

An OpenFlow-based Architecture for IaaS Security

 Antonio Marotta¹, Gabriella Carrozza², Stefano Avallone¹, Vittorio Manetti²

¹University of Naples Federico II (DIETI) Via Claudio 80125 Naples, Italy

{antonio.marotta, stavallo}@unina.it

²SESM s.c.a.r.l.Via Circumvallazione Esterna, Giugliano in Campania 80014 Naples, Italy

{gcarrozza, vmanetti}@sesm.it

General Terms

Security, Design, Experimentation, Measurement,

Performance

ABSTRACT

Cloud Computing technology and its service model,

Infrastructure as a Service, are emerging as the leading

approaches to encourage the scalable and efficient

utilization of resources and the convenient consumption of

elastic services. Despite all the advantages that derive from

the application of Cloud Computing IaaS model, when

dealing with mission and safety critical infrastructures

“built in the cloud”, it is needed to be also aware of the

security gaps and concerns. In this work we present our

proposed architecture to tackle cloud security issues and we

describe the first results of our experimental campaign.

INTRODUCTION

Cloud Computing technology and its service model,

Infrastructure as a Service, are emerging as the leading

approaches to encourage the scalable and efficient

utilization of resources and the convenient consumption of

elastic services. The IaaS paradigm allows to deploy,

configure and run heterogeneous applications without the

need to be conscious about the underlying physical

infrastructure. The use of a Cloud Computing platform to

create a virtualized testbed in order to reproduce a real

operational environment allows to obtain a lot of benefits in

terms of:

 chance to reproduce real world scenarios in house

to perform testing campaigns;

 availability of automatic procedures to implement

backup and disaster recovery of entire testbeds;

 possibility to configure and manage the testbed

components and the testbed versioning through

automatic mechanisms.

Despite all the advantages that derive from the application

of Cloud Computing IaaS model, when dealing with

mission and safety critical infrastructures “built in the

cloud”, it is needed to be also aware of the security gaps

and concerns. Based on the analysis of the literature, Cloud

Computing security issues can be related to different

scopes.

The way authentication, authorization and accounting are

handled assumes a very high influence: security threats are

often originated from internal users, so there is the need to

be sure that only an authenticated user can access his

granted resources, according to clear-cut global policies.

The actions performed by users in relation to the platform’s

resources should be also registered and accounted for

further analysis in case of policy violations. Another

important task is the management of the security principles,

which are availability, integrity and confidentiality of the

cloud data storage. In this case, advanced encryption

schemes can be used to guarantee that the proper users are

able to access, modify and delete given information.

Virtualization technology, which is the heart behind IaaS

model, has rapidly changed the needs and the requirements

for network security. Traditional security means, like

internal security devices and access control lists are not

sustainable when dealing with virtualized servers and

resources, due to the strains for making them up-to-date

with the rapid changes in the topology. Only authorized

hosts and devices should be able to communicate in the

virtualized networks, while malicious ones have to be

identified and somehow confined. The virtualization layer

also poses new security challenges, because virtual guests

can be easily compromised in different ways and they can

also damage other virtual machines. So, one of the possible

remedies is to check virtual machines’ behavior by

intercepting attempts in the modification of sensible code.

At the same time, virtual machines’ images can be checked,

in order to verify their integrity.

In order to deal with security issues in the cloud and with

the dynamism, typical of IaaS approach, we propose an

OpenFlow-based [1] architecture which uses classical

intrusion detection mechanisms to identify patterns of

attacks and that realizes mitigation and recovery strategies

in reaction to them. The architecture has been designed and

implemented in a virtualized testbed, deployed on an IaaS

platform, namely OpenNebula [2], which represents a real

world Air Control Center (ACC). The nature of the

application fulfilled by the components of the testbed,

really stresses out the lack of robust security solutions and

the need for automatic procedures of disaster and attacks

recovery. Here we present the first experimental activities

that were conducted for the design of the architecture and

that cope with:

 the performance comparison among different

Open Source OpenFlow Controllers;

 the characterization of three different Open

Source IaaS platforms on the basis of the

Provisioning Time metric;

 the implementation in the selected Controller of a

new functionality in order to provide L2 VLAN

encapsulation/de-encapsulation.

OPENFLOW AND THE SOFTWARE DEFINED
NETWORKING PARADIGM

The way networking is handled and configured in the

virtualized testbed is based on the Software Defined

Networking [3] (SDN) paradigm, which can be considered

as a new way of thinking about the network. It is basically

founded on a sharp distinction between data plane, which is

still related to the network devices, and the control plane,

which is external and logically centralized. The main

benefits that derive from its adoption are in terms of a

complete isolation for the application layer and the global

view of the network. In the first case, researchers can build

their own applications on top of the control layer, so that

they are completely isolated from the network devices.

Therefore you can write new protocols or applications

without affecting the internals of the devices. The second

advantage deals with the availability of a global view of the

network itself, so it is easy to react to events and changes in

the topology. OpenFlow is one implementation of this

approach and embodies the interface between the control

and data layers. It defines all the messages that are

exchanged through a secure channel established between

the network switches and an external Controller, that

determines the logic according to which traffic flows are

forwarded. Nowadays, SDN paradigm is extremely

appealing to Cloud Computing Networking as a Service,

since it represents a flexible way to create virtual network

on the fly and to guarantee multi-tenancy L2 isolation or

other network services. Furthermore, results obtained from

previous conducted analysis and experiments, lead us to

confirm that OpenFlow can allow to reach great flexibility

in the network, by assuring dynamism and security policy

enforcement, without the need to change the internal

architecture of the network components. That is why

OpenFlow can be considered as an effective mean to face

vulnerabilities, even in a dynamic context like the one of

Cloud Computing IaaS, and to implement automatic

mitigation/recovery strategies, in the case of security

attacks.

THE PROPOSED ARCHITECTURE

The architecture we propose has to be analyzed considering

three different layers. The Cloud Layer shows two data-

centers, which are geographically connected through a

private enterprise backbone network. With the aim to

further increase the security level in the connection between

the data-centers, we use a splitting mechanism based on

MPLS [4], MultiProtocol Label Switching Protocol, that

splits packet into parts and redirects them to disjoint paths,

so that malicious users that intercept traffic are not able to

reconstruct the messages. Each data-center has its own IaaS

cluster and there is one main node which is in charge of

managing the overall infrastructure. In the Virtualization

Layer, the view is independent from a particular platform

deployed in one of the data-centers. Regarding the

organization, every physical machine, namely a “compute”

node, hosts a virtual switch to which all the network

interfaces of the guests are plugged. In the virtual switching

layer we use the OpenvSwitch [5] technology, which offers

a set of functionalities, among which the OpenFlow

protocol (v1.0) is also implemented. The flow tables of the

switches are programmed by an OpenFlow Controller:

when a packet generated by a virtual guest arrives to the

switch and there is no match with the available rules, it is

sent to the controller, which can decide to install a new flow

rule in the switch to forward or discard it. All the traffic

produced by the virtual machines is controlled and checked

against some well-known patterns of malicious traffic to

identify possible attacks. When an anomalous network

activity is detected, the alarm generated by Snort [6] is sent

through a TLS (Transport Layer Security) socket to an

Alarm Correlator that performs the following actions:

 event storage;

 notification process after the extraction of

information needed to determine the severity level

of the attack;

 identification of the mitigation strategy to

implement on the basis of the aforementioned

severity level. Such a strategy will be triggered by

also interacting with the IaaS manager and the

OpenFlow Controller.

The mitigation strategy we intend to implement when an

attack against a node of the virtualized testbed is detected,

consists in migrating the attacked VM to a different data-

center which belongs to the same infrastructure. After the

migration process is accomplished, the Correlator can

instruct the Controller to change the flows in the virtual

switch of the physical node where the guest was previously

hosted, in order to assure the transparency of its location.

Figure 1 The overall infrastructure

EXPERIMENTAL CAMPAIGN

We carried out the first experimental work with the aim of

selecting an Open Source solution among several

OpenFlow Controllers. The comparison of the controller’s

performaces was accomplished through OFlops [7], namely

OpenFlow Operations Per Second, which is composed by

two software packages:

 OFlops, a particular controller that allows to

benchmark lots of features of the switches;

 Cbench (Controller benchmarker), that generates

packet-in events for the controller by emulating

switches’ connection. It is able to calculate the

maximum packet-in message generation rate, the

delay between packet arrival and packet-in event

and the processing delay.

Flow-

mod/s

Nox

Hub

Nox

Switch

Nox

Learning

switch

Trema Floodlight

Min 7427 19225 7127 52207 56368

Max 7440 20109 7147 56204 57535

Avg 7435 19916 7137 54333 57142

Stdev 3,55 299,31 6,84 1285 407,81

Table 1 Controllers comparison

Table 1 shows the results in terms of Flow-mod messages

per second: through this message, the controller is able to

install, modify or delete a flow rule in the switch table. In

the comparison we took into account only Open Source

Controllers and we also considered other parameters such

as the chance to extend and easily modify the modules of

the controller, the availability of RESTful APIs and the

support behind the development of the project. Our choice

fell on Floodlight [8], a Java event-based Controller

released under the Apache license, and developed by an

open community.

Since we use VLAN technology for communication among

virtual machines with the aim to provide L2 isolation, we

modified the “Forwarding” module of Floodlight in order to

implement VLAN tag encapsulation/de-encapsulation

though OpenFlow actions. The VLAN tag that has to be

used is directly retrieved from the Cloud platform itself,

which is aware of the virtual machines belonging to the

virtual network with a specific VLAN tag. The other

modification copes with the securing of the channel

between the Controller and OpenvSwitch. The latter

natively supports SSL handshaking and so we handled the

creation of a secure communication with public/private key

pairs (generated with the Java keytool [9]) in the

implementation of Floodlight connection module.

As last step of our experimental campaign, we evaluated the

Provisioning Time of three different IaasS platforms: such a

metric refers to the period of time starting from the request

for the creation of new VM (through APIs) and ending

with the achievement of the “ready” status in the platform.

We considered 16 different combinations of four

parameters which are:

 service offering: the flavor required for the new

virtual machine, namely the number of virtual

CPUs and the size of the RAM;

 data storage (binary): secondary disk storage for

the VM;

 physical node stress: the number of VMs (0-5)

already hosted on the node;

 automatic scheduling (binary): such a facility is

in charge of picking a physical host where the new

VM will be allocated.

We computed the arithmetic mean on 10 different requests

of VM creation with the same configuration. For the sake of

brevity we just report measures related to a specific

combination (the most relevant to our opinion) of the above

parameters: (i) a medium service offering (1 vCPU, 2GB

RAM), (ii) data storage required, (iii) 5VMs already hosted

on the physical node, (iv) scheduling module activated.

 Provisioning

Time (s)

CloudStack 17,5714

OpenNebula 22,4789

OpenStack 27,6996

Table 2 Provisioning time

CONCLUSION AND FUTURE WORK

In this work we firstly discussed the context which deals

with the challenge of the main security issues related to the

Cloud Computing environment. Then we proposed a SDN-

based approach to guarantee network security and to

undertake selected reactions in case of attacks, by

describing all the components needed by our architecture.

As future work we aim at using more sophisticated

intrusion detection mechanisms in order to be able to detect

unknown and unusual traffic patterns. Furthermore, we

intend to extend the experimental campaign by performing

a more accurate comparison among Cloud Computing IaaS

platforms, that is based on other metrics such as: Elasticity,

Agility, network stressing and CPU/memory usage.

REFERENCES

1. Nick McKeown, Tom Anderson, Hari Balakrishnan et

other “OpenFlow: Enabling Innovation in Campus

Networks” Whitepaper

2. www.opennebula

3. Open Networking Foundation “Software-Defined

Networking: The New Norm for Networks” Whitepaper

4. Avallone S., Manetti V., Mariano M., Romano S.P. A

 Splitting Infrastructure For Load Balancing and

 Security in an MPLS Network. 3
rd

 International

 Conference on Testbeds and Research Infrastructure for

 the Development of Networks and Communities, 21-23

 May 2007. Pages 1-6

5. Ben Pfaff, Justin Pettit, Teemu Koponen, “Extending

Networking into the Virtualization Layer”. In 8th ACM

Workshop on Hot Topics in Networks (HotNets-VIII)

New York City October 2009

6. M. Roesch M. Snort Lightweight Intrusion Detection

 For Networks Systems Administration Conference

 (LISA 99), Seattle, WA, Nov. 1999

7. http://www.openflow.org/wk/index.php/Oflops

8. http://floodlight.openflowhub.org/

9. http://docs.oracle.com/javase/tutorial/security/index.html

http://www.opennebula/
http://www.openflow.org/wk/index.php/Oflops
http://floodlight.openflowhub.org/
http://docs.oracle.com/javase/tutorial/security/index.html

