
Migration approaches to support nomadic services
for communities

Roberto Canonico, Vittorio Manetti and Giorgio Ventre
COMICS Lab, Dipartimento di Informatica e Sistemistica

Università di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
Email: {rcanonic, vittorio.manetti, giorgio}@unina.it

Abstract— Research carried out in the context of the CON-
TENT Network of Excellence aims at investigating novel
paradigms for the provision of AV services to user communities
by means of self-organizing overlays and hybrid Content Delivery
Networks. Being in the age of mobile telecommunications, the
CONTENT architectural framework cannot ignore that an in-
creasing number of users require access to such services by means
of mobile devices and in mobility. While a considerable effort is
now being made to introduce support for mobility in ordinary
communication protocols, e.g. by introducing fast and efficient
handoff mechanisms, little work has been done to investigate the
possibility and the opportunity to migrate services when the users
change their connection to the network, e.g. by switching from
a GPRS connection to a public WiFi hotspot. In this paper we
present a preliminary investigation aimed at comparing different
migration mechanisms that can be considered to support service
migration in the context of a CONTENT Service Network.

I. INTRODUCTION

The word community comes from the Latin communis,
meaning ”common, public, shared by all or many”. A com-
munity usually refers to a group of people who interact and
share certain things. In the human communities, in which
intent, belief, resources, preferences, needs, risks and a number
of other conditions may be present and common, affecting
the identity of the participants and their degree of adhesion.
Effective communication practices in group and organizational
settings are important to the formation and maintenance of
communities. How ideas and values are communicated within
communities are important to the induction of new members,
the formulation of agendas, the selection of leaders and many
other aspects. Organizational communication is the study of
how people communicate within an organizational context and
the influences and interactions within organizational structures.
Group members depend on the flow of communication to
establish their own identity within these structures and learn to
function in the group setting. The process of learning to adopt
the behavior patterns of the community is called socialization,
and the most fertile time of socialization is usually the early
stages of life, during which individuals develop the skills and
knowledge and learn the roles necessary to function within
their culture and social environment. There is a philosophy
that is being used as the basis of how various groups and
organizations operate; this philosophy is called ”openness”,
and it is related to open source. Openness is a relatively new
term to describe this general way of doing things, and it is

typified by communal management, and open access to the
information or material resources needed for projects.

The rapid diffusion of always-on connections such as
ADSL, and of mobile communication environments PDA and
high-speed wireless LAN or 3G cellular phones, has increased
the expectations and demands for real-time applications such
as voice phone, TV phone, and instant messengers. Fol-
lowing up on the ubiquity and heterogeneity of networked
resources such as devices and applications, the next-generation
networking environment, often referred to as a ubiquitous
networking environment, has just started to emerge. In this
environment, ubiquity enables a user to enjoy various services
on the network anytime and anywhere. On the other hand,
owing to heterogeneity, the user must select from among many
suitable resources according to the situation. However, these
resources that were selected by the user might no longer
remain optimal as the surrounding situation changes. It is
therefore preferable for both service initiation and migration
to be provided in an integrated approach for a future ubiq-
uitous networking environment. In the ubiquitous networking
environment, various applications on heterogeneous devices
are available to the user. It must be possible to establish
communication with a call from an arbitrary device selected
by the caller. Two fundamental approaches may be used. In the
first approach, the same real-time application is installed into
all user devices so that two arbitrary devices can be connected
with each other. In the second approach, users register their
policy and/or preference with the policy server in the network.
The registered information is referred to when an incoming
call occurs. The call is directed to the appropriate device
according to the calls information after being appropriately
translated, if necessary. In this second case, it may be occur an
event that involves the need to implement a service migration
mechanism.

Many aspects regarding community of users, and regarding
the ubiquitous networking, can be find again when we deal
community of users for contents and services sharing, as well
as CONTENT. The CONTENT Network-of-Excellence aims
to implement a Content Delivery Network for home users
enabling easy-to-install and easy-to-use Audio-Video services
in and between homes. The main technical objective is to
amplify the potential of European Community Networking by
improving Content Distribution infrastructures for the delivery
of live content and interactive stored content, and by integrat-



ing, tools and mechanisms that would enable the management
of multimedia assets and their subsequent access for the benefit
of the communities of users, producing a set of appropriate
services for them.

The rest of this paper is organized as follows: in sec-
tion II we introduce the nomadic user concept regarding
the ubiquitous networks. The remaining sections are about
different kinds of migration mechanisms: in section III, some
details about the service migration techniques; in section IV,
an introduction to code migration with mobile agents and
active networks; in section V we talk about Xen and the live
migration of Virtual Machines; section VI is about virtual
workspaces in Grid and approaches for migration of virtual
execution environments.

II. NOMADIC USERS

In the ubiquitous networking, the user could be considered
like a nomadic one, because it can exploit technologies for
wireless connection, like Wi-Fi, bluetooth, Wi-MAX, and it
can use mobile devices like PDA and last generation mobile
phone. So, it can move itself in an ubiquitous networking
environment while it uses the services available in this sce-
nario. Many distributed service models were been defined
with the main goal to enable nomadic users to access re-
mote services in a more efficient and convenient way. They
should simplify procedures to lookup and select services in
mobile wireless environments, and should also enhance the
service usefulness by providing flexible mechanisms to adapt
to the characteristics of the mobile devices and communication
quality. In order to guarantee the user mobility, they have to
be solved some problems joined with the coverage. Let us
consider the case in which a mobile user is using a WI-Fi
connection; it may be possible that an access-point switch has
to be implemented to guarantee the connection availability.
This goal has to be reached in a very transparent way in
regard to the user, and it has to be guaranteed the availability
of the service that the user is exploiting during the switch.
Many ways can be employed to solve this problem: it can
be implemented a dynamic overlay network which can adapt
itself to a similar scenario; it can be used service migration
techniques; it can be implemented a mechanism by which a
new service can be started and provided to the user. Obviously,
in an ideal scenario, each of this solutions are available. As far
as migration techniques, after a preliminary analysis, we have
identified three kinds of mechanisms: code migration, service
migration and Virtual Machine migration. In the following
sections we will implement an overview on these mechanisms.

III. MOBILE SERVICES

Short-range wireless technology is on its way of becoming
ubiquitous, and it will soon be possible to program real
world ad hoc networks. Deploying services in such networks,
however, is constrained by the lack of proper service models
and system support. Unlike a statically identified service that is
always located on the same node, a mobile service can migrate
to different nodes in the network to accomplish its task.

Although a service end-point can migrate, it constantly appears
to the client application as a unique virtual end-point. The
service migration occurs transparently to the client application,
which is presented with a unique virtual service end-point. In
traditional service models, the client can communicate with
such a node for the entire duration of the interaction with the
service. Such models can hardly support the deployment of
services over highly dynamic ad hoc networks, where ad hoc
network scenario consists of nodes supporting services that
dynamically join and leave the network, thus continuously
modifying the set of available services in the region of
interaction. Additionally, due to limited resource availability
and unpredictable loss of network connectivity, a node may
stop providing a service currently in use, and alternatively
new services may appear. An interesting solution could be
to make services context-aware such that they can adapt to
context changes by migrating their execution to nodes where
they can accomplish their task better, for example, in order
to implement the required Quality of Service. The service is
designed such that it is able to learn about context changes and
migrate to other nodes in the networks as soon as the current
hosting node becomes unsuitable. Additionally, services carry
any relevant state information during migrations. Therefore,
the interaction between a user and a service can continue
uninterrupted, except for small delays generated by migrations.
Obviously, according with this approach, there is a need to
design more agile services that are able to adapt to changes
in the network, or to changes in both the client context and
service context. Context includes parameters such as location,
speed, time, device capabilities, or network topology.

IV. MOBILE AGENTS AND ACTIVE NETWORKING

The term agent is used in many research areas, like Artificial
Intelligence, robotics, network management, user interfaces
and so on. According to the Object Management Group
OMG [12], a software agent is defined as an autonomous
software entity that can interact with its environment. Agents
consist of program code and the associated internal global
and execution states and can perform tasks on behalf of their
owners. The agents are classified like stationary or mobile.
A stationary agent executes only on the system on which it
begins execution. If it needs information not on that system or
needs to interact with an agent on another system, it typically
uses a communication mechanism, such as remote procedure
calling. A mobile agent is not bound to the system on which
it begins execution. It is free to travel among the hosts in
the network, therefor, in the mobile agent contest, the code
migration concept covers a fundamental rule. Created in one
execution environment, it can transport its state and code with
it to another execution environment in the network, where it
resumes execution. The term state typically means the attribute
values of the agent that help it determine what to do when it
resumes execution at its destination. Code in an object-oriented
context means the class code necessary for an agent to execute.
A mobile agent has the unique ability to transport itself from
one system in a network to another in the same network. This



ability allows it to move to a system containing an object
with which it wants to interact and then to take advantage of
being in the same host or network as the object. While in the
classical communication paradigms the focus is on the transfer
code between components, in the mobile agent paradigm, a
whole computational component is moved to a remote site,
along with the code it needs, and some resources required to
perform the task.

It can be find again the code migration technologies in the
active network, where the code is transferred into what we
can call an active packet or a capsule. The active network
[18] provides a platform on which network services can be
experimented with, developed, and deployed. That platform
represents a meta-agreement among the parties concerned with
the network regarding the fundamental capabilities built into
the network, as well as the mechanisms through which they
may be accessed and combined to implement new services.
The unit of multiplexing of the network is the packet, and the
primary function of the active network is communication and
not computation. The network contains some nodes, the active
nodes, whose primary reason for existence is to switch packets
and thus allow sharing of transmission resources. Computation
may occur, and indeed computation services could be built
upon the active network platform, but the platform itself is
not designed to be a general-purpose distributed computing
system. Active nodes are interconnected by a variety of packet-
forwarding technologies, and this variety can evolve contin-
ually. Each active node is controlled by an administration,
and no single administration controls all active nodes. Active
nodes provide a common base functionality, which is described
in part by the node architecture. The node architecture deals
with how packets are processed and how local resources are
managed, and, on the other hand, it deals with global matters
like addressing, end-to-end allocation of resources, and so
on. The node architecture is explicitly designed to allow for
more than one network API and network architecture. The
functionality of the active network node is divided among
the Node Operating System (NodeOS), the Execution En-
vironments (EEs), and the Active Applications (AAs). Each
EE exports a programming interface or virtual machine that
can be programmed or controlled by directing packets to
it. An EE provides an interface through which end-to-end
network services can be accessed. The architecture allows
for multiple EEs to be present on a single active node. The
NodeOS provides the basic functionality from which execution
environments build the abstractions presented to the active
applications. The NodeOS manages the resources of the active
node and mediates the demand for those resources, which
include transmission, computing, and storage. The NodeOS
thus isolates EEs from the details of resource management
and from the effects of the behavior of other EEs. Each
node has a distinguished management execution environment,
through which certain aspects of the local node configuration
and policy may be controlled. Two different approach can
be used to implement the packet processing in the active
networks: discrete approach and integrated approach [15].

With the first kind of mechanism, the processing of messages
may be architecturally separated from the business of injecting
programs into the node, with a separate mechanism for each
function. When a packet arrives, its header is examined and a
program is dispatched to operate on its contents. The program
actively processes the packet, possibly changing its contents.
A degree of customized computation is possible because the
header of the message identifies which program should be
run, so it is possible to arrange for different programs to be
executed for different users or applications. With the integrated
approach, every message that passes between nodes contains
a program fragment that may include embedded data. When
a packet arrives at an active node, its contents are dispatched
to a transient execution environment where they can safely be
evaluated. The transient environment is destroyed when packet
evaluation terminates.

V. LIVE MIGRATION OF VIRTUAL MACHINES

Modern computers are sufficiently powerful to use virtual-
ization mechanisms to present the illusion of many smaller
virtual machines, each running a separate operating system
instance. There are two fundamental approaches regard to the
virtualization techniques: full virtualization and paravirtualiza-
tion. In a traditional Virtual Machine Monitor (VMM) obtained
by full virtualization mechanisms, the virtual hardware ex-
posed is functionally identical to the underlying machine; par-
avirtualization consists in presenting a virtual machine abstrac-
tion that is similar but not identical to the underlying hardware.
This last technique promises improved performance, although
it does require modifications to the guest operating system,
but no changes to guest applications. Full virtualization has
the obvious benefit of allowing unmodified operating systems
to be hosted, it also has a number of drawbacks. Xen [5] is a
VMM realized at the University of Cambridge, and it is one of
the major product used for the operating systems virtualization.
Some fundamental features regard to the Xen paravirtualiza-
tion system: support for unmodified application binaries, sup-
port for full multi-application operating systems, completely
hiding the effects of resource virtualization from guest OSes.
In Xen a single virtual machine hosts a real operating system
which may itself securely multiplex thousands of unmodified
user-level processes. In Xen each guest OS performs its own
paging using its own guaranteed memory reservation and disk
allocation, in order to achieve performance isolation; with
this approach, no malicious virtual machines can encourage
thrashing behavior, unfairly depriving others of CPU time
and disk bandwidth. Xen implements a separation between
policy and mechanism: in this architecture the hypervisor itself
provides only basic control operations, and these are exported
through an interface accessible from authorized domains. The
hypervisor has not to be involved in higher level issues; policy
decisions are performed by management software running over
a guest OS rather than in privileged hypervisor code. In Xen a
domain is a running virtual machine within which a guest OS
executes, and Xen is itself the hypervisor since it operates
at a higher privilege level than the supervisor code of the



guest operating systems that it hosts. Two mechanisms exist
for control interactions between Xen and an overlying domain:
synchronous calls from a domain to Xen may be made using
a hypercall, while notifications are delivered to domains from
Xen using an asynchronous event mechanism. The hypercall
interface allows domains to perform a synchronous software
trap into the hypervisor to perform a privileged operation,
analogous to the use of system calls in conventional operating
systems. Communication from Xen to a domain is provided
through an asynchronous event mechanism, which replaces the
usual delivery mechanisms for device interrupts and allows
lightweight notification of important events such as domain-
termination requests.

Operating system virtualization has attracted considerable
interest in recent years, particularly from the data center and
cluster computing communities. The migration concept holds
a great role regard this contest. Migrating an entire OS and
all of its applications as one unit, allows to avoid many of
the difficulties faced by process-level migration approaches,
and introduces some benefits in comparison to these last ones.
Firstly, while the migration process has been implemented,
the original host machine must remain available and network-
accessible in order to service certain system calls or even
memory accesses on behalf of migrated processes, and the OS
migration approach makes it easy to achieve this goal thanks
to the interface properties between a virtualized OS and the
VMM. The original host may be deactivate once migration
has completed. Secondly, the virtual machine migration means
that the memory state can be transferred in a consistent
and efficient fashion. This applies to kernel-internal state
as well as application-level state, even when this is shared
between multiple cooperating processes. Regard to the VM
migration mechanism, it is critically important to minimize
the downtime during which services are entirely unavailable,
and to consider the total migration time during which state on
both machines is synchronized and which hence may affect
reliability. With the migration approach implemented in Xen,
this problem is achieved by using a pre-copy [8] approach in
which pages of memory are iteratively copied from the source
machine to the destination host, all without ever stopping the
execution of the virtual machine being migrated. Pagelevel
protection hardware is used to ensure a consistent snapshot is
transferred, and a rate-adaptive algorithm is used to control
the impact of migration traffic on running services. The final
phase pauses the virtual machine, copies any remaining pages
to the destination, and resumes execution there. No ‘pull’
approach is used which faults in missing pages across the
network since this adds a residual dependency of arbitrarily
long duration, as well as providing in general rather poor
performance. It is very important to consider the degradation
level the migration process involes, in regard to both the
services available on the VM we has to migrate, and the
services available on the other systems. The migration process
exploits the computational and storage resources on the source
and destination machines, and it use the network resources in
order to carry the VM from one to another. So it involve an

overhead increasing which can make a disadvantage to the
available services. Two different methods are considered for
initiating and managing state transfer: managed migration and
self migration. Managed migration is performed by migration
daemons running in the management VMs of the source and
destination hosts. These are responsible for creating a new VM
on the destination machine, and coordinating transfer of live
system state over the network. Self migration [9] places the
majority of the implementation within the OS being migrated.
In this design no modifications are required either to Xen or
to the management software running on the source machine,
although a migration stub must run on the destination machine
to listen for incoming migration requests, create an appropriate
empty VM, and receive the migrated system state.

VI. VIRTUAL WORKSPACES IN GRID COMPUTING

Grid [1] is a coordinated resource sharing system imple-
mented by dynamic and multi-institutional virtual organiza-
tions (VO). This sharing is highly controlled by resource
providers who define the conditions under which sharing
occurs. A virtual organization is a set of consumers and
institutions defined by such sharing rules. A protocol definition
specifies how distributed system elements interact with one an-
other in order to achieve a specified behavior, and the structure
of the information exchanged during this interaction. The Grid
architecture is organized by layers: the range of resource types
is defined at the Fabric layer, and it can be used to construct a
wide range of global services and applications at the Collective
layer; the protocols defined at the Resource and Connectivity
layers are designed to be implemented on top of a diverse
range of resource types. The higher, is the Application layer,
which comprises the user applications that operate within a VO
environment. The Open Grid Service Architecture (OGSA) [2]
supports the creation, maintenance, and application of services
maintained by VOs. In OGSA, a Grid service is defined as
well as a Web service that provides a set of well-defined
interfaces and that follows specific conventions. OGSA is an
uniform service-oriented model, and this adoption means that
all components of the generic environment are virtual. In other
words, in OGSA everything is a Grid service. A Grid service
implements one or more interfaces, where each interface
defines a set of operations that are invoked by exchanging a
defined sequence of messages. The service interface definition
and access binding are also distinct from the implementation of
the functionality of the service. A service can support multiple
implementations on different platforms, facilitating seamless
overlay not only to native platform facilities but also, via the
nesting of service implementations, to virtual ensembles of
resources. Grid services can maintain internal state for the
lifetime of the service. The existence of state distinguishes
one instance (a particular instantiation of a Grid service) of a
service from another that provides the same interface.

Grid offers access to diverse software environments, instead,
an application typically requires a very specific, customized
environment; in other words, users application may in practice
be able to use only a small fraction of the resources potentially



available on the Grid. The need to provide reliable isolation
and dynamic, fine-grain control of shared resources to ensure
enforcement of policies, leads to the Virtual Workspace [3], [4]
concept. A Virtual Workspace allows a Grid client to define an
execution environment in terms of its hardware requirements
and software configuration. The main goal of the workspace
definition is to capture the requirements for an execution
environment in the Grid and then use automated tools in order
to find, configure, and provide an environment best matching
those requirements. Thus, jobs can be mapped to workspaces,
and workspaces can be mapped to actual resources in the Grid.
Workspaces implementation is typically realized by the virtual
machine technologies. In addition to outstanding isolation
properties obtainable by the virtual machines, the virtualization
of the underlying hardware enables instantiation of a new, in-
dependently configured guest environment on a host resource.
The VMs can be rapidly suspended and their state serialized,
and thus easily migrated to remote resources, for example, in
order to guarantee the Virtual Workspace availability, indepen-
dently from the real hardware, and in a way that is transparent
for the customer. The Virtual Workspace management requires
two fundamental entities: VW Repository which provides a
management interface to workspaces, and VW Manager which
orchestrates their deployment.

VII. CONCLUSION

In this paper, we presented an overview of migration tech-
niques implemented in different scenarios and their use to
support the provision of Audio-Video service to mobile users.
We are currently investigating among the above mentioned
mechanisms in order to find the more suitable for content
distribution services. Even thought it is too early to adopt a
final solution, we may say that maybe each of the mechanisms
presented in this article can provide us with useful ideas for
the future.

REFERENCES

[1] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid:
Enabling Scalable Virtual Organizations, International Journal of High
Performance Computing Applications, Vol. 15, No. 3, 200-222 (2001).

[2] I. Foster, C. Kesselman, J. Nick and S. Tuecke, The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration, Open Grid Service Infrastructure WG, Global Grid Forum,
June, 2002.

[3] K. Keahey, I. Foster, T. Freeman, X. Zhang and D. Galron, Virtual
Workspaces in the Grid, Lecture Notes in Computer Science, Springer,
Vol. 3648, Pag. 421-431, August 2005.

[4] K. Keahey, I. Foster, T. Freeman amd X. Zhang, Virtual workspaces:
Achieving quality of service and quality of life in the Grid, Scientific
Programming, IOS Press, Vol. 13, Pag. 265-275, 2005.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt and A. Warfield, Xen and the art of virtualization, in
Proceedings of the nineteenth ACM symposium on Operating systems
principles, pag. 164 - 177, 2003.

[6] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C Limpach, I. Pratt,
A. Warfield, Live Migration of Virtual Machines, NCDI ’05.

[7] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and S. Zhou, Process
migration, ACM Computing Surveys, 32(3):241.299, 2000.

[8] M.M. Theimer, K.A. Lantz and D.R. Cheriton, Preemptable remote
execution facilities for the V-system, In Proceedings of the tenth ACM
Symposium on Operating System Principles, pages 2.12. ACM Press,
1985.

[9] J.G. Hansen and E. Jul, Self-migration of operating systems, In Proceed-
ings of the 11th ACM SIGOPS European Workshop (EW 2004), pages
126. 130, 2004.

[10] Z. Wang, J. Seitz, An Agent-based Distributed Service Model for No-
madic Users, Eighth International Conference on Parallel and Distributed
Systems (ICPADS’01).

[11] W.J. Hwang, Design and Implementation of Multimedia Service Man-
agement Agent on Home Networks Environment, IJCSNS International
Journal of Computer Science and Network Security, VOL.6 No.7B, July
2006.

[12] Object Management Group, Agent Technology, Green Paper, version
0.92, OMG Agent Working Group, 25. April 2000.

[13] H. Harroud, M. Ahmed and A. Karmouch, Policy-Driven Personalized
Multimedia Services for Mobile Users, IEEE Transaction on Mobile
Computiong, vol. 2, No 1, January-March 2003.

[14] A. Sashima, N. Izumi, K. Kurumatani and Y. Kotani, Toward Role-based
Agent Coordination for Mobile and Ubiquitous Services, Proceedings of
the 20th International Conference on Advanced Information Networking
and Applications (AINA’06), Vol. 2, 2006.

[15] D.L. Tennenhouse, D.J. Wetherall, Towards an active network architec-
ture, DARPA Active NEtworks Conference and Exposition, 2002.

[16] M. Solarski, M. Bossardt, T. Becker, Component-based Deployment and
Management of Services in Active Networks, in Proceedings of IWAN,
2002.

[17] K.L. Calvert, S. Bhattacharjee, E. Zegura and G, Tech, Directions in
Active Networks, IEEE Communications Magazine, 1998.

[18] K.L. Calvert, Architectural Framework for Active Networks Version 1.0,
Active Network Working Group Draft, 1999.

[19] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis and
A. Bestavros, Distributed Placement of Service Facilities in Large-SCale
Networks, INFOCOM 2006.

[20] N. Imai, M. Isomura and H. Horiuchi, Flexible and Seamless Service
Migration for Real-time Communication with Ubiquitous and Heteroge-
neous Networked Resources, IEEE Communications Society, Globecom
2004.

[21] W.J. Hwang, Design and Implementation of Multimedia Service Man-
agement Agent on Home Networks Environment, IJCSNS International
Journal of Computer Science and Network Security, vol.6 No.7B, July
2006.

[22] R. Grimm, One.world: Experiences with a Pervasive Computing Archi-
tecture, IEEE Pervasive Computing, 2004.

[23] 802.16 IEEE Standard for Local and metropolitan area networks. Part
16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE
Computer Society and IEEE Microwave Theory and Techniques Society.


