Automatic Testing of software components for ATC

Gabriella Carrozza, Vittorio Manetti, Luigi Martin Petrella
SESM s.c.arl.
Via Circumvallazione esterna di Napoli, Giugliano in Campania, 80014, Naples, Italy
Email: gcarrozza,vmanetti,mpetrella@sesm.it

Abstract—The testing of software components is one of the
most expensive phases in the software development cycle, either
in terms of time as well as human effort. This is particularly true
for safety critical systems, for which making the execution of test
cases automatic allows reducing costs and improving software
quality from a dependability point of view. In this paper we
present a framework for the automation of testing procedures
for complex software systems with strict safety and quality
requirement, actually used in Air Traffic Control applications.

I. INTRODUCTION

Highly dependable software systems require intensive test-
ing campaigns, aimed to verify the functional aspects of
the produced code, as well as non functional requirements
which impact on software reliability significantly. Performing
software testing in such complex systems, not only in size and
complexity but also in terms of frequent changes and daily
releases, is not a trivial task especially when budget and time
constraints have to be respected.

Notwithstanding the clear benefits that automation strategies
and tools can bring, many companies find it difficult to
integrate testing automation into their processes due to the:

« high costs of the start up phases;

« the need for highly skilled personnel in charge of prepar-
ing testing environment and developing testing proce-
dures to be run automatically.

In this work we introduce a framework for automatic
testing of software components belonging to ASTERIX-based
surveillance systems.

The ASTERIX protocol has been developed and standardized
by the European Organisation for the Safety of Air Navigation
(EUROCONTROL) with the aim to ease the exchange of
surveillance information between and within countries. The
main users of such a Standard are the Air Traffic Control
(ATC) Centers: today almost all ECAC States are using this
data format in their ATC Centers.

Designed according to the black-box approach, the framework
we propose is capable of implementing automatic testing of
software components which are compliant with the ASTERIX
Standard. The framework allows to perform the execution of a
whole testing campaign requiring zero human work, obtaining
in such a way the following significant goals:

e reduce costs in terms of human resources and time
consuming;

« prevent not negligible errors that may occur when test
procedures and checks are completely human made .

The success of each single test case is determined through
the comparison between the expected and the observed behav-
ior of the System Under Test, where the expected behavior is a
function of the system state at time O and the test environment
(both coded in a XML file) on one hand, and of the well-
known application logic implemented by the SUT on the other.
The rest of this paper is organized as follows. Section II
briefly presents the main features of an ATC system and
introduces the ASTERIX Protocol, while Section III illustrates
a detailed description of the architecture we propose. Section
IV describes the real world surveillance system representing
the case study we used for the architecture validation, namely
the Multilateration System, and Section V proposes some con-
sideration about the outcomes we get from the experimental
campaign, as well as future works.

II. ATC SYSTEMS AND THE ASTERIX PROTOCOL

Air Traffic Control (ATC) systems are composed of coop-
erating computers hosting applications that deal with surveil-
lance and flight data (Flight Data Processing, Surveillance
Data Processing), and auxiliary services (Medium Term Con-
ict Detection, Recording and Playback, etc.) as well. Cen-
tral units are also connected to other external systems for
transmission/reception of ATC significant information, and to
controller working positions (CWPs) that are used to provide
a view of the environment scenario as well as of current and
planned data. ATC centers belonging to the same system are
often deployed over different cities in a given country, and
pre-operational platforms can be spread over several company
premises.

Since the Air Traffic volume is continuously increasing
and a high level of safety must be maintained, surveillance
mechanisms for ATC systems are always under constant
evolution. New-generation surveillance technologies are de-
veloped respecting the need to cohabit with current systems,
and considering that the information they generate must be
transmitted in a harmonized and efficient way.

Up to thirty years ago, every National Administration devel-
oped its own format for delivering radar data to Air Traffic
Control Centers. This implied a duplicate effort and made the
exchange of radar data across borders an issue, so, the need
for a common European data format became apparent.

ASTERIX (All purpose Structured Eurocontrol SuRveillance
Information eXchange) [6] is an ATM surveillance data binary
messaging format which allows transmission of harmonized
information among surveillance and automation systems. It

g—3d-p

Test Sessidn
Descriptor

Sessimm Peport

Session Manager

Test Manager

S 2

Driver

%
SUT
Configuration

Environment

Simulation

System

1

Fig. 1.

defines the structure of the data to be exchanged over a
communication medium, from the encoding of every bit of
information up to the organization of the data within a block of
data, without any loss of information during the whole process.
Concerning the ISO/OSI Standard, ASTERIX refers to the Pre-
sentation and Application layers; transmission of ASTERIX
coded surveillance information can make use of any avail-
able communication medium. Aimed at simplifying the data
exchange among heterogeneous applications, ASTERIX spec-
ifies minimum requirements at the Application level, making
it possible the communication between two different systems
(even located in different countries) which is based on a core
of commonly used surveillance related data transferred by the
ASTERIX Presentation layer.

III. DESIGN OF THE PROPOSED ARCHITECTURE

The framework architecture we propose consists in a num-
ber of software modules that handle all the stages of test cases
execution, namely:

I. Deployment and initialization of all software compo-
nents that are needed to build the testing environment,
i.e. the System Under Test (SUT) and the Environment
Simulation System (ESS) which provides a mock up for
the real environment that interact with the SUT (e.g. hw
devices, sw agents);

II. Control and monitoring of the testing scenario during
execution;

III. Capture and analysis of results, validation of the test
case.

This allows the execution of multiple tests organized in test
suites, with reduced or zero human work. In fact, interaction

ESS
Configuration

B

Oracle

ODutput scenario

Result
Processor

FILTER

ATX Sniffer

1

View of the Porposed Architecture

with an operator is only required before the start of the test
session and subsequently when it is finished, providing a sort
of bridge on execution: no matter how long does it takes to
run the test suite and what happened during test case, operator
is relieved on being present.

The entry point for the framework is the Session Manager
component, which is the only component that interact with
the operator.

The main framework input is a test session descriptor, which
is an XML document containing:

I. Information about components to be deployed, including
specific configuration options;

Required behaviour and logic state of SUT and ESS
during test execution.

IL.

For every test case, the Session Manager instantiates a
Test Manager: according to required and disposable hardware
resources, we can start one or more test cases at the same time.
The Test Manager deploys SUT, ESS and all other framework
components as depicted in Fig. 1.

Both SUT and ESS are controlled by DRIVER modules which
replace interaction with human operator: they change SUT
and ESS behaviour, and their operational states by sending
appropriate timed commands as specified in the test session
description. Drivers can interact with SUT/ESS in two ways:
via their front-end (if one) e.g. command shell, or remotely
by sending commands through network using backdoors.

Since we are focusing on ASTERIX based systems, the main
communication infrastructure is a LAN/WAN: this peculiarity
can be exploited to capture systems output simply by sniffing
the network. For this purpose, an ASTERIX Sniffer is de-
ployed: this component listens over LAN/WAN during all the

v
\
v

1
\

((((P)) St

$ EAED

At=t2-t1((((l>))) S2 5 CP

Ea . $E3

Fig. 2. Multilateration System

test case and catches all ASTERIX messages. These messages
are filtered to drop all irrelevant ASTERIX categories for the
test, and then are passed to the ATX Parser which provides
a synthetic representation of the observed scenario. This
information is combined with the test case oracle, which is
obtained from two kind of information:

a) the ESS configuration, which set WHAT is the scenario
that will be simulated, and so is expected to be perceived
by SUT

b) the SUT configuration, which specifies HOW the per-
ceived scenarios shall be interpreted

The Result Processor component compares expected and

observed results applying specific rules to establish if the
distance between them is acceptable or not, and to establish
the overall result for the test case (e.g. the distance between
expected and observed variable is beneath some threshold).
The Result Processor generates a report containing test results
and push it to the Session Manager which combines all report
to generate a human readable Session Report that contains:

I. Single test case results;

II. Error and significant event logs;

III. Overall test session outcome.

IV. CASE STUDY: MULTILATERATION

An experimental session to validate the performance of the

proposed framework has been implemented using a Multilat-
eration system (MLAT) [5] as use case (Fig. 2), since this kind
of ATC system relies upon the ASTERIX standard.
Multilateration is a co-operative independent surveillance tech-
nology: it makes use of signals transmitted by an aircraft to
calculate the aircrafts position.
MLAT is an enabling technology that enhances the provision
of ATM in a variety of applications, from radar-like air traffic
control purposes to enhanced situational awareness of surface
movements, and can be combined with other surveillance
systems such as radar and ADS-B, to improve the total
surveillance picture.

The processing of aircrafts signals on the ground requires a
number of elements, so a complete MLAT system consists of
the following components:

o A transmitting subsystem that includes interrogation mes-
sage generation and transmission function;

o An optional Intelligent Interrogation process that deter-
mines whether an MLAT interrogation is required;

o A receiving antenna array subsystem that receives the
transmissions from the target and timestamps receipt at
each antenna;

o A Central Processor (CP) that calculates and outputs the
MLAT tracks from the time difference of arrival (TDOA)
of the signal at the different antennas.

The TDOA between two antennas corresponds, mathemat-
ically speaking, with a hyperboloid (in 3D) on which the
aircraft is located. When four antennas detect the aircrafts
signal, it is possible to estimate the 3D-position of the aircraft
by calculating the intersection of the resulting hyperbolas.
When only three antennas are available, a 3D-position cannot
be estimated directly, but if the target altitude is known from
another source, then the target position can be calculated. This
is usually referred to as a 2D solution. With more than four
antennas, the extra information can be used to either verify
the correctness of the other measurements or to calculate an
average position from all measurements which should have an
overall smaller error.

All messages between targets, ground stations and CP, are
exchanged using the ASTERIX data structure, and the CP im-
plementation at our disposal was shipped with its own Sensor
Simulator module, which provides a mock up of the complete
ground environment (receivers, transmitters, communication
infrastructure). Therefore, the CP component is suitable to
be tested using the proposed framework after an appropriate
tuning action.

First of all, we customized the test session descriptor adding
these information for every test case:

I. Test duration;
II. Type of verifications to perform;
III. Command to be executed on the CP and the Sensor
Simulator;
IV. Rules and thresholds to be applied by the Result Pro-
Cessor.

Given that natively both the CP and the Sensor Simulator
were capable to receive runtime commands only by shell, we
decided to opened backdoor exploiting some communication
modules without compromising reliability and performance,
but allowing the respective DRIVER to interface with them via
LAN through an UDP channel and enabling remote control.
Test case were focused on the detection of the aircraft position,
therefore we considered ASTERIX category 010 and 020, and
filtering policy were configured to drop all other messages.
Moreover, we provided custom parser to extract and store the
ASTERIX items involved in the evaluation, i.e. 010/042-091-
140-250 and 020/042-140-250.

Configuration files for the CP and the Sensor Simulator include

information respectively about multilateration type and options
(e.g. 2D or 3D multilateration), and information about the sim-
ulated scenario, i.e. targets definition and simulated position;
combining these information we get detailed indication about
the expected outcome of the multilateration process performed
by the CP. Concerning the results processing, the following
two rules are applied:

I. All and only simulated targets should be observed;

II. Defining error the mean difference between the simu-
lated and the computed position of targets, such an error
must be lower than a predefined threshold, that may vary
depending on the considered test cases.

V. CONCLUSION AND FUTURE WORKS

A whole qualification test session for the CP component can
be completely automated by using the framework we propose,
after implementing a proper customization as we just outlined.
Traditional testing procedures for the CP component require
an operator to be present during each test execution in order
to:

o run commands on CP and Sensor Simulator shell;

« observe the plot of calculated targets on auxiliary display

terminal to verify its stability and correctness.

Furthermore, at the end of every test case the operator
should inspect the output logs generated by the CP to validate
the results.

It is quite clear that the implementation of traditional testing
procedures is very expensive in terms of human resources and
time consuming, and mostly important, it may be affected by
human errors.

Results from the experimental session lead us to confirm
that executing test campaigns with automatic tools allows
to prevent not negligible errors that may occur when test
procedures and checks are completely human made, improving
the quality of the released software products. We claim that
the framework allows to perform testing campaigns in half
the time if compared to manual execution, and with a very
reduced human effort (limited to start up and configuration
phases). Last, but very important, is the chance to perform
testing starting from the very early development phases easily,
thus improving product quality even in terms of requirements
and design. The framework is still under development for
improving its performances. Its main feature lies into the fact
that it is not linked to the specific SUT: rather, it can be easily
customized for any ASTERIX based system.

REFERENCES

[1] A. Cervantes, Exploring the Use of a Test Automation Framework,
IEEEAC paper #1477, version 2, updated January 9, 2009

[2] L. Nagowah, and P. Roopnah,AsT - A Simple Automated System Testing
Tool, IEEE, 978-1-4244-5540-9/10, 2010

[3] G. Galati M. Gasbarra P. Magaro P. Marco L. Mene and M. Pici, New
Approaches to Multilateration processing: analysis and field evaluation.
In 2006 European Radar Conference, volume 9, pages 116119. Ieee, Sept.
2006.

[4] G. Galati, M. Leonardi, P. Magar, and V. Paciucci (2005, October). Wide
area surveillance using SSR mode S multilateration: advantages and
limitations. In Radar Conference, 2005. EURAD 2005. European (pp.
225-229). IEEE.

[S] N. McFarlane, Generic Safety Assessment for ATC Surveillance using
Wide Area Multilateration, Helios Technology. WAM Safety Study &
Surveillance Generic Safety. Eurocontrol. Bob Darby. November 9, 2007.

[6] Eurocontrol, All Purpose Structured. RADAR DATA EXCHANGE Part 1
All Purpose Structured Eurocontrol Radar Information Exchange (AS-
TERIX).

