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Abstract

Cloud providers employ sophisticated virtualization techniques and strategies for sharing resources among a high number of largely
uncoordinated and mutually untrusted customers. The shared networking environment, in particular, dictates the need for mech-
anisms to partition network resources among virtual machines. At the same time, the performance of applications deployed over
these virtual machines may be heavily impacted by the performance of the underlying network, and therefore by such mechanisms.
Nevertheless, due to security and commercial reasons, providers rarely provide detailed information on network organization, per-
formance, and mechanisms employed to regulate it. In addition, the scientific literature only provides a blurring image of the
network performance inside the cloud. The few available pioneer works marginally focus on this aspect, use different methodolo-
gies, operate in few limited scenarios, or report conflicting results.

In this paper, we present a detailed analysis of the performance of the internal network of Amazon EC2, performed by adopting
a non-cooperative experimental evaluation approach (i.e. not relying on provider support). Our aim is to provide a quantitative as-
sessment of the networking performance as a function of the several variables available, such as geographic region, resource price
or size. We propose a detailed methodology to perform this kind of analysis, which we believe is essential in a such complex and
dynamic environment. During this analysis we have discovered and analyzed the limitations enforced by Amazon over customer
traffic in terms of maximum throughput allowed. Thanks to our work it is possible to understand how the complex mechanisms
enforced by the provider in order to manage its infrastructure impact the performance perceived by the cloud customers and po-
tentially tamper with monitoring and controlling approaches previously proposed in literature. Leveraging our knowledge of the
bandwidth-limiting mechanisms, we then present a clear picture of the maximum throughput achievable in Amazon EC2 network,
shedding light on when and how such maximum can be achieved and at which cost.

Keywords: Cloud Networking Monitoring and Measurement, Cloud Networking Performance, Cloud Network Throughput.

1. Introduction necting hosts inside the same cloud data center), an essen-
tial component of the cloud architecture. All cloud providers
grant (high-performance) network connectivity to their cus-

tomers (commercial users, researchers, etc.) and deploy accu-

An increasing number of Internet services as well as private
IT infrastructures have now been moved to the cloud, mainly

due to several economical and technical benefits (e.g. services
on-demand, reduced costs, optimized hardware and software
resources utilization, performance flexibility) [11, 14, 30, 22].
The industry more and more critically depends on public cloud
infrastructures. But this dependence has grown much faster
than our understanding of the performance limits, dynamics,
and evolution of these facilities. The scarce comprehension
is the consequence of several factors: (i) detailed informa-
tion about cloud performance, characteristics, settings, and
load are considered confidential by cloud providers for secu-
rity and commercial reasons [27, 24]; (ii) virtualization lim-
its customers’ understanding of if and how their applications’
performance is impacted by other customers [35]; (iii) ser-
vice level agreements (SLAs) only vaguely describe the perfor-
mance guarantees, and customers can only refer to incomplete
and rough information advertised by the provider [5].

A clear example of this lack of knowledge is related to the
intra-cloud, high-performance network (i.e. the network con-
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rate monitoring tools to continuously check the status of the
cloud. However, they seldom make promises about network
performance figures achievable, and, more importantly, they
typically provide only qualitative or coarse-grained informa-
tion about such performance [24, 5]. As a consequence, cloud
customers suffer from being mostly unaware of the quality
of service their applications may receive from the intra-cloud
network, in a context where virtualization and resource shar-
ing may introduce substantial performance penalties for data-
intensive or computation-intensive applications [34, 35]. For
these important reasons, measuring intra-cloud network perfor-
mance has very recently attracted interests from the research
community [22, 30], and non-cooperative approaches seem the
only viable solution for general customers to obtain detailed in-
formation in public cloud.
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Table 1: List of potential parameters to consider when measuring the network throughput in Amazon EC2.

Parameter Possible values
VM Type General purpose (T2, M3), Compute Optimized (C4, C3), Memory Optimized (R3), Storage Optimized (12, HS1)
VM Size Micro, Medium, Large, Xlarge, 2Xlarge, 4Xlarge, 8Xlarge

VM Region (available zones)
VM Operating system (available versions)

2xEU (5), 1xUS East (5), 3xUS West (6), 3xAsia Pacific (7), 1xChina (1), 1xSouth America (2)
Windows (Windows server (27), Amazon Linux, Debian (2), SUSE (5), FreeBSD (2), CentOS (20), Red Hat Enterprise

Linux (14), SUSE Linux Enterprise Server (1), Ubuntu (7), Other, Linux (1)

1.1. Motivations

Several scientific works adopted non-cooperative approaches
to shed light on the intra-cloud network performance, with the
valuable goal of characterizing the network performance, sup-
porting optimized virtual machine (VM) allocation, and com-
paring different cloud providers. Unfortunately, the overall cur-
rent picture offered by the literature is blurring, with different
methodologies leading to conflicting results that are hard to
compare. Often, the performance of the intra-cloud network is
only one of the aspects marginally analyzed by these works, and
the adopted methodology is not exhaustively described. This
further complicates the replication of the analysis in the same
or other contexts. In addition, the potential dramatic impact
of the virtualization and the advanced network resource alloca-
tion strategies have been only rarely taken into account, thus
weakening a correct interpretation of the results reported [35].
Finally, the performance of intra-cloud network has been char-
acterized only in few and roughly described scenarios among
all the possible ones in which a cloud customer may operate,
limiting the representativeness of the documented findings.

This blurring image together with the potential applications
of this knowledge motivates thorough analyses of the intra-
cloud network performance.

1.2. Amazon EC2: an important case study

In this paper, we aim at improving the comprehension of
the intra-cloud network performance by focusing on a specific
cloud service: Amazon Elastic Compute Cloud (EC2). We use
this provider as a case study to highlight how characterizing the
network performance is challenging and how classic method-
ologies and tools may provide misleading results in the com-
plex cloud environment, especially when virtualization and ad-
vanced network allocation strategies are not correctly taken into
account. Amazon EC2, the Infrastructure as a Service (IaaS) of-
fered by Amazon, is one of the most popular IaaS service that
provide computing resources over the Internet [21].

Amazon reports clear information on the allocation of re-
sources such as memory or CPU to the VMs available through
EC2. However, much less information is reported regarding the
way the provider allocates and guarantees network resources
to such VMs. Networking performance is not advertised by
the provider through quantitative metrics, but rather through a
qualitative description (e.g., Low to Moderate, Moderate, and
High) [3]. Hence, a general customer going to instantiate a
cloud resource cannot be aware of the expected networking per-
formance related to a certain cost, while he/she is only provided
with basic information (e.g., that a VM of a certain size is ex-
pected to have networking performance better than another one

whose hourly cost is smaller). Coarse grained information is
made available by Amazon to customers through Cloudwatch, a
monitoring service for AWS resources and applications, which
reports metrics for CPU utilization, data transfer, and disk usage
activities for each VM. Regarding the network performance,
however, Cloudwatch only reports the incoming/outgoing vol-
ume of traffic to/from each VM with 5-minute resolution (up to
1-minute resolution with extra fees). Hence, cloud users and re-
searchers are typically forced to adopt non-cooperative network
monitoring approaches to derive more detailed statistics about
the network performance.

1.3. Challenges

Characterizing intra-cloud network performance with non-
cooperative approaches is particularly challenging for a number
of reasons we discuss in the following.

The number of possible scenarios is extremely high. Despite
the several efforts in literature, exhaustively evaluating the net-
work performance of a cloud provider is practically unfeasible
for most researchers. In fact, the number of possible scenarios
in which a cloud user may operate is so high that it would be
extremely costly (both in terms of money and time) to carry out
all the required analyses. As an example, Tab.1 reports some of
the customizable parameters in Amazon EC2 having a poten-
tial impact on the network performance. A researcher aiming
to exhaustively evaluate the intra-cloud network performance
of Amazon EC2 should normally consider (i) all the availabil-
ity zones deployed in each geographical region (27) as well as
(ii) all the possible combinations of VM types and sizes (282).
This already yields a number of scenarios to be analysed that
is larger than 20,000. If we sum up other potentially relevant
aspects such as the operating system and scenarios involving
more than one availability zone, we obtain a number of combi-
nations that are beyond the possibilities of most researchers. Fi-
nally, we should also consider that providing meaningful statis-
tics on the network performance requires repeating measure-
ments over a large observation period, also varying the charac-
teristics of probing traffic. In summary, subsampling the set of
possible scenarios is inevitable. But doing so without loosing
generality is very challenging. We propose a methodology to
cope with this complexity and describe in details all the charac-
teristics of the scenarios we considered.

Network resources allocation strategies may heavily im-
pact measurement results. Network virtualization and dy-
namic allocation strategies transparently employed by the cloud
provider may strongly impact network performance measure-
ments, whose results may appear misleading or incorrect. As



we detail along the paper, in our experimentation we have ob-
served both (i) traffic shaping policies causing transient fluctua-
tion of the network throughput measured and (ii) limitations on
the maximum rate at which the traffic can be delivered to a VM
depending on its size. In this paper we provide evidences of
such policies and limitations, evidencing the impact caused on
performance measurements. Moreover, we show the through-
put achievable by the VMs as a function of the size and consid-
ering all the possible variables under control.

Cloud environments rapidly evolve over time. Cloud
providers continuously work to (i) build new facilities, (ii) im-
prove the underlying technologies, and (iii) provide new more
efficient services, also possibly replacing the old ones. Never-
theless they only provide qualitative descriptions for the perfor-
mance attainable on the intra-cloud network. The continuous
evolution complicates the research work aiming at characteriz-
ing the performance of cloud environments in general and of
cloud networks in particular. We argue that in this context, it
is of the utmost importance that scientific works focusing on
cloud performance detail as much as possible the environment
settings taken into account as well as the methodology adopted
to carry out the analysis. In this way, the documented analy-
sis can possibly be replicated and the results can be properly
interpreted and considered in longitudinal studies.

1.4. Paper contributions

In order to improve the understanding of intra-cloud network
performance, we performed more than 5000 hours of exper-
imentation to characterize the network throughput offered by
Amazon EC2. We did not rely on the limited and coarse-
grained information made available by Amazon and provide,
for the first time in literature, the following main contributions:

e we propose and describe in details a methodology (choice
of metrics, identification of the observation period, selec-
tion of scenarios of interest, etc.) to perform measure-
ments in cloud environments in order to obtain a signifi-
cant performance characterization;

e we improve the understanding of the complex policies and
limitations of the intra-cloud network and characterize and
quantify their impact on measurement experiments and
network throughput in general;

o we carefully characterize the network throughput in a large
set of different scenarios obtained varying parameters in-
cluding the size of virtual machine, the data center ge-
ographical region, the transport protocol, the addressing
mechanism, etc.

Compared to the literature, we present a comprehensive view
of the network throughput of Amazon EC2, also highlight-
ing the specific conditions in which these performance can be
achieved by the customers. We also exhaustively describe the
adopted methodology to encourage similar analysis for other
cloud providers and to foster longitudinal studies of the intra-
cloud network performance.

1.5. Paper organization

The paper is organized as follows. Sec. 2 provides an overall
picture of the related literature and positions the paper accord-
ingly. Sec. 3 presents a methodology to deal with the several
challenges related to the characterization of the intra-cloud net-
work performance, also providing a common ground to inter-
pret the results. In Sec. 4, we discuss the ability of the VMs
to generate network traffic, and how the throughput varies with
the sending rate, also deepening the possible causes of the high-
lighted trends. In Sec. 5 we then provide a clear picture of the
network throughput in Amazon EC2. Finally Sec. 6 ends the
paper with concluding remarks.

2. Related work

Measuring the network throughput. A commonly adopted
index of the performance perceived by a network communica-
tion is the maximum achievable throughput, which depends on
the remaining capacity along the path (i.e. the available band-
width). In the last decade, many techniques and tools for mea-
suring the end-to-end available bandwidth in a network path
have been proposed, evaluated, and compared [8]. Under the
assumption that end-hosts are not a bottleneck for the com-
munication, a simple yet effective — although intrusive — ap-
proach to estimate the maximum throughput is the injection of
synthetic traffic [16]. Several synthetic traffic generators ex-
ist (e.g., iperf [33], netperf [17], D-ITG [7], and nuttcp [13]).
They differ in terms of complexity and features, allowing users
to measure the network throughput as well as other performance
parameters.

In this paper we adopt synthetic traffic generation for esti-
mating the network throughput. More specifically, we use the
tool nuttcp which well fits the requirements of our analyses, as
described in Sec. 3.

Network throughput in public cloud. Monitoring cloud per-
formance has recently attracted great interest [4]. Many re-
searchers analyzed network performance not relying on the in-
formation advertised by the cloud provider, and used the results
to compare different providers and support network-aware de-
cisions. Unfortunately, these pioneer works adopted different
methodologies and tools, reporting conflicting results that are
hard to compare. Seldom the adopted methodology is described
in enough details to allow the replication of the analysis. Due
to the strong challenges we reported above, very few of the pos-
sible scenarios have been tested, which strongly limits the rep-
resentativeness of the provided results. In the following, we
review related works focusing on Amazon EC2.

Tab. 2 provides the overall picture on the Amazon EC2
intra-cloud network performance provided by the literature. Li
et al. [22] proposed a non-cooperative approach to benchmark
different clouds in terms of cost, VM deployment time,
computation, storage, and networking. Regarding the network
performance, they focused on both the intra-cloud and the
wide-area network, and measured throughput and latency using
iperf and ping. For Amazon EC2 intra-cloud network, the



Table 2: The overall picture of the intra-cloud network performance of Amazon EC2 from the literature. NA stands for not available information.

Paper Year VM type/size =~ EC2 regions Measured throughput  Notes
[Mbps]
Li et al. [22] 2010 NA/NA US (North California, North Virginia), [600 + 900] - Different throughput variability in different regions
EU (Ireland) - No impact of availability zone
Wang et al. [35] 2010 NA/small US (North California), EU (Ireland) [400 + 800] (small) - 10-second long measurements
NA/medium [700 + 900] (medium)
Shad et al. [30] 2010 NA/small US (North California), EU (Ireland) [1.6 =+ 6.4](US) - Higher variability when
VMs are placed in different availability zones
[3.2 +7.2] (EU) - Higher variability in US region
Raiciu et al. [27] 2012 NA/medium NA [1000 <+ 4000] - Available bandwidth related to mutual position
LaCurts et al. [18] 2013 NA/medium NA [296 + 4405] - 10-second long measurements

authors measured a TCP throughput in the range [600 — 900]
Mbps. Due to the cost of the measurements, however, the
authors also admitted that their results are achieved in few
specific scenarios and cannot be considered general.! Wang et
al. [35] focused on the impact of virtualization on networking
performance in public clouds and characterized it for EC2.
They took advantage of ping and ad hoc tools to characterize
intra-cloud network performance using small and medium
VM sizes. The authors measured significant delay variation
and throughput instability. According to them, this variability
seems not to be related to any explicit rate shaping enforced by
the provider. The paper reports maximum network throughput
of 700 — 900 Mbps for medium-sized VMs with both TCP and
UDP. The authors performed experiments over space (large
number of VMs, short time interval) and time (reduced number
of VMs, long time interval). Shad et al. [30] carried out a
study on the performance unpredictability of AWS. Different
benchmarks were proposed to evaluate VM deployment time,
CPU, memory and disk I/O performance, storage service
access, and network bandwidth. Regarding network perfor-
mance, the authors used iperf to evaluate maximum TCP and
UDP throughput. They found that networking performance
(available bandwidth intra- and inter- availability zone) ranges
from 200 to 800 KB/s (1.6 — 6.4 Mbps) in US data center
and from 400 to 900 KB/s (3.2 — 7.2 Mbps) in Europe data
center. The authors reported that the network performance is
9% higher for instances placed inside the same availability
zone. We note that these values are strongly conflicting with
those reported in previous studies. Raiciu er al. [27] used
different tools (traceroute, ping, and iperf) to obtain a blueprint
of the EC2 network performance and took advantage of it to
properly deploy applications and optimize their performance.
They reported evidences of paths between VMs of different
lengths and with available bandwidth between 1 and 4 Gbps,
depending on VM mutual position. Finally, LaCurts et al. [18]
described an approach to improve application performance by
deploying the applications on the nodes with adequate network
performance. Since customers have no direct control of VM
placement, authors proposed a system called Choreo: this sys-
tem enforces application placing after measuring the network

"Note that the authors used labels instead of names to identify the different
providers. We inferred EC2 performance among their results by looking at the
different geographical regions of the data centers.

performance between VM pairs through UDP packet trains.
The measurement study performed by the authors to motivate
their system is based on netperf. This study showed a large
variability of network throughput measured with medium-sized
VMs from Amazon EC2. Such parameter varied between 300
to 4400 Mbps, and most of the measurments (80%) reported
values between 900 Mbps and 1100 Mbps.

Compared to the state of the art, we also adopt a non-
cooperative approach to characterize the network throughput in
Amazon EC2. However we, firstly, use a much larger set of sce-
narios of interest. Secondly, we thoroughly detail the method-
ology adopted, to foster the replication and validation of our
analysis also for other cloud providers and scenarios. As we
detail in the following, network resource allocation strategies
and their impact have very rarely been considered in literature.

Network resource allocation strategies. The literature
describes several possible strategies that can be used by
cloud providers to dynamically allocate network resources
among customers. Although many models for allocating
network resources have been proposed and are publicly known,
public-cloud providers typically employ their own customized
solutions [22] and no detailed information is disclosed to
customers [3]. Such strategies aim at supporting diverse needs
and differ in terms of goals. We briefly describe the most
common ones in the following. We point the reader to [24] for
more details. Common strategies are: enforcement of a global
rate-limit on the overall aggregated traffic generated by all the
sites of a customer (distributed rate limiting) [26]; allocation of
congested links between customers according to weights based
on specific policies, e.g. based on payment [20]; definition of
differentiated service models, guaranteeing bandwidth among
specific endpoints and treating traffic as best effort for other
endpoints (pipe model) [15]; efficient bandwidth allocation
(i) to achieve max-min fairness across VMs, sending traffic
through congestion-controlled hypervisor-to-hypervisor tun-
nels [31], or (ii) to provide predictable network performance,
giving the illusion of a single, nonblocking switch, connecting
all the VMs of a customer, where each VM has a minimum
guaranteed bandwidth (hose model) [29]. Moreover, the pres-
ence of traffic shaping has been widely analyzed in broadband
access networks [19, 12, 6, 32, 9]. On the other hand, to the
best of our knowledge, its adoption and impact in the public



clouds have not been properly analyzed.

Taking into account the effects of these strategies, we provide
a clear picture of the maximum throughput achievable on EC2
network and of how such maximum can be obtained.

3. A methodology to characterize cloud network perfor-
mance

Characterizing the intra-cloud network throughput is a very
challenging task for several reasons including the extremely
high number of possible scenarios in which a cloud customer
may operate (see Sec. 1.3). In this section, we describe the
choices we made to deal with this complexity. We first define
the factors of interest to identify and motivate the scenarios we
took into account (Sec. 3.1). Then, we detail the reference ar-
chitecture as well as the settings, tools, and metrics we adopt
(Sec. 3.2). Our intent is to ease as much as possible the un-
derstanding of the precise conditions in which we perform the
analysis and then its replication in other scenarios or for other
cloud providers. We believe that this methodology represents
an important contribution for the analysis of public cloud net-
works.

3.1. Sampling the scenarios of interest

Amazon EC2 allows customers to highly customize their en-
vironment. The high number of available options translates into
a large number of scenarios in which a cloud customer may op-
erate. Sampling the space of possible scenarios is necessary
when the goal is to provide meaningful and representative re-
sults of the intra-cloud performance while keeping the com-
plexity and cost of the analysis acceptable. In the following,
we discuss the factors having, in our opinion, a major poten-
tial impact on the intra-cloud network performance as well as
our sampling strategy. The scenarios analyzed in this paper are
obtained by combining all the sampled values of these factors.

3.1.1. Service Model

Although the network can impact the performance of dis-
tributed applications in all the three layers defined by NIST [23]
(Infrastructure-, Platform-, and Software-as-a-Service, or laaS,
PaaS, and SaaS respectively), we believe that the best layer to
characterize the performance of the intra-cloud network is IaaS.
This layer guarantees the level of flexibility needed for this
analysis, as also demonstrated by previous works [35, 22, 30].
In particular, TaaS allows us to deploy and use widely-used net-
work diagnostic and measurement tools in the cloud, making
common operating system API available. Moreover, direct ac-
cess to the VM allowed at this layer provides higher control
over the factors of influence for the network performance.

3.1.2. VM type and size

When instantiating VMs on the cloud, a customer can choose
their type and size among the ones made available by the
provider. In this way, users can take advantage of different
preconfigured settings in terms of storage size, computation

Table 3: Selected sizes for VM of type m3 (Dec 2014). x: prices vary across
regions.

VM vCPU RAM  Networking Hourly Cost
Size (GB) Performance (Min-Max)*
medium 1 3.75 Moderate 0.070-0.098 €/h
large 2 7.5 Moderate 0.140-0.196 €/h
xlarge 4 15 High 0.280-0.392 €/h

capabilities, and network performance. Machine hourly cost
changes according to the previously mentioned characteristics.

As reported in Tab. 1, Amazon EC2 makes VM types opti-
mized for different goals available, with the intent of easing the
configuration of the cloud environment. Customers can select
VMs that are optimized for storage, computation, etc. accord-
ing to their needs. In our experiments, we focused on general
purpose VMs, which provide a balance of CPU, memory, and
network resources, making them the best choice for many ap-
plications (small and medium-sized databases, memory-hungry
data processing tasks, and back-end servers for SAP, Microsoft
SharePoint, and other enterprise applications [3]). In more de-
tails, in our experimental campaigns we used paravirtual (as
virtualization type) and m3 VMs (general purpose, new gen-
eration) of three different sizes, namely m3.medium, m3.large,
m3.xlarge. Hereafter, we respectively refer to them simply as
medium, large, and xlarge. As reported on Amazon EC2 web-
site [3], this type of VM has fixed performance (in terms of
CPU), which guarantees the absence of CPU resource-sharing
and performance-variability phenomena that could impact the
measurement process [35]. Tab. 3 contains more details on the
VMs adopted in our analyses. The documentation by Amazon
clearly describes the available resources in terms of memory
and CPU. On the other hand, it only reports a qualitative de-
scription of the network performance expected such as Low,
Moderate, and High [3]. As we show in the next sections, al-
though the provider advertises Moderate network performance
for both medium and large VMs, we have experimentally ob-
served that large VMs obtain much higher performance also
from the network point of view.

3.1.3. VM Geographical Region and Availability Zone

When placing a new VM in the Amazon cloud, the customer
can choose among a number of different geographically dis-
tributed regions (see Tab. 1). Customers select different regions
to meet their own technical and legal requirements. Each region
is associated to different data centers claimed to be completely
independent from the others. Since 2006, Amazon deployed
data centers in 11 different regions spread world-wide. Works
in literature either omit the region under test [18, 27] or report
performance variations across regions [22, 30].

Our goal is to measure the network throughput between VMs
placed inside the same region. Since this operation is costly, we
are forced to select a subset of all the possible regions for our
experiments. We have selected four regions placed in differ-
ent continents, to obtain a representative picture of the network
performance of the cloud provider. These regions were acti-



Table 4: Selected regions.

Region Continent Launched
North Virginia North America 2006
Ireland Europe 2007
Singapore Asia 2010
Sao Paulo South America 2011

vated at different times from 2006 to 2011. Hence, they also
potentially leverage different technologies such as the proces-
sor families [30]. As shown in Tab. 4, the regions we selected
are: North Virginia (North America), Ireland (EU), Singapore
(Asia), and Sao Paulo (South America).

Inside each Amazon region, the customer has at his/her dis-
posal multiple availability zones (i.e. different locations adver-
tised to be interconnected through low-latency links), opening
the possibility of designing robust applications able to over-
come potential zone fails [3]. Results in literature are con-
flicting about the impact of availability zones on the network
performance [30, 22]. We have deployed VMs in different
availability zones part of the same region, to evaluate the im-
pact of this choice. Results regarding this aspect are reported
when relevant.

3.1.4. Communication channel

The VMs on Amazon EC2 can be reached through a public
or a private IP address [28]. Private addresses can be used only
for communications between VMs deployed in the same data
center. Public addresses, instead, allow the VMs to be reach-
able from the public Internet. Communicating through public
addresses, however, comes at an additional cost, depending on
the traffic volume. We have measured the achievable through-
put when the receiver VM is reached both through its private
and public address. We refer to these logical communication
channels as private and public channel respectively. Note that
private and public channels may not correspond to the same
physical path.

3.1.5. VM relocation

We have also investigated the impact of VM relocation on
the network performance, i.e. what happens when VMs are de-
stroyed and created from scratch. The aim is to understand
whether the choices operated by the provider when deploying
the configuration required by the customer have an impact on
the network performance.

3.2. Reference architecture, tools, and metrics

In our experiments we adopt the reference architecture and
the settings, tools, and metrics we detail and motivate in the
following.

3.2.1. Reference Architecture

Fig. 1 reports the conceptual scheme we refer to in our exper-
imental campaigns. We aim at measuring the network through-
put between a pair of VMs under the control of the same cloud

Sender Receiver

Probe Probe
VM VM VM VM VM VM
Hypervisor Hypervisor

L2
Network

(a) Cloud networking architecture.

i ' | Receiver
! Probe

Sender
Probe

S R
(b) Adopted abstraction.

Figure 1: Cloud network architecture and its abstraction. Two different
monitoring points can be identified for each experiment, able to catch the dy-
namics of outgoing traffic at the sender (S) and of incoming traffic at the receiver
R).

customer. These VMs are instrumented with a standard oper-
ating system and all the necessary network measurement and
diagnostic tools we used for estimating the network perfor-
mance. Hereinafter, we refer to a VM as probe. More specit-
ically, we use the term sender and receiver probe to identify
the VM in charge of sending and receiving the network traffic,
respectively. In each region, we have used sender and receiver
probes of different sizes (i.e. medium, large, and xlarge). As
depicted in Fig. 1a, the traffic of the sender probe normally first
traverses the hypervisor layer at the sender side. Then it flows
through L2/L.3 devices and middleboxes composing the high
performance network. Finally, the traffic reaches the hypervisor
at the receiver side before being delivered to the receiver probe.
Note that as a cloud customer, we are not aware of the specific
location of the sender and receiver probes, which may also be
hosted and managed by the same hypervisor. Furthermore, by
adopting a black box approach, we consider the L.2/L.3 devices
as well as the hypervisors as part of the network connecting
sender and receiver probe (Fig. 1b). Basically, we consider as
network all the logical and physical components interposed be-
tween the virtual network cards connecting sender and receiver
VMs. Note that this choice entirely fits the point of view of
the general cloud customer who has no visibility on the cloud
physical infrastructure, network internal dynamics, and cloud
provider policies, despite their potentially heavy impact on the
performance he/she perceives.

3.2.2. Tools and settings

We have used the network diagnostic and measurement tool
named nuttcp to measure the network throughput between the
sender and receiver probe. ~We have chosen nuttcp after an
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Figure 2: Measuring network throughput in Amazon EC2. Typically, the network throughput reaches a stable value only after an initial transient period, likely
due to the network resource allocation strategy employed by the cloud provider (2a). The initial spike impacts the accuracy of the network throughput measurements.
The median value captures the stable value of network throughput much sooner than the mean value, requiring a shorter and cheaper observation period (2b).

initial experimental campaign in which we have used and com-
pared the most widely used similar tools. This initial campaign
has evidenced that nuttcp is able to respect the imposed bitrate
more accurately than other tools, which do not generate the full
bitrate required, very likely because of the virtualized environ-
ment of the cloud. This aspect is very important for our mea-
surements, as detailed in the following. Thanks to nuttcp, we
have determined the raw TCP or UDP network layer through-
put by transferring memory buffers from sender to destination
probes. Traffic has been generated either for a specified interval
or for a given amount of bytes. Besides the information pro-
vided by nuttcp, we also take advantage of two additional mon-
itoring points, in order to infer and characterize the effects of
the network resource allocation strategy employed by the cloud
provider. More specifically, we derive the rate of the traffic be-
ing transmitted through the (virtual) network interface of the
sender probe and the rate of the traffic arriving at the network in-
terface of the receiver probe. We derive this information moni-
toring the traffic volume exposed by the Linux operating system
API reporting the status of the network interface. As we demon-
strate in the next sections, monitoring the network interface of a
VM discloses valuable information. Differently from what hap-
pens in traditional computing environments, the network inter-
face and link capacity of each VM in the cloud is virtualized
and directly controlled by the hypervisor [2]. Here, the cloud
provider may potentially implement sophisticated network re-
source allocation schemes.

In our analysis, we characterize the network throughput by
comparing the amount of traffic nuttcp is configured to gener-
ate (hereinafter referred to as target traffic), with the observa-
tion at the two monitoring points described above, i.e., the out-
going rate observed at the sender monitoring point (hereinafter
referred to as true sending rate) and the rate measured at the
receiver side (receiving rate). Note that the true sending rate
represents the rate at which the VM delivers data to the hyper-
visor which is already considered as part of the network in our

methodology.

We have measured the network throughput for both UDP and
TCP transport protocols [10] in our experiments. On the one
hand, UDP is typically used to analyze the performance of the
raw [P traffic. UDP adds no closed loop-control, leaving the
complete control on the generated traffic to the probe, no matter
of the state of the network. On the other hand, TCP through-
put, which is governed by flow and congestion control, allows
probe traffic to be subjected to the status of the network path
and provides information on the performance of the numerous
TCP-based applications.

Finally, we have also investigated the impact of the packet
size and performed repeated experiments to investigate the
presence of daily or weekly patterns in the intra-cloud network
performance.

3.2.3. Metric for network throughput

Measuring network throughput in the cloud can be very
costly. This operation consumes computation and network
resources that are charged by the cloud provider according
to the pay-as-you-go paradigm. Furthermore, fast and accu-
rate measurements are highly appreciated to guarantee high re-
sponsiveness to those frameworks exploiting network measure-
ments [18, 27]. As a consequence, finding a good trade-off be-
tween accuracy and cost is of the utmost importance.

Cost and accuracy depend on the duration of the observation
period, and the metric used to evaluate the network throughput
may determine misleading results. Tuning the duration of the
observation period as well as selecting the right metric for the
network throughput is further complicated by the effects of the
mechanisms employed by the provider to reach the desired net-
work resource allocation. An example is reported in Fig. 2. An
intra-cloud communication in Amazon EC2 typically reaches a
higher network throughput during a first transient period, and
then settles to a lower yet stable value. Applications using
short-lived communications may obtain higher, although un-



stable network throughput. Fig. 2a reports an example of this
phenomenon observed with TCP traffic. Note that this trend
cannot be explained with TCP internal dynamics such as slow
start or congestion control mechanisms. Indeed, a similar atyp-
ical behavior was always observed also in all the UDP-based
communications we monitored. Hence, we consider this as a
clear evidence of traffic shaping policies (e.g. token bucket),
employed by the cloud provider as network resource allocation
strategy.

The presence of this initial throughput spike cannot be ig-
nored by the researchers willing to provide an accurate view
of the network performance. Measurements performed during
the initial interval are not representative of the expected perfor-
mance over longer periods. The initial spike at the beginning
of the communication may also explain the different through-
put ranges of values reported in literature (see Sec. 2). Fig. 2b
shows how well mean and median values calculated over ob-
servation periods of increasing durations properly capture the
maximum network throughput in the stable period. We have
monitored the network throughput between medium-sized VMs
over intervals of different durations. We have then computed
the different metrics (i.e. mean and median) by only consider-
ing the throughput samples obtained during the first 5 seconds,
first 10 seconds, and so on. The figure shows that the mean
throughput value converges to the stable value much slower
than the median one. This finding is consistent across all the
experimental campaigns we performed, i.e., for different com-
binations of VM sizes, in different regions, for different types
of traffic, over different channels.

According to these results, we have decided to report the me-
dian value of the network throughput observed over observa-
tion periods lasting at least 8 minutes. This metric represents
the stable throughput achievable in a communication between
VMs deployed in the same Amazon region, filtering the noise
caused by this initial transitory. In the following we refer to this
value simply as the maximum throughput. Note that choosing
the median is not universally the right choice, but it represents
a valid option for the cloud provider under test.

The proposed methodology is general, i.e. it can be easily
adapted and applied to all the public cloud providers and for
other network performance indexes such as jitter, latency, and
packet loss. In more general terms, we believe that the method-
ology described above clearly identifies all the relevant aspects
to carefully consider when the final goal is evaluating the per-
formance of public intra-cloud networks.

4. Throughput trends in Amazon EC2.

In this section, we first focus on the VM traffic-generation
capabilities representing a potential source of inaccuracy when
carrying out this type of analysis. Then, we highlight trends in
the network throughput measured at the receiver side. Finally,
we dig into a potential root-cause of the highlighted trends. In
these analyses, we have relied on UDP since its behavior is not
affected by the condition of the network path, differently from
TCP (see Sec. 3.2.2).

4.1. Impact of the sender VM.

The network throughput can be accurately measured through
synthetic traffic generation only when the computation capabil-
ities of the involved end hosts are not a bottleneck for the com-
munication. For instance, if the sender host and the measure-
ment tool are not capable to fulfill the remaining capacity of the
network path, the available network throughput is incorrectly
underestimated. In the cloud, it is essential to check whether
and in which conditions this assumption holds since virtualiza-
tion proved to (i) introduce significant performance penalties to
applications [34], (ii) invalidate measurement outcomes [35],
and (iii) compromise the interpretation of typical measurement
metrics [36]. Synthetic traffic has been widely adopted in pre-
vious works [22, 35, 30, 27, 18] but the potential impact of the
VM-generation capabilities has been neglected in such litera-
ture.

We have instructed nuttcp to generate traffic at a given target
rate and monitored the true sending rate (i.e. the rate of the traf-
fic actually flowing into the network) to check whether the tool
is able to sustain the target rate on a given VM.

We have performed experiments with two different
application-level packet sizes: 1024 bytes and 8192 bytes (here-
after simply normal and jumbo UDP packets).> We have per-
formed 350 experiments 8-minutes long for each VM size in
different regions, with target rates ranging from 50 to 1200
Mbps. Target rate and true sending rate are compared in Fig. 3:
VMs of any size are not able to inject traffic into the network
at a rate higher than a given threshold (i.e. a cap) when us-
ing normal packets. This cap proved to mainly depend on the
sender VM and its size. In more details, the cap has proved to
be very stable over time for a fixed VM: experimental results
have shown that the Coeflicient of Variation (CoV, I%I) of the
cap is always smaller than 2% for any observation period up to
72 hours. However, relocating (i.e. destroying and re-creating)
the VM, also in the same region and with the same size, may
reveal different cap values. Tab. 5 reports aggregated statistics
on the cap values for all the considered regions: larger VMs
can achieve a higher value of the maximum true sending rate
with normal packets, which can be explained with the resource
partition enforced by the provider (e.g. higher computation ca-
pabilities to larger VMs). On the other hand, we have observed
no cap on the true sending rate when using jumbo packets: in
this case, the target rate is achieved by imposing a much lower
load on the virtual CPU.

Fig. 4 reports the distribution of the cap values for the EU
region (Ireland) with VMs relocated several times. In this re-
gion, medium, large, and xlarge instances are subjected to a
cap imposing a maximum throughput of 495.5, 731.8 and 948.0
Mbps on average, respectively. Interestingly, although Amazon
advertizes that both medium and large VMs receive Moderate
networking performance [3], our results clearly show that large
instances are allowed to inject traffic into the network at a much

Note that TCP protocol does not suit this kind of analysis due to the con-
gestion control mechanism that would force the sending rate to be limited by
the bottleneck along the whole end-to-end path (see Sec. 3.2.2).



1200 9 1200 & 1200 s
8989‘0 & &
08" o° o
@ 900t 5070 o 900} ° o 900} §§%§§§§X
£ o® o £ ﬁ% < §§ %
g7 o g B 00000 27 &°
5 & 600} o 5 8 600} g TR 58 eoof 2
o= §§§xxxxxxx><><><>< 5= 8 % 5= &2
= =l =l
S 300p B S 300f @ S s00f . b o
= = 5 = . jumbo ©
B?&E Bﬁ@& @ﬂ& normal x
%0 300 600 900 1200 %0 300 600 900 1200 %0 300 600 900 1200

Target rate [Mbps]

(a) medium

Target rate [Mbps]
(b) large

Target rate [Mbps]

(c) xlarge

Figure 3: Target rate vs True sending rate for different sending probe sizes. When using normal packets (1024 B), the true sending rate does not overcome a
cap value. This limitation is not observed in case of jumbo packets (8192 B).

Table 5: Cap in Mbps on true sending rate observed when using normal packets.

mean(+std dev).

Region medium large xlarge

North Virginia | 489.1(x17) 747.3(£9.0) 944.1(x19.1)
Ireland 495.5(x£20.0) 731.8(%10.3)  948.0(x15.3)
Singapore 485.5(£3.8) 730.2(£9.7) 925.1(x22.8)
Sao Paulo 492.6(£5.3)  748.1(%24.5) 1018.3(+43.8)

1
0.8 ’[’_,
06

0.4 %
|

large

CDF of cap per sending Probe

xlarge
0 200

400 600 800
True Sending Rate [Mbps]

1000 1200

Figure 4: Cap value distributions for EU Region (Ireland). The values of
the cap observed when using normal packets vary with the size of the virtual
machine: the larger is the VM size, the higher is the true sending rate allowed.

higher rate. We have also noticed a higher variability of the cap
imposed to xlarge VMs, with 63% of large instances receiving
a cap higher than 5% of xlarge VMs.

In summary, synthetic traffic generation capability of the
adopted VMs should be carefully taken into account when the
final goal is measuring the intra-cloud network performance
through non-cooperative approaches. We have observed that
the adopted measurement tool on EC2 VMs is not able to gen-
erate traffic at the requested target rate when relying on 1024-
byte packets. This is not true when using jumbo packets. The
obvious conclusion might be the adoption of jumbo packets.
However, we will see in the following that this choice can have
a detrimental impact on the network throughput at the receiver
side.

4.2. Impact of packet size and public/private channel

We have discovered that packet size and communication
channel (public or private) have an impact on the network
throughput measured. Fig. 5 reports how the network through-
put measured at the receiver side changes when the true sending
rate increases for all the nine possible combinations of sender
and receiver sizes. In this analysis, we have instructed the
sender probe to perform 8-minute long generations of UDP traf-
fic for each target rate. We have considered target rates ranging
from 50 to 1200 Mbps. In each experiment, we have extracted
the median value of true sending rate at the sender side and the
median value of the network throughput at the receiver side.
Overall, we have performed 350 experiments for each region
by also relocating the VMs. The results reported in Fig. 5 are
related to the EU region (Ireland) but they are quantitatively and
qualitatively representative also for the other regions.

The figure shows that the network throughput saturates to a
maximum value independently from the packet size. Such value
represents the maximum throughput an application deployed on
a VM can achieve towards another VM in the same datacenter,
through the network slice granted by the cloud provider. In-
terestingly, the figure also shows that jumbo packets allow to
generate traffic at higher rate but such higher rate determines a
drastic decrease of the network throughput at the receiver. The
figure highlights a common pattern in the network throughput
as a function of the true sending rate. The shape of the curves
can be modelled through the following equations, describing
the network throughput R(x) as a function of the true sending
rate x for each packet size:

X X<«
Jumbo packets:  R(x) ={« a<x<p

Yx) x>p

X x=2«a
Normal packets: R(x) =

a x<cap

Basically, the network throughput increases with the true
sending rate up to a first value, which depends on the packet
size. We have named this value flattening edge («) because af-
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Figure 5: Maximum UDP throughput towards the VM public address. The network throughput at receiver side dramatically decreases at high true sending rates
when using jumbo packets (dashed black lines). This behavior is not observed with normal packets (solid gray lines). M:medium, L:large, X:xlarge.

ter this point, the throughput trend is typically flat or at least
it does not increase, saturating to a constant value. After this
point, the two packet sizes determine significantly different be-
haviors. With jumbo packets the network throughput at the re-
ceiver side starts to strongly decrease after a certain value of the
true sending rate (the phase represented by ¥(x) in the previous
equations). We have named the value of the true sending rate
after which the throughput starts decreasing as penalty edge (3)
because after this value, the network throughput significantly
drops. On the other hand, this specific trend is not spotted when
adopting normal packets. Indeed, we notice that the network
throughput does not decrease after the penalty edge when us-
ing normal packets (see Fig. 5a for instance), even if high true
sending rates are not achieved when relying on this kind of syn-
thetic traffic (see Sec. 4.1). In Sec. 4.3 we provide the results of
further analyses in order to explain this trend.

For normal packet traffic, we have experimentally observed
that the evolution of the network throughput with the true send-
ing rate is highly predictable. For jumbo packets, this property
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is experimentally verified up to the penalty edge: with higher
true sending rate, we have always noticed a strong decrease of
the network throughput but we could not derive an exact trend.
The figure also clearly shows how the flattening and penalty
edges depend on the size of sender and receiver probes: detailed
values are reported in Tab. 6. The penalty edge values signifi-
cantly increase for larger sender sizes. Considering the values
of the medium-sized sender as a baseline, we have observed a
growth for this threshold of more than 2x (3X) for large (xlarge)
sender probes. The flattening edge values, instead, seem to be
determined by the smallest between sender and receiver VM
size, i.e. the threshold increases only in case of larger size for
both sender and receiver. The values of this threshold also de-
pend on the packet size: especially for medium-sized sender
probes (Fig. 5, first row), we have noticed higher values for
the flattening edge when comparing normal to jumbo packets,
while differences are also noticed for xlarge sender probes com-
municating with either large or xlarge instances. Finally, Tab. 6
also reveals those sender-receiver combinations for which the



(a) Flattening edge — The network throughput saturates after this value of true sending

rate. N: normal packets, J: jumbo packets.

(b) Penalty edge — The network throughput rapidly
decreases for true sending rate higher than this
value. This happens only with jumbo packets.

receiver receiver
medium large xlarge medium large xlarge
_ medium | 251.9Y-307.6™  251.5()-307.7% 252000 —307.4™ _ medium | 3029 3022 303.1
g large 30220 3062 656.9Y) —678.8™)  656.8) — 663.60V g large 708.1 6569  656.8
xlarge 304.8) —308.8™)  710.6Y) — 6642  961.5¢) —924.1M) xlarge 11114 10139 9615

Table 6: Estimated values for the (a) flattening and (b) penalty edge.
regions. Standard deviation omitted being negligible.

Intermediate
hop

Private channel

PUB
MTU = 9001 s

Sender VM Receiver VM

Figure 6: EC2 intra-cloud paths. Traffic directed to the receiver VM crosses
two different paths when directed to the private (PRI) and the public (PUB) IP
address. In the latter case an intermediate hop is traversed.

flattening edge is equal to the penalty edge: these combinations
correspond to the curves in Fig. 5 where the network throughput
starts decreasing immediately after the growing trend (Fig. Se,
5f, 51). Note that this throughput decreasing trend has not been
observed on the private channel. We dig into this phenomenon
in the next section.

The impact of these results is twofold. On the one hand, re-
searchers aiming at characterizing the performance of the cloud
network may strongly underestimate the maximum throughput.
This happens if they rely on the injection of UDP traffic at high
target rate, as often suggested by classic methodologies. In-
deed, injecting traffic at high rate always determines very low
network throughput at destination, when issuing jumbo packets
on the public channel. On the other hand, users and applications
seeking the highest network throughput at destination have to
carefully limit the sending rate.

4.3. Deepening the throughput detrimental effect

We experimentally observed the maximum network through-
put achieved on the public channel always strongly decreases
when (i) using jumbo packets, and (ii) the true sending rate
overcomes a threshold we named penalty edge. This phe-
nomenon, however, was never observed when the communi-
cation was established through the private channel. We per-
formed further analyses looking for differences between private
and public channels potentially explaining the causes of the ob-
served phenomenon.

The tables show the average values computed over the experiments performed in different

In this analysis, we employed the network diagnostic tool
named fracepath [1] to infer the characteristics of private and
public channels. Tracepath represents an evolution of the clas-
sic traceroute tool, providing additional path-related informa-
tion. We took advantage of tracepath and performed multiple
experimentations (from 5 to 10) for each of the considered sce-
narios. Interestingly the outcome was the same across them.
The results of this analysis are outlined in Fig. 6. We noticed
three main differences between public and private channels.
First, we discovered that the network traffic flowing through
the private channel always directly reaches the receiver probe
whereas one intermediate network-layer device is always tra-
versed on the public channel. This device is likely the middle-
box in charge of translating public in private addresses. Dif-
ferently from [27], we never observed paths connecting sender
and receiver probes involving more than one intermediate hop.
Several possibilities may explain this discrepancy including op-
erational changes in the data center such a more efficient VM
allocation strategy posing the VMs in the proximity of each
other, as well as a change in the internal network infrastructure
in terms of devices or configurations. Second, the Maximum
Transmission Unit (MTU) is 9 KB on the path of the private
channel — thus supporting jumbo frames — while it is only 1.5
KB on the public one. Third, and consequently, injecting jumbo
packets on the public channel induces IP packet fragmentation.
We experimentally observed that packet fragmentation occurs
directly at the sender VM. These results were verified across all
the tested regions.

Based on these findings, we can provide a possible explana-
tion of the observed phenomenon. Using jumbo packets allows
the sender to easily inject synthetic traffic into the network at
the desired rate. However, the injected packets are fragmented
on the public channel determining a potentially disruptive im-
pact on the throughput measured at the receiver side. Indeed,
each jumbo packet is fragmented in 6 smaller packets: losing
even one of these fragments causes an entire jumbo packet to
be discarded.

5. Maximum throughput between two VMs.

Thanks to the acquired knowledge, we can now provide an
overall picture of the maximum throughput between two VMs
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in Amazon EC2. We have performed 10 10-minute lasting ex-
periments for each considered scenario (i.e. for each of the
combinations obtained by varying region, protocol, channel,
and VM-size combination) at the maximum target rate achiev-
able. Tab.7 reports mean and standard deviation of the median
throughput measured across the different geographical regions
when the receiver VM is reached through its private and public
address. Remind that the throughput reported in Tab.7 is very
stable over time. Experimental results support the following
findings.

e Comparing Tab. 5 and 7, we can see that the traffic gen-
eration cap on the sender side does not significantly im-
pact the network throughput measured, on average. Hence,
the network throughput measured through synthetic traffic
generation can be considered reliable since the sender ma-
chine proved not to be a bottleneck for the communication.

e The intra-cloud network throughput is very similar across
the different regions (see the small standard deviation val-
ues): the cloud provider seems to adopt a strategy to guar-
antee similar network performance to its customers in dif-
ferent regions. This is interesting considering that the
hourly cost for a VM varies with the regions (there is a gap
of +40% between the least and most expensive regions).
Consider the case of a user having a distributed application
running on multiple VMs, exchanging data among them,
and whose performance depends on the network through-
put but not on the location of the data center (e.g. a sci-
entific application). In this case, deploying all the VMs
inside the cheapest region seems the best option to ob-
tain the maximum performance at the lowest cost. Note
this finding is not valid for other cloud operators such
as Microsoft Azure [25], where the intra-cloud network
throughput measured in different regions significantly var-
ied. This further highlights how each cloud provider has
its own way of organizing the network resources [22].

o Traffic is exchanged at a slightly higher rate along the pri-
vate channel compared to the public one. Also considering
the extra-fee paid to use public channels, cloud customers
should always prefer the private channels over the public
ones, when possible.

e Also, for almost all the explored combinations of VM
size, we have observed equal or higher network through-
put for TCP compared to UDP. Our analyses indicate that
the cloud provider allows medium, large, and xlarge VMs
to deliver UDP (TCP) traffic at maximum 300 (300), 696
(700), 993 (996) Mbps respectively. Similarly, medium,
large, and xlarge VMs are allowed to receive UDP (TCP)
traffic at maximum 300 (301), 708 (702), 993 (996) Mbps.
Hence, although EC2 documentation reports as Moderate
the network performance for both medium and large in-
stances, our results show that large VMs definitely receive
more network resources than medium instances.

o Finally, when the network throughput is the most impor-
tant aspect, our results show that the best performance can
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Figure 7: Maximum unidirectional (sender-to-receiver) throughput versus
hourly cost. When focusing only on network performance, the best option in
EC2 is using VMs of the same size. M:medium, L:large, X:xlarge.

be obtained with VMs of the same size. Indeed, the max-
imum throughput is always limited by the minimum size
between the sender and receiver. Fig. 7 compares the net-
work performance (i.e. the maximum sender-to-receiver
throughput) and the total hourly cost normalized to the
cost of a single medium VM. Using two large VMs seems
the best trade-off between cost and network performance.
We have achieved the same conclusion when using also
other (non network-related) performance indexes instead
of the cost, such as the overall number of virtual CPUs or
size of the amount of memory assigned to the VM. Note
that according to Fig. 7 the network throughput is not a
monotonic function of the overall hourly cost.

We can compare Tab.7 and Tab.2 to highlight a few impor-
tant differences carefully considering that (i) previous works
rarely provided details about which specific type of VMs they
employed for the experimentation, and (ii) the features offered
by the provider to the customer may have changed over time.
We have experimentally observed that the size of the VM has
a huge impact on the perceived network performance, an as-
pect underrated in [22, 30, 18] and only partially considered
in [35]. We have measured a much lower network throughput
for medium instances (250 — 300Mbps) than the one reported
in [18] (700 — 900Mbps), [27] (1000 — 4000Mbps), and [35]
(296 —4405Mbps). A first possible explanation for this discrep-
ancy is a change in the operational status of these data centers,
potentially caused by the deployment of higher-performance
applications or by a variation of the resource allocation strat-
egy. Another possible explanation may be spotted looking at
the adopted methodology. These works monitored the network
throughput with experiments during only 10 seconds. As we
already described in Sec. 3.2.3, network throughput in Ama-
zon EC2 is typically much higher and unstable during a first
transient period of time. This throughput burst over short ob-
servation periods may heavily impact the accuracy of the mea-
surements.



Table 7: Maximum stable throughput for Amazon EC2 across different re-
gions when the receiver VM is reached through the public or private IP address.
M:medium, L:large, X:xlarge.

Sender UDP TCP

to Public  Private Public Private
Receiver | u+dev juxdev uxtdev u=xdev
MtoM 201+0 298+1 293+1 299+0
MtoL 291 +0 300+2 293+1 300+0
Mto X 201+0 298+2 293+1 298+2
LtoM 3001 3001 299+0 3001
LtoL 66513 6963 6841 699+1
LtoX 6706 694+4 685+2 T00=+1
XtoM 209+1 3001 299+2 3011
XtoL 708 +22 698+5 699+2 7T702+0
XtoX 8907+16 993+8 939+4 996+1

6. Conclusion

In public cloud environments, the performance of data-
and computation-intensive applications deployed over multiple
VMs can be highly impacted by the performance of the intra-
cloud network. Unfortunately, cloud providers do not disclose
sufficiently detailed information about such network. More-
over, the pioneer works in literature focusing on this aspect
adopted different methodologies and few limited scenarios, re-
porting also conflicting results. This blurring image of intra-
cloud network performance is further weakened by (i) the ex-
tremely large number of possible scenarios a cloud customer
may operate in as well as (ii) the advanced network-resource
allocation strategies employed by the provider, both having an
impact on the network performance perceived.

In this paper, we have identified challenges and pitfalls when
characterizing the intra-cloud network performance. We have
highlighted them by using as a case study Amazon EC2, one of
the most popular IaaS services. For the first time in literature,
to the best of our knowledge, we have proposed and thoroughly
detailed a methodology to perform this kind of analysis and
to define the precise conditions to contextualize and properly
interpret the results obtained. This represents a first advance-
ment beyond the state of the art, which has often underrated
the challenges of these analyses. Thanks to 5,000 hours of ex-
perimentation, we have achieved the following main findings.
We have experimentally observed short-lived initial transient
throughput spikes in the communication between VMs repre-
senting a clear evidence of policy enforcement adopted by the
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cloud provider through network resource allocation mechanism
(e.g. traffic shaping). To avoid ambiguities, we have identified
a suitable and cost-effective metric (i.e. the median) to quan-
tify the stable network throughput. We have verified that VMs
cannot inject traffic into the network at a rate higher than a
threshold depending on the VM size and the adopted packet
size. However, these limits do not impact the throughput mea-
sured, on average. In contrast, the throughput have proven to
be strongly dependent on the smallest size between sender and
receiver VMs while other factors, including the geographic re-
gion, have only limited influence. We have experimentally no-
ticed that the measured network throughput significantly drops
when the traffic consists of jumbo packets and the sending rate
overcomes a given threshold. Since the resulting traffic consists
of a large amount of fragments, we have identified the disrup-
tive impact of packet loss as the possible cause of this behavior:
loosing even one fragment causes an entire jumbo packet to be
dropped. Finally, although medium and large instances should
receive the same network performance (i.e. Moderate) accord-
ing to the official EC2 documentation, large VMs have proven
to receive much more network resources.

As a future work, we plan to deepen the intra-cloud network
performance for this and other cloud providers by also consid-
ering other relevant performance indexes such as latency and
jitter. We also plan to extend these analyses to inter-cloud sce-
narios where the VMs are deployed in different regions or in
different cloud environments.
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