of ϑ.

Symbols and definitions are summarized in Table I.

TABLE I: Symbols and definitions.

ϑ Region of interest
Aϑ Total area of the region of interest
Ps Portion to cover of the region of interest
N Number of sensing nodes
Rs Nodes’ sensing range
Rc Nodes’ communication range
Ψ Connected set of nodes that guarantees partial coverage

IV. LEARNING AUTOMATON

An automaton is a machine designed to automatically follow
a predetermined sequence of operations or respond to encoded
instructions. Learning Automata (LA) do not follow predeter-
mined rules, but adapt to changes in the Random Environment
(RE). This adaptation is the result of the learning process.

LA are designed to select optimal actions among the set
of allowable actions. In more details, a learning automaton
has a finite number of actions that can operate. A probability
is associated to each of them. Once an action is applied to
the environment, the latter generates a reinforcement signal.
The reply generated by the environment is used by the
automaton to update its action probability vector. By running
this procedure, the automaton learns to optimally choose
actions among its action-set. The environment is described as
a triple E = {α, β, c} where α = {α1, α2, . . . , αN} indicates
the finite input set (i.e. the actions), β = {β1, β2, ..., βN}
indicates the output set (i.e. the reinforcement signals), and
c = {c1, c2, . . . , cN} indicates a set of penalty probabilities,
where each element ci corresponds to one input of action αi.
The probability of action αi is pi(n), and the corresponding
vector p(n) defines the action probability vector.

For our solution, we consider variable-structure automata
[18] and P-model environment (i.e. we assume that βi can be
either 1 or 0).

A learning algorithm T can be defined as in Equation 1:

p(n+ 1) = T [p(n), α(n), β(n)] (1)

where p(n) and p(n+1) are the action probability vector at the
nth and (n+ 1)th cycle, respectively. The automaton operates
as follows. Based on the action probability vector p(n), the
automaton randomly selects an action αi(n), and performs
it on the environment. After receiving the environment’s
reinforcement signal, automaton updates its action probability
vector based on Equation 2, and Equation 3:

pi(n+ 1) = pi(n) + a(1− pi(n))

pj(n+ 1) = (1− a)pj(n) ∀j, j 6= i
(2)

pi(n+ 1) = (1− b)pi(n)

pj(n+ 1) =
b

r − 1
(1− b)pj(n) ∀j, j 6= i

(3)

where pi(n) and pj(n) are the probabilities of action αi and
αj , respectively, and r is the number of actions. In these two
equations, a and b are the reward and the penalty parameter,
respectively.

V. PCLA ALGORITHM

In this section, we describe PCLA algorithm to address
partial coverage in WSNs. The main idea behind PCLA is
to first select a set of nodes as backbone nodes. Then, if
partial coverage is not satisfied, additional nodes are selected
and activated. Accordingly, our approach consists of two main
phases: (i) learning phase and (ii) partial coverage phase. We
provide more details of them in the following.

A. Learning phase

The aim of this phase is selecting the best backbone nodes
set. A set with the minimum number of nodes is the best set
in PCLA. Let Ψ denote the cover set PCLA plans to build.
The main goal is to find redundant sensors in the network area
Aϑ, i.e. sensors having a covered area that can be covered with
other sensors in their neighborhood. To this aim, at every time
the sensor with maximum coverage increment Ci—defined as
the increment of coverage when node i becomes a working
node—is added to Ψ.
Initialization. In the initialization phase, PCLA on each node
first gets a snapshot from CG in order to know node’s
neighbors. This is a key step in PCLA, because it uses CG
of network to find suitable nodes to meet partial coverage
requirements.

Initially, all the nodes are in the active state. For each node,
each action αi means that the neighbor node i is selected to be
a working node (i.e. to remain in the active state). The action
probability vector p(n) is initialized as follows:

pi(n) =
1

r
∀i (4)

where r indicates the action-set count, which is equal to the
number of neighbour nodes at this initialization step. For ex-
ample, if node i has five neighbor nodes, the action probability
vector for this node is initially set to {0.2, 0.2, 0.2, 0.2, 0.2}.
This means that node i has five equiprobable actions.
Backbone nodes selection. Each node in the network is
equipped with a LA that helps to find the most appropriate
backbone nodes set, i.e. those nodes responsible for maintain-
ing connectivity among nodes. To this aim, a node is selected
and added to Ψ. LA of this node chooses—accordingly to its
p(n)—an action among its action-set, i.e. one of its neighbors
is selected as a working node. The selected neighbor is added
to Ψ, while other unselected neighbors are added to another set
Γ. Then, the selected node iterates the procedure by selecting
one of its neighbors not already contained in Γ. This process
continues until |Ψ ∪ Γ| = |V |. Note that, after this step, each
node in the CG belongs to either Ψ or Γ.

At this point, the learning algorithm inside PCLA has to
decide on suitability of Ψ set. At each cycle n, the number
of nodes in Ψ is compared with a threshold value (Tn). Tn
can be initially set to the total number |V | of deployed nodes.
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If |Ψ| < Tn all selected actions αi in Ψ are rewarded from
the environment (βi(n) = 0). Otherwise, these actions get a
penalty from the environment (βi(n) = 1). Note that, being
PCLA a learning algorithm, it needs some cycles to converge
to a stable set. Therefore, this process continues until Ψ set
remains fixed in some consecutive cycles. At the end of this
phase, we have a set of backbone nodes in Ψ, which are able
to preserve connectivity of selected nodes in PCLA algorithm.

The pseudo code for PCLA algorithm is reported in Algo-
rithm 1.

Algorithm 1 PCLA Algorithm
Input:
CG . Snapshot of the network
Ps . Desired partial coverage
Output:
Ψ . Set of selected nodes that guarantees the partial coverage
Parameters:
a . Reward parameter for the update of the action probability vector, where
0 < a < 1
Tn . Threshold value
|V | . Total number of deployed nodes
Γ . Set of unselected nodes
Initialization:
pi(0) = 1

r ∀ i . r is the number of neighbors
repeat

A node is randomly selected and activated
Its automaton is denoted as Si

repeat
while Si has no possible actions do

Activated automata are traced back to find an automaton with available
actions

end while
Ψ=Ψ ∪ Si

Automaton Si selects one of its actions (a neighbor node Sj ) accordingly to
its p(n)

Each automaton prunes its action-set to avoid the loop
Automaton Sj is activated
Γ=Γ ∪ Unselected neighbors of Si

Si = Sj

until |Ψ ∪ Γ| < |V |
if |Ψ| < Tn then
βi(n) = 0
Tn = |Ψ|

else
βi(n) = 1

end if
Enable all the disabled actions

until Ψ remains fixed in some consecutive cycles.
FormPartialCoverage()

B. Partial coverage phase

At the end of the learning phase, PCLA checks whether
partial coverage is met. If partial coverage is not satisfied,
FormPartialCoverage() routine is called. This function
uses nodes in Γ to meet partial coverage requirement. At the
end of this phase, nodes whose state is active will remain active
to monitor the network, while other nodes will switch to idle
state in order to save energy. These nodes have possibility
to be active in the next round of algorithm, according to LA
results.

The pseudo code of FormPartialCoverage() is
shown in Algorithm 2.
C. PCLA Basic Property

Before presenting the experimental results of the proposed
approach, we prove how PCLA preserves both partial cover-
age and connectivity.

Theorem 1: The obtained set Ψ from PCLA can preserve
both partial coverage and connectivity.

Algorithm 2 FormPartialCoverage()
Parameters:
Sj . Available node in Γ

repeat
for all Sj in Γ do

if Neighbors of Sj cannot cover Sj area then
Activate Sj

Ψ=Ψ
⋃
Sj

else
Deactivate Sj

end if
end for

until The desired partial coverage reaches

Proof: To prove this theorem, we firstly construct back-
bone nodes set based on LA. Then, LA of each node selects
one of the actions among its action-set, accordingly to p(n). As
we described in the first paragraph of this section, action-set
of each LA is formed based on node‘s neighbors. Therefore,
selecting an action by LA of each node preserves node‘s
connectivity, because it lies on the node’s neighbors list.
Algorithm 2 selects nodes among Γ. As we described in PCLA
algorithm, it is obvious that each node in Γ has at least one
neighbor in Ψ. Hence, obtained set Ψ from PCLA can preserve
both partial coverage and connectivity.

VI. PERFORMANCE EVALUATION

In this section, we provide a comprehensive performance
evaluation of the proposed solution. The performance of
PCLA is compared to other existing algorithms under varying
conditions. Simulation results show that PCLA performs better
than state-of-the-art partial coverage solutions in terms of
working-node ratio, also for larger network sizes, and in terms
of network lifetime it is able to guarantee.

TABLE II: Simulation parameters for the first set of experi-
ments.

(a) Resource constraints.

Parameter Values

Aϑ (m2) 400× 400
Rs (m) 50
Rc (m) 100
Tn 100
α 0.1
N 31 63 105

Dϑ 1.5 3.0 5.0

(b) Coverage requirements.

Parameter Values

Ps 0.6 0.8 1.0

Evaluation Setup. Performance evaluation has been per-
formed through simulation using the WSN simulator [19].
PCLA has been compared to the CDS method proposed in [13]
and the CP-PCA-DFS algorithm introduced in [14] (hereafter
simply CDS and DFS, respectively). These works have been
chosen since the approaches they propose model the network
similarly to PCLA and use coverage graph to find a solu-
tion. The three algorithms have been compared considering
different conditions, in terms of (i) network resources and (ii)
coverage requirements. In more details, we have considered
as inputs for our simulations: (i) the overall number N of
randomly scattered nodes that make up the WSN; (ii) the
overall area Aϑ of the region of interest; (iii) the sensing range
Rs and (iv) the communication range Rc of each node; (v)
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Fig. 2: Impact of Average Region Coverage Degree (Dϑ) on Working-Node Ratio for different values of Ps. φ exposes a
decreasing trend on average for increasing values of Dϑ. PCLA outperforms the other two algorithms in all the circumstances
taken into account.

the coverage requirement Ps demanded to the algorithm. Note
that the random placement of the nodes reflects the practical
inability to place WSN elements in a controlled manner which
derives from common practices (e.g., sensor deployment from
an aircraft [20]). All nodes’ sensing and communication ranges
are assumed to be equal. To compute the network lifetime we
used the approach adopted in [20]. All the obtained results
have been averaged over 10 simulation runs.

Working-node ratio evaluation. In the first set of experi-
ments, we aim at evaluating the effect of the Average Region
Coverage Degree (Dϑ) on the performance of PCLA. Note
that—according to Section III—Dϑ may also be (indirectly)
considered an input for our simulations, as being function
of N , A, and Rs. By varying the number of nodes, we
have defined three different configurations, corresponding to
different resource constraints: Dϑ = 5, Dϑ = 3, and Dϑ = 1.5
(see Table IIa). Moreover, we have tested the three solutions
under three different coverage-requirement levels: Ps = 0.6,
Ps = 0.8, and Ps = 1.0 i.e. full coverage (see Table IIb).

Figure 2 shows how the working-node ratio (φ) varies
with Dϑ for the different coverage requirements considered
(Ps = 0.6, Ps = 0.8, and Ps = 1.0, respectively) and for
the three algorithms. As expected, for all the three algorithms
the simulation has reported that φ exposes a decreasing trend
on average, for increasing values of Dϑ. Note that results
for Dϑ = 1.5 and Ps = 1 are missing because none of
the algorithms satisfied connectivity requirements under this
configuration. As shown in the figures, PCLA outperforms the
other two algorithms, proving to be always the one exposing
the lowest values of φ in all the circumstances taken into
account. PCLA shows also the best relative decrement of
φ when passing from Dϑ = 1.5 to Dϑ = 5. Indeed, the
value of φ decreases by 67.7% (60.6%) when Ps = 0.6
(Ps = 0.8); this value corresponds to an improvement of -
0.233 (-0.308) in absolute terms. When varying the coverage
requirements, we note that increasing Ps has a detrimental
impact on the performance of all the algorithms, as φ also
increases. However, this impact is mitigated when Dϑ is
higher, i.e. by deploying a larger number of nodes. In more
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Fig. 3: Number of active nodes for different coverage re-
quirements for a large network. (N = 200, Rs = 50m). As
expected performance decreases for higher Ps. PCLA exhibits
a better trend and outperforms other algorithms.

details when Dϑ = 5, PCLA has the lowest performance
decrease when passing from Ps = 0.8 to Ps = 1.0.

In the following we report the results of further investiga-
tions about the impact of the network size on the performance
of the three algorithms, considering networks with a larger
number of nodes. Figure 3 reports the number of active nodes
in Ψ with a high number of nodes (N = 200) and coverage
requirements varying from Ps = 0.6 to Ps = 0.9. As expected,
for all the algorithms, the number of active sensors is higher
when the parameter Ps increases, as a larger portion of the
network area has to be monitored. On the other hand, this
result shows how the performance of PCLA in terms of active
nodes proved to decrease slower than the one of CDS and
DFS when increasing coverage constraints. The improvement
obtained by using PCLA respect to CDS (DFS) increases when
increasing the value for Ps: it amounts in terms of active
nodes—on average—to -3 nodes (-8.6) for Ps = 0.6, and
reaches -21.7 nodes (-27.6) for Ps = 0.9.
Lifetime evaluation. As network lifetime—i.e. the time span
from the networks initial deployment to the first loss of the
required coverage—is a critical performance index for WSNs,
our evaluation also took it into consideration. Figure 4 com-
pares the lifetime obtained with the three approaches consid-
ered for different values of Dϑ (taking values in {1.5, 3, 5})
and Ps (assuming values in {0.6, 0.8, 1.0}). As reported by
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Fig. 4: Impact of Dϑ on network lifetime for different values of Ps.

the analysis, we note that a larger Average Region Coverage
Degree (Dϑ) leads to a longer lifetime for all the approaches
considered. On the contrary, the lifetime is shortened by an
increase in coverage constraints. PCLA proved to perform
better than both CDS and DFS in all the circumstances
considered. In more details, the lifetime enhancement that
PCLA is able to carry when adopted in place of CDS (DFS)
ranges from +15% (+34%) to +52% (+86%).

VII. CONCLUSION
In this paper, we have investigated the partial coverage

problem in WSNs and have devised an approach based on
Learning Automata. We have proposed PCLA to find the min-
imum number of sensors to activate, in order to cover a given
portion of the region of interest. Experimental results show that
PCLA outperforms state-of-the-art algorithms by exposing the
best performance in terms of working-node ratio and network
lifetime in all the circumstances taken into account. PCLA
achieves also the best relative performance enhancement when
increasing the Average Region Coverage Degree. Furthermore,
the trend of the performance decrease of PCLA observed
when increasing coverage constraints, has proved to be slower
than the ones obtained with the other evaluated solutions.
Accordingly, the benefit obtained by using PCLA instead of
the other algorithms increases when increasing the value for
Ps. As a future work we aim at checking the performance of
PCLA in the case of nodes with heterogeneous sensing ranges
and adopting a probabilistic sensing model.
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