
Hybrid Simulation of Distributed Large-Scale
Critical Infrastructures

Massimo Ficco
Department of Industrial and Information Engineering

Second University of Naples
Via Roma 29, Aversa (CE), Italy

massimo.ficco@unina2.it

Giovanni Avolio, Luigi Battaglia and Vittorio Manetti
SESM S.C.A.R.L

Via Circumvallazione Esterna di Napoli
I-80014, Giugliano (NA), Italy

{gavolio, lbattaglia, vmanetti}@sesm.it

Abstract—The distributed and complexity nature of modern
critical infrastructures that have to provide integrated services
through the interoperability of heterogeneous subsystems, even
spread among different countries, require new methodologies and
tools to dominate overall systems complexity. In particular, in
order to get knowledge about their real behavior and define
dependability improvement actions, such complex and distributed
systems should be reproduced and simulated locally. On the
other hand, the extraordinary large number of their components
cause a large-scale of the resulting model, limiting its resolution
by current simulators. This paper presents a framework to
implement hybrid simulation of distributed large-scale critical
infrastructures, such as Air Traffic Control (ATC) and Vessel
Traffic System (VTS). High Level Architecture (HLA) has been
introduced into the engine simulations platform as its design
and development foundation, whereas cloud-based virtualization
techniques have been exploited in order to reproduce the overall
distributed system on a local adaptive testbed. The use of such
a framework can result in a considerable reduction of costs
in all the system life phases, as well as an increased system
dependability level.

Index Terms—Hybrid simulation; critical infrastructures; net-
work emulation; HLA; cloud computing.

I. INTRODUCTION

Critical infrastructures represents the pivotal assets and
resources upon which the current society greatly relies to
support welfare, economy and quality of life. Nowadays, the
trend is to restructure these infrastructures by applying a
System of Systems (SoS) concept, where the sparse islands are
progressively interconnected by means of proper middleware
solution through wide-area networks. The huge complexity
of such systems makes more complicated for designers and
developers the task of facing integration and configuration
issues of both pre-existing and under development systems.
Indeed, integration among components may introduce unex-
pected system behaviors on dependability and performance
that usually manifest during systems installation and execution
time. Additionally, as they cannot be detected earlier, they
require on-site maintenance operations resulting in increased
maintenance costs and overspending in terms of personnel
resources. Such systems open new scenarios in which the
companies have to deal with both third party (COTS, Com-
mercial Off-The Shelf) and in-house (named target hereafter)
developed components [1].

For this reason, in order to dominate systems complexity
and prevent exponential increase of costs, industries need
novel solutions to face the migration from centralized and
monolithic systems to open and distributed interconnected
SoS. Academic and industrial research are investing significant
effort in this direction, especially in the field of mission and
safety critical systems which are required to exhibit predictable
dependability behaviors.

A promising way to cope with these new systems, and
to lower maintenance costs, is to reproduce such complex
and distributed systems locally, and let them run prior to the
actual execution on-site in order to get knowledge about their
real behavior and define mitigation means and improvement
actions. Hybrid and distributed simulation strategies, supported
by novel technologies for resources virtualization and work-
ing environment reproduction, represent the most promising
way to define the needed strategies to actually support such
paradigm shift.

Therefore, this paper aims to propose an open-source
framework to implement local testbed, representative of large-
scale critical systems through the integrated use of distributed
and hybrid simulation techniques. The framework is able to
support the setup of simulation platforms, compliant with
the reference standards, which act as a glue layer among
simulated components and targets. The proposed solution
intends to provide effective support to the daily industry work
in all the phases of systems life cycle. The framework will
allow reproducing on local testbeds, by combining simulation
and emulation techniques, hardware and software working
environments in which real systems are intended to run. On
the one hand, this will enable systems designers to evaluate
potential actions to undertake both for refining existing sys-
tems or designing new ones, considering system requirements
evolution and operational environment changes. On the other
hand, it will allow trying out maintenance operations needed to
mitigate occurred system failures and/or to prevent estimated
potential faults and security threats.

The framework provides configuration and emulation fa-
cilities, as well as virtualization capabilities to be exploited
in order to reproduce the overall distributed system, on a
local testbed. Interoperation between different simulated and
emulated subsystem is achieved by using the High Level



Architecture (HLA) paradigm [2], which is a general purpose
architecture for distributed computer simulation systems. The
implementation is based on the open source poRTIco RTI tool,
which is adopted as interoperation framework for the simu-
lation of hybrid systems [3]. However, in order to overcome
HLA shortcomings due to lack the capabilities of management
and scheduling of simulation resources, especially during
periods of peak load, as well as to emulate the network
infrastructure, a cloud-based virtualization solution has been
exploited. Finally, the air-to-ground warfare simulation system
is taken as an example. The proposed solution has been
designed in order to support testing and maintenance phases
of the complex and critical infrastructure, such as Air Traffic
Control (ATC) and Vessel Traffic System (VTS).

The rest of this paper is organized as follows. Background
and related work are presented in Sec. II. Sec. III shows the
functional view of the proposed framework. Sec. IV presents
the simulation platform. The network emulation engine and
the virtual infrastructure are presented in Sec. V and Sec. VI.
Conclusions and future work are presented in Sec. VII.

II. BACKGROUND AND RELATED WORK

A. VTS Simulation Scenario

VTS objective is to support safety and efficiency of nav-
igation, as well as protection of the marine environment,
adjacent shore areas, work sites and offshore installations from
possible adverse effects of maritime traffic. A Commercial
VTS system is designed to provide vessel traffic management
and informative services to the maritime community. VTS
supports the maritime community needs to monitor, control,
interact and identify all the ships in ports and in the proximity
areas, providing all the necessary informative contents, and
showing an interactive ‘traffic picture’, updated on a real-time
basis. Normally, a VTS system is organized into hierarchical
levels, although it is not necessary for its proper operation, but
rather to streamline its management. For our analysis, we refer
to a VTS organized in three hierarchical levels, including:

• VTS Local Control Centers (VTSL), they are responsible
for:

– local traffic image compilation;
– interaction with traffic;
– port management;
– local actions planning;

• VTS Area Centers (VTSA), they are responsible for:
– fusion of VTSL data;
– contiguous VTSL hand-over;
– data link with patrol units;
– search and rescue (SAR) planning;

• Head Quarter (HQ), they are responsible for:
– distribution of Long Range Identification and Track-

ing (LRIT) [5], Vessel Monitoring System (VMS)
[6] and legacy ship reporting systems;

– nation and world wide traffic image compilation;
– central archive;
– overall SAR coordination.

In order to provide the expected traffic management ser-
vices, the VTS architecture has to include at least two kind
of sites: remote Sensor Sites and VTSLs. The former includes
all the available sensors to track ship position and environ-
ment evolution. The latter is the first level of control, where
operators can interact with the system. VTSs can integrate a
wide variety of sensors (e.g., radars, Electro Optical Sensor
(EOS), Automatic Identification System (AIS) [7], direction
finders, etc.) and of external systems (e.g., LRIT, weather),
allowing for data importing/exporting in many formats (e.g.,
ITU1371 supported both in version 1 and 3, NMEA). Starting
from the tracks recognized from the Sensor Sites, VTSLs are
responsible to process and store the system tracks. The VTS
system is a database-centric system, therefore all the system
elements (servers and operators) are able to establish remote
connections with database.

In a distributed architecture, in which are involved more
than one VTSL, each VTSL shares the same traffic global
picture, and display it in a real-time application at the operator
position. Based on this model, the VTS system can manage sit-
uations of network degradation or network breakdown among
VTSLs in the distributed architecture, by means of ‘disaster
recovery’ techniques.

B. High Level Architecture

High Level Architecture (HLA) was originally proposed
by the US Department of Defense in 1995 as a general
architecture for connecting several computer-based simulation
systems, which is evolved to HLA 1516 in 2000 [2], [4].

However, although HLA was firstly developed for military
applications, it has been widely used in non-military industries
due to its many advantages. In particular, according to the
HLA simulation paradigm, a federation is a distributed
simulation system for a particular purpose, which consists of
a number of interactive federation members. All application
programs that participate in simulation can be called federate.
The interface specification of HLA describes how to com-
municate within the federation through the implementation
of HLA specification: the Run Time Infrastructure (RTI).
Federates interact using services implemented by the RTI.
They can take on the role of Publisher to inform about an
intention to send information to the federation, and Subscriber
to receive some information created and updated by other
federates. The information exchanged in HLA is represented in
the form of classical object oriented paradigm. The two kinds
of objects exchanged in HLA are Object Class and Interaction
Class. Object class contains object-oriented data shared in the
federation that persist during the run time; Interaction class
data are just sent and received information between federates.
These objects are implemented within XML format. In the
HLA framework, the logical structure of a typical federal
simulation is shown in Fig. 1.



Fig. 1. Logic structure of HLA silmulation.

Although, HLA itself is not able to achieve full interop-
eration, but it defines the system structure and mechanisms,
which means by running the RTI (Run-Time Infrastructure) to
achieve interoperability. RTI implements all services of HLA
interface specification, and provides a range of service func-
tions which support interoperability of the federal members. It
provides support service program and separates implementa-
tion of simulation functions, as well as the simulation running
management and the underlying communication transport.

C. Related Work

In the past years, some effort has been made to simulate hy-
brid systems. Most of the research has concentrated on speci-
fying a unified methodology for hybrid stand-alone simulation.
The standalone simulation of hybrid systems means that the
systems are modeled and simulated by only one modeling tool
or methodology. For example, the SimEvents toolbox supports
MATLAB/Simulink to perform discrete event simulation, and
the Event Translation block that enables communication be-
tween SimEvents and other continuous operational blocks [8].
Ptolemy II is a computational framework for embedded sys-
tems that focuses on concurrent systems, and HyVisual is a
hybrid system modeling tool that provides a visual syntax [9].
AnyLogic is a tool for modeling and simulating hybrid systems
and a way of HLA support integration in the tool simulation
engine [10]. PowerDEVS proposes discrete event methods for
the numerical integration of ordinary differential equations
(ODEs) [11]. These approaches commonly propose the use of
a unique language for the specifications of the overall system,
which consists of different model types. Therefore, existing
models may not be reusable.

Some research has simulated models separately. Exam-
ples of integrated simulation methodology are expressed
by MATLAB/Simulink interfaces, such as CODIS [12] and
BCVTB [13], and is applied to most of the hybrid control
systems. CODIS is a framework for simulating continuous and
discrete systems, and it has a co-simulation bus to integrate a
SystemC model and a MATLAB/Simulink model. BCVTB is
based on the Ptolemy II software environment, and it integrates
with a MATLAB/Simulink model. These methodologies use a
specific interface between two models, such as Inter-Process
Communication (IPC) and function calls. The two models are
executed using such an interface in one process and tightly

coupled. Thus, certain limitations have existed on the simula-
tion of models developed in different modeling environments.

Agent-based simulations have recently become a popular
way to model and study complex multi-actor systems, com-
plementing the long-established system dynamics and discrete-
event simulation approaches [14], [22]. Agogino [15] uses
agent-based simulation for incremental enhancements of the
air-traffic management (ATM). Krozel [16] uses the Future
ATM Concepts Evaluation simulation Tool (FACET) to model
air-traffic in inclement weather. Gorodetsky [17] uses an agent-
based simulation for ATM within the air-space of large air-
ports. Hwang [18] uses simulation for verification of collision
avoidance algorithms. Finally, the AgentFly [19] system built
using the AglobeX Simulation platform aims to provide a
model of the entire air traffic.

Another simulation method consists of the interoperation
between discrete event system models and continuous system
models using HLA/RTI. The models are spatially separated ex-
plicitly. In a few studies, the HDEVSimHLA [20] framework
provides an HLA/RTI interface for interoperating the DEVS
models and the MATLAB/Simulink models. The framework
uses the time management service of HLA/RTI for time
synchronization between heterogeneous models, and it uses
the analog-event and event-analog functions for data exchange.
In addition, AnyLogic [21] and MATLAB provide HLA/RTI
interfaces as a package of the application. Developers have to
use the HLA support modules and implement new interface
codes in each model. This interoperation methodology is most
efficient method for reusing existing models and modeling
systems in different environments.

III. THE FRAMEWORK FUNCTIONALITIES

Figure 2 shows a functional view of the proposed frame-
work. It provides basic functionalities at system-level, and
services at user-level accessed by special API and GUI for
configuring and managing the entire simulation process.

At system-level the involved logical components are:
• Simulation Manager - It is enabled to configure, manage

and monitor the process of hybrid simulation. It allows
to define the system behavior in terms of simulated
interactions between the involved subsystems, that best
identify the simulated application scenario. It interfaces
with the Configuration Manager to offer its capabilities
at user-level in order to operate on the simulation process
at real-time.

• Time/Event Manager - In order to simulate distributed
environments, it is necessary that the individual involved
components perceive the progress of time in a uniform
manner, regardless of their world of origin (real, em-
ulated, simulated). Time/Event Manager is responsible
for the advancement of time that should be transferred
to the real and emulated components downstream of
an alignment to the simulation time which, therefore,
constitutes the reference variable. The progress of time
between simulated and emulated components is based on



Fig. 2. Functional view of the proposed framework.

events. To be successful in sharing among the various
components are implemented wrappers for the real sys-
tems, which will be waiting for specific events received
by the involved components, and interact with them
for the time progress. To enable full synchronization of
all components, Time/Event Manager is responsible for
receiving all the time events by simulators and select
the smallest non-negative value, which is sent to all
components and wrappers as the actual time to run.

• Data Distribution Manager - It manages the interaction
between the parties in the context of simulation process,
which requires the constant exchange of information
between the components involved in the simulation, for
the distribution data and synchronization information.

• Network Emulator - Given the nature of network-centric
systems, it is adopted an emulated network infrastructure
in order to reproduce reality with a high degree of
verisimilitude. The service is implemented by emulation
techniques based on virtualization technologies.

• Virtual Environment Manager - This component is en-
abled to dynamic deployment, management and monitor-
ing of virtual resources necessary for implementation and
orchestration of the local testbed. The virtual environment
manager exposes its functionality to the Configuration
Manager, through a dedicated interface for configuring
virtual infrastructure resources by the end user.

At user-level specific interfaces are provided to configure
the simulation process for both its static behavior (i.e., at the
architecture level) and dynamic (i.e., at the level of functional
process). Specifically, the user through descriptors can de-
scribe the structure of exchanged data and the interconnections
of the simulated components. This descriptors are provided by
the Configuration Manager to the Simulation Manager, at the
system-level, in order to realize the connection between the
components according to user requirements. Similar operations
can be performed to describe exchanged data, interactions and
synchronization among the subsystems. Specific interfaces are
provided to configure the virtual infrastructure.

IV. APPLICATION OF HLA IN THE SIMULATION
PLATFORM ENGINE

The proposed simulation platform aims to provide an ex-
pandable hybrid simulation environment, which allows to in-
tegrate and make interoperable different models of simulation.

As a framework for advanced distributed interactive simula-
tion, HLA meets the needs of the proposed simulation platform
engine, such as software re-usability, interoperability and
extensibility of large-scale systems. HLA provide standardized
guidance for development of simulation engine for large-scale
critical systems.

Therefore, according to the architecture (HLA) framework,
the Simulation Manager provides mechanisms for specifying
the exchange of data and coordination among members of
the federation. It uses a common, standardized formalisms for
describing the capabilities of potential federation members.
In particular, the subsystem (federate) to be simulated are
modeled according to the HLA object model. Each federation
member is represented by an HLA simulation object model
(SOM), whereas the iterations among the federates is described
by the federation object model (FOM). SOM is a specification
of the types of information that an individual federate can
provide to HLA federations and the information that an
individual federate can receive from other federates. FOM
is a file that contains a description of the data exchange in
the federation, for example the objects and interactions that
will be exchanged. This can be seen as the language of the
federation. During a federation execution, all exchange of
FOM data among federates shall occur via the RTI. Moreover,
RTI specifies a group of the interface services to support
members of the federate in accordance with the provisions
of the FOM. Federates shall use these standard interfaces to
interact with the RTI.

In order to be able to correctly exchange simulation data
among federates that evolve according to a different temporal
model (real time, emulated, and simulated), the Time/Event
Manager exploits the RTI to coordinate how fast the simulators
advance logical or scenario time in which the correct delivery
of data is based on time stamped. Moreover, it allows to define



synchronization points that enables the members of the feder-
ation to coordinate when they have reached a certain state, for
example, when they are ready to start the simulation of the
next phase of a scenario. Finally, in the federation, the model
of data exchange is implemented by the Data Distribution
Manager by exploiting the publish/subscribe paradigm offered
by the RTI.

The Real-Time Infrastructure is based on PoRTIco, which
is an open-source cross-platform HLA RTI implementation.
PoRTIco is a modularity and flexibility platform, which pro-
vides a production grade RTI environment that can support
continued research and development.

A. Scalable Large-Scale Simulated Architecture

According to the HLA standard, the RTI system uses a
centralized manager to provide the RTI services, such as join-
ing of federates, data exchange, synchronization of federates,
publishing/subscription management, etc. On the other hand,
in a complex large-scale simulation, with a large amount
of federates like that presented in Sec. II-A, a centralized
Simulation Manager would tend to be overloaded because of
busy processing the requests of the federates, degrading the
simulation performance.

For this reason, we design a multi-layer architecture. Specif-
ically, federates are partitioned into several groups. Each group
is managed by a local Simulation Manager. All Simulation
Managers cooperatively manage the execution of the whole
federation. In particular, in order to coordinate the federation,
each Simulation Manager needs to synchronize information
with each other when states update. For example, when a
federate publishes an object class, the corresponding local
Simulation Manager will synchronize this information with
other Simulation Managers. We assume that, each Simulation
Manager can communicate with each other.

When a federate joins to a local Simulation Manager, the
RTI system must assign to the federate a unique ID in the
simulation environment. Therefore, in order to get a globally
unique ID in such distributed architecture, we use a two
layer ID assignment scheme [23]. In particular, the Simulation
Manager assigns to the requester federate, a pair of numbers of
the form [Manager ID, Federate ID], where the Manager ID
is the ID of the local Simulation Manager, whereas the
Federate ID is a unique ID in the group of the local Simulation
Manager. After the assignment process, the local Simulation
Manager broadcasts the ID to other Simulation Managers, thus
each Simulation Manager can know that a new federate has
joined the federation.

The first Simulation Manager created in the federation
becomes the master, and it will be assigned to ID 0. The
other Simulation Managers created after master, in the same
federation, will become slave with ID starting from 1. To
generate Federate ID for each federate, every Simulation
Manager maintains a local federate ID counter starting from 1.

Moreover, when a federate requests the RTI services, the
message has to be multicast to federates which are interested
in this event. The multicast operation consists of the following
steps. When the source federate sends the message to a feder-
ate of the same group, the local Simulation Manager becomes
the source, which determines the federates that will receive
the message according to the publish/subscribe relationship.
If the message is directed to a federate of another group,
the local Simulation Manager analyzes the Manager IDs of
the destination federates and finds the destination Simulation
Managers that manages the destination federates. The local
Simulation Manager sends the message to each destination
Simulation Manager. Every destination Simulation Manager
determines the local federates which will receive the message
according to the publish/subscribe relationship. The multicast
from the destination Simulation Manager to the destination
federates in different groups can be done in parallel.

Finally, in order to coordinate the execution of the simu-
lation processes with large amount of federates, we use the
following synchronization schema:

• Step 1: In each group, the federates start the operation
of synchronization. After the federates in a group finish
the synchronization, the federate with the smallest Feder-
ate ID will notify the Simulation Manager that the local
synchronization is done.

• Step 2: The Simulation Managers start the operation of
synchronization after they receive the notification from
their local federates. When the Simulation Managers
finish the synchronization, all federates are synchronized.

• Step 3: Finally, each Simulation Manager triggers the
callback to the federates in its own group.

V. NETWORK EMULATION ENGINE

According to the commission of the European Communi-
ties, both ATM and VTS systems can be considered Critical
Infrastructures, with particular reference to the transportation
category [24], [25]. Such systems rely on a distributed organi-
zation, and consist in interconnected heterogeneous infrastruc-
tures usually spread over national areas. Both kind of systems
are bound by strong international safety constraints to ensure
24-hours/365-days business-continuity.

Recent studies concerning the ATM field, highlighted a
remarkable increase of air traffic in Europe, confirming in such
a way the need to adopt new technologies and approaches for
the design and implementation of innovative ATM systems.
The Single European Sky ATM Research (SESAR) [26] stands
for the most effective response of the ATM community to
the aforementioned needs/challenges: within the European
research program, new ATM operational concepts have been
introduced to allow the management of the estimated ATM
throughput. Concerning in particular the management of in-
formation, those concepts claim to implement a strong co-
operation among the different ATM actors to allow shar-
ing of relevant procedures, information, and infrastructures,
through SWIM, the System Wide Information Management



unit designed under the SESAR Research Program. In order to
support SWIM and other new operational concepts, an hetero-
geneous IPv4/6 network backbone namely the Pan European
Network Services (PEN), has been built up to cover the whole
European area.

The network emulation concept plays a key role in the
framework we propose. Realizing complex Wide Area Net-
work (WAN) scenarios in line with the real ones, requires the
adoption of a Network Emulation module. We investigated
and evaluated a number of open source tools and projects
in order to select the more suitable for our framework [27]–
[30]. After an accurate comparison we selected the Common
Open Research Emulator, namely CORE [31]. In addition to
a number of common capabilities for a network emulation
module, CORE is able to run: (i) over a guest Operating
System in a Virtual Machine, allowing in such a way the
adoption in Cloud Computing platform implementing the IaaS
approach; (ii) in conjunction with the ns-3 Network Simulator.
On the other hand, aiming at increasing flexibility on the
management of the Data Link level in our IaaS platform,
we introduced the OpenvSwitch kernel module (OVS) [33],
that stands for one of the major solutions for the Local
Area Network (LAN) emulation. We chose OVS since it
supports the Open Flow protocol [34], an implementation of
the Software Defined Networking (SDN) paradigm, which can
be considered as a new way of thinking about the network. The
framework we propose relies on the aforementioned tools. The
adoption of CORE and OVS allow us to integrate real VTS and
ATM subsystems into an emulated network environment, and
to reproduce a relevant number of real operational scenarios.

VI. THE CLOUD INFRASTRUCTURE

The proposed framework allows the deployment of simula-
tion and emulation instances in a virtual cloud environment.
In particular, the simulation cloud infrastructure is composed
of a number of virtual nodes. Each federate is assigned to one
or more cloud nodes on the implementation. Therefore, the
Virtual Environment Manager is enabled to monitor real-time
allocation of resources (by Nagios monitor services [32]), and
to optimize dynamically the allocation of resources to deal
with unexpected overload of the simulation process.

To this aim, a private cloud IaaS has been realized by
means of the OpenNebula [35] open-source technology. Born
as a research project in 2005, with the main purpose of
designing and implementing an efficient and scalable man-
agement platform for virtual machines (VMs) on large-scale
distributed infrastructures, the OpenNebula (ONE) package is
now a fully open-source software distributed under the the
Apache License Version 2.0. The ONE platforms assume that
the underlying physical infrastructure is built up in line with
the classical cluster-like architecture, where the hypervisor-
enabled nodes are managed by a so-called front-end node,
which is responsible for the centralized management and
monitoring of all ONE services.

The front-end node manages the whole life-cycle of clusters,
hosts, VMs, storage areas and other virtualized resources. The
aforementioned IaaS platform has been realized on the top of a
cluster consisting of 24 Dell PowerEdge M610 Blade servers,
each of which equipped with two Quad-core Intel Xeon E5420
2.50GHz processors, 16GB of RAM memory, and four Gigabit
Ethernet adapters. Two L3 Switching modules namely Dell
M6220 provide network connectivity to the nodes.

Two L3 Switching modules, namely Dell M6220, provide
the nodes, on which the Linux CentOS 6.4 is adopted, with
high-speed Local Area Network (LAN) interconnections.

VII. CONCLUSIONS

In this parer, we presented an open-source framework to
implement local testbeds, used to simulate large-scale critical
systems. In particular, the proposed framework allows to
perform (i) early analysis of design and development decisions
on real targets, (ii) to change and adapt taken decisions
according to system workload changes, and (iii) to plan and
verify the effectiveness of maintenance operation for foreseen
or already known faults, both spontaneous and malicious, thus
optimizing maintenance time and costs.

The presented solution will result in two main benefits (i)
a significant reduction of costs in all the system life phases,
and (ii) an increased system dependability and security level
to improve the software product quality. It can bring a deep
innovation into industrial design and development processes,
especially with respect to very large and critical systems.

In the future work, the framework will be validated on real
world industrial case studies in the field of VTS, as well as
training systems for several civil applications.

ACKNOWLEDGMENT

This work has been partially supported by the Italian Min-
istry for Education, University, and Research (MIUR) under
Project PON02 00485 3487784 “DISPLAY” of the public-
private laboratory “COSMIC” (PON02 00669).

REFERENCES

[1] A. Venticinque, N. Mazzocca, S. Venticinque, and M. Ficco. Semantic
support for log analysis of safety-critical embedded systems. in Proc.
of the 10th European Dependable Computing Conference (EDCC’14),
Newcastle, UK, May 13-16, 2014.

[2] IEEE Standard for Modeling and Simulation (M&S) High Level Archi-
tecture (HLA), Federate Interface Specification, Std 1516.2-2000. New
York: Institute of Electrical and Electronics Engineers, Inc.

[3] poRTIco RTI tool, available at http://www.porticoproject.org/index.php?
title=Main Page. Last update April 2013.

[4] IEEE Standard for Modeling and Simulation (M&S) High Level Archi-
tecture (HLA), Federation Development and Execution Process (FEDEP),
Std 1516.3-2003. New York: Institute of Electrical and Electronics
Engineers, Inc.

[5] LRIT - Long Range Identification and Tracking, available at:
http://www.imo.org/OurWork/Safety/Navigation/Pages/LRIT.aspx

[6] VMS - Vessel Monitoring System, available at:
http://ec.europa.eu/fisheries/cfp/control/technologies/vms/index en.htm

[7] AIS - Automatic Identification System, available at:
https://www.itu.int/rec/R-REC-M.1371/en

[8] M. Clune, P. Mosterman, and C. Cassandras. Discrete Event and Hybrid
System Simulation with SimEvents, in Proc. of the 8th International
Workshop on Discrete Event Systems, Jul. 2006, pp. 386-387.



[9] H. Zheng. Operational semantics of hybrid systems. Ph.D. dissertation,
Berkeley, CA, USA, 2007, adviser-Edward A. Lee.

[10] A. Borshchev, Y. Karpov, and V. Kharitonov. Distributed simulation of
hybrid systems with AnyLogic and HLA, in Future Gener. Comput. Syst.,
vol. 18, no. 6, pp. 829-839, 2002.

[11] E. Kofman, M. Lapadula, and E. Pagliero. PowerDEVS: A DEVSBased
Environment for Hybrid System Modeling and Simulation, School of
Electronic Engineering, Universidad Nacional de Rosario, Tech. Rep.
LSD0306, 2003.

[12] F. Bouchhima, G. Nicolescu, E. M. Aboulhamid, and M. Abid. Generic
discrete-continuous simulation model for accurate validation in heteroge-
neous systems design, in Journal of Microelectronicic, vol. 38, no. 6-7,
2007, pp. 805-815.

[13] M. Wetter and P. Haves. A Modular Building Controls Virtual Test
Bed for The Integration of Heterogeneous Systems. in Proc. of the 3rd
National Conference of IBPS (SimBuild), Berkeley, USA, Jul. 2008, pp.
69-76.

[14] A. Borshchev and A. Filippov. From system dynamics and discrete event
to practical agent based modeling: Reasons, techniques, tools, in Proc.
of the 22nd International Conference on the System Dynamics Society,
2004, pp. 25-29.

[15] A. Agogino and K. Tumer. Regulating air traffic flow with coupled
agents, in Proc. of the 7th international joint conference on Autonomous
agents and multiagent systems, vol. 2, 2008, pp. 535-542.

[16] J. Krozel and N. Doble. Simulation of the National Airspace System in
Inclement Weather, in Modeling and Simulation Technologies Conference,
2007, pp. 20-23.

[17] V. Gorodetsky, O. Karsaev, V. Samoylov, and V. Skormin. Multi-Agent
Technology for Air Traffic Control and Incident Management in Airport
Airspace. in Proc. of the International Workshop on Agents in Traffic and
Transportation, 2008, pp. 119-125.

[18] I. Hwang, J. Kim, and C. Tomlin. Protocol-based conflict resolution for
air traffic control. in Air Traffic Control Quarterly, vol. 15, no. 1, 2007,
pp. 134.

[19] D. ilk, P. Volf, M. Jakob, and M. Pchouek. Agents for Games and Simu-
lations, in Distributed Platform for Large-Scale Agent-Based Simulations,
Lecture Notes in Computer Science LNCS, vol. 5920, 2009, pp 16-32.

[20] S. Y. Lim and T. G. Kim. Hybrid Modeling and Simulation Methodology
based on DEVS Formalism, in Sunner Computer Simulation, Jul. 2001,
pp. 188193.

[21] A. Borshchev, Y. Karpov, and V. Kharitonov. Distributed simulation

of hybrid systems with AnyLogic and HLA, in Future Generation
Computing Systems, vol. 18, no. 6, 2002, pp. 829-839.

[22] R. Aversa, B. Di Martino, M. Ficco, and S. Venticinque. A simulation
model for localization of pervasive objects using heterogeneous wireless
networks, in Simulation Modelling Practice and Theory, vol. 19, no. 8,
2011, pp. 1758-1772.

[23] Ding-Yong Hong, Fang-Ping Pai, Shih-Hsiang Lo and Yeh-Ching
Chung. A Scalable HLA RTI System based on Multiple-FedServ Ar-
chitecture, in Proc. of the 12th International Conference on Computer
Modelling and Simulation, 2010, pp. 527-532.

[24] G. Gigante, F. Gargiulo, and M. Ficco. A semantic driven approach for
requirements verification, in Proc. of the 8th International Symposium on
Intelligent Distributed Computing (IDC’14), Madrid, Spain, 2014.

[25] G. Zazzaro, G. Gigante, E. Zaccariello, M. Ficco, and B. Di Martino.
Supporting development of certified aeronautical components by applying
text analysis techniques, in Proc. of the 8th International Conference
on Complex, Intelligent, and Software Intensive Systems (CISIS’14),
Birmingham, UK, 2014.

[26] SESAR - Single European Sky ATM Research, available at
http://www.sesarju.eu/

[27] [NISTnet - National Institute of Standards and Technology, available at
http://snad.ncsl.nist.gov/nistnet/

[28] KAUNET - Deterministic Network Emulation, available at
http://www.kau.se/en/kaunet

[29] [Dummynet- Network emulation tool, available at
http://info.iet.unipi.it/ luigi/dummynet/

[30] CORE - Common Open Research Emulator, available at
http://www.nrl.navy.mil/itd/ncs/products/core

[31] J. Ahrenholz, T. Goff, and B. Adamson. Integration of the CORE and
EMANE Network Emulators, in Proc. of the IEEE Military Communica-
tions Conference, Nov. 2011, pp. 1870-1875.

[32] W. Barth. Nagios System and Netwok Monitoring. William Pollock
Editor. 2008. ISBN 978-1-59327-179-4

[33] OpenVswitch - An Open Virtual Switch, available at
http://openvswitch.org/

[34] Mckoewn, Nick, et al. OpenFlow: enabling innovation in campus
networks. In ACM SIGCOMM Computer Communication Review, vol.
38, no. 2, 2008, pp. 69-74.

[35] OpenNebula, An user-driven cloud management platform for sysadmins
and devops, http://opennebula.org/


	Introduction
	Background and Related Work
	VTS Simulation Scenario
	High Level Architecture
	Related Work

	The Framework Functionalities
	Application of HLA in the Simulation Platform Engine
	Scalable Large-Scale Simulated Architecture

	Network Emulation Engine
	The Cloud Infrastructure
	Conclusions
	References

