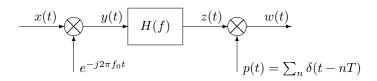
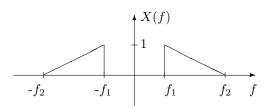
PROVA SCRITTA DI TEORIA DEI SEGNALI del 12.12.11


(Ingegneria delle Telecomunicazioni)

Tempo: 2 ore e mezza. E' consentito l'uso di libri ed appunti propri.


EX. 1 Si considerino i due seguenti segnali periodici: $x(t) = \text{rep}_{2T}[x_g(t)]$ e $y(t) = \text{rep}_{2T}[y_g(t)]$ dove $x_g(t) = \Lambda(2t/T+1) - \Lambda(2t/T-1)$ e $y_g(t) = \Pi(2t/T-1/2) - \Pi(2t/T+1/2)$. Si consideri poi il segnale periodico z(t) = x(t) + y(t),

- 1. valutare la potenza di z(t) usando la formula $P_z = P_x + P_y + 2P_{xy}$;
- 2. rappresentare graficamente z(t) e valutare (usando le proprietà) i coefficienti della sua serie di Fourier;
- 3. determinare il segnale w(t) che esce da un sistema con risposta in frequenza $H(f) = \Pi(2T|f|-1)$ quando in ingresso c'è z(t).

EX. 2

Con riferimento allo schema a blocchi, x(t) è un segnale reale la cui trasformata di Fourier è mostrata nella seguente figura, $f_0 = \frac{1}{2}(f_1 + f_2)$ e H(f) è un filtro passa-basso ideale con frequenza di taglio $f_C = \frac{1}{2}(f_2 - f_1)$.

- 1. Rappresentare graficamente le trasformate di Fourier Z(f) e W(f) quando $T = 1/f_2$;
- 2. determinare il massimo valore di T per cui si può recuperare y(t) da w(t);
- 3. usando tale valore, progettare un sistema ideale (usando, se necessario, anche i blocchi $\Re(\cdot)$ e $\Im(\cdot)$), in grado di recuperare x(t) da w(t).

EX. 3 Quando il segnale $x(n) = \left(\frac{1}{2}\right)^n \operatorname{u}(n)$ entra in un certo sistema LTI si osserva in uscita il segnale $y(n) = \frac{1}{4} \left(\frac{1}{2}\right)^n \left[\operatorname{u}(n+2) - 16\operatorname{u}(n-2)\right]$.

- 1. Determinare la risposta impulsiva h(n);
- 2. calcolare la risposta armonica $H(\nu)$ e rappresentare su di un grafico il suo modulo: di che tipo di filtro si tratta?
- 3. Infine, determinare l'uscita quando l'ingresso è $x(n) = 2 + \delta(n-1)$.