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Summary. In the last few years, many emulation systems have been developed
to help researchers evaluate the effectiveness of new protocols and applications in
realistic network scenarios. NEPTUNE (Network Emulation for Protocol TUNing
and Evaluation) is a flexible and scalable system developed at University of Napoli
for the emulation of different network scenarios by means of a cluster of workstations.
Setting up an emulation experiment in a cluster-based system requires, firstly, the
ability to map virtual resources requested by an experimenter onto available physical
resources and, secondly, the ability to exert a precise control over the allocated
physical resources. These two requirements have much in common with resource
management issues already addressed by the Grid computing community. Hence,
we decided to exploit the Virtual Workspace concept at the foundation of the design
of the NEPTUNE architecture. In this paper, we illustrate the peculiar virtualization
requirements of a cluster-based emulation system and discuss how a Globus Virtual
Workspace based on Xen virtual machines can be used as the basis for implementing
a distributed network emulation system.

1 Introduction

Design validation and performance evaluation of new distributed applications
and protocols is usually performed either by means of real testbeds or through
simulation. Simulation presents unquestionable merits [1], such as the possi-
bility to simulate large scale networks in a controlled and repeatable environ-
ment; yet, it has some drawbacks, such as the use of ad-hoc implementations
of network protocols and applications and the difficulty of modelling low-level
implementation details that may affect a system performance (e.g. [2]). An
alternative approach to simulation consists in reproducing the system under
test in a real testbed: sets of computers, communication devices, and other re-
sources that either reproduce real-world networks or are overlaid upon the real
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Internet. Large scale geographic testbeds, like PlanetLab [3], have been built in
the last few years, thanks to cooperative effort of several research institutions.
Nowadays, they represent a valuable tool for testing new planet-scale services,
like Content Distribution Networks. Nonetheless, the testbed approach still
presents some limitations. The main limits of experimental testbeds are 1) lim-
ited scalability, 2) limited software reconfigurability, 3) difficulty to reproduce
the heterogeneity of the real Internet, both in terms of terminal capabilities
and networking technologies (e.g. PlanetLab hosts are quite homogenous in
terms of hardware configuration, and they have more powerful CPUs and
faster Internet connections than a typical end-user system). Thus, results ob-
tained on an experimental testbed, even a large scale one like PlanetLab, may
not necessarily be representative of the behavior of a real-world system. To
overcome these limits, in the last few years several emulation systems have
been developed to evaluate the effectiveness of new protocols and applications
in more heterogeneous, controllable and realistic network scenarios.

The basic idea behind network emulation is that simulated network el-
ements should be capable of interacting with real network components and
applications. A fundamental difference between simulation and emulation is
that while the former runs in a virtual simulated time, the latter must run
in real time to allow coexistence of both simulated and real network elements
[4, 5]. To support network emulation, several approaches have been pursued.

For simple networking experiments (e.g. testing new multimedia applica-
tions under variable network conditions) the dummynet tool is a practical and
simple solution [6]. Dummynet works by simulating the effects of finite queues,
bandwidth limitations and communication delays in a single workstation.

Another approach consists in extending a packet-based network simulator
with some emulation facilities, so that it can be fed in real-time with real traffic
traces directly extracted from a real network. The well-known ns2 network
simulator, for instance, has been extended to support emulation [7].

The new frontier of network emulation is cluster-based network emulation.
These systems bring together a large number of network components (links,
switches, PCs that are interchangeable as hosts, routers, or WAN emulators),
in a common facility that can be remotely accessed by users through a web in-
terface. They support flexible configuration, so that users may perform exper-
iments on a variety of distinct network topologies with programmable delays
that emulate the latencies of wide-area networks. Through virtualization and
space-sharing that fully isolates simultaneous experiments, they efficiently use
cluster resources.

Maybe the most complex cluster-based emulation system developed so
far is Emulab [4]. Emulab is a free-for-use, Web-accessible, time- and space-
shared, reconfigurable network testbed, providing integrated access to a wide
range of experimental environments.

NEPTUNE is a cluster-based emulation system developed at University
of Napoli. Even though many design assumptions made for NEPTUNE were
borrowed by Emulab, since from the early stages of design, NEPTUNE has
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assumed virtualization as a key technology for realizing complex networking
scenario. The goal of this paper is to illustrate the importance of virtual-
ization for network emulation and the role of GRID execution management
mechanisms in NEPTUNE.

The rest of the paper is organized as follows. In Section 2 we briefly de-
scribe different approaches for resource virtualization, and, with more details,
the Xen para-virtualization system. In Section 3 we describe the general archi-
tecture of NEPTUNE. In Section 4 we describe the importance of virtualiza-
tion for cluster-based Network Emulation systems. In particular, we describe
two different kinds of resource multiplexing techniques: one for computational
resources (that we call node multiplexing) and another for communication re-
sources (that we call link multiplexing). In this section we also describe the
virtualization techniques we adopted in NEPTUNE to solve the node multi-
plexing and the link multiplexing problems. In Section 5, we describe the use of
Grid Virtual Workspaces as a new instrument for dynamically deploying Xen
Virtual Machines in the NEPTUNE network emulation system. Finally, we
describe the current state of the implementation and present some concluding
remarks.

2 Resource Virtualization techniques

The main purpose of virtualization techniques is to hide the physical charac-
teristics of computing resources from the upper layers of a computing system.
One of the reasons for virtualization is making a single physical resource ap-
pear to function as multiple logical (or ”virtual”) resources.

There are many approaches to virtualization. Virtualization can be applied
to single physical resources of a computing system (e.g a single device) or to
a complete computing system. When applied in this latter sense, (a.k.a. Plat-
form Virtualization), virtualization allows the coexistence of multiple ”Virtual
Machines” in the same computing ”host”.

Platform virtualization, is implemented by means of an additional software
layer, called Virtual Machine Monitor (VMM) (or Hypervisor ), that acts as
an intermediary between the system hardware resources and the Operating
System. The so called full virtualization approach implements in software a
full virtual replica of the emulated system’s hardware, so that the operating
system and user applications may run on the virtual hardware exactly as
they would in the original system. An alternative, more recent, approach is
called paravirtualization and consists in implementing a software interface that
is similar but not identical to the underlying hardware. Such an approach
requires the operating systems to be explicitly ported to run on top of the
VMM.

Xen [8] is a paravirtualization system developed at the University of Cam-
bridge. Xen provides a Virtual Machine Monitor for x86 processors that sup-
ports execution of multiple guest operating systems at the same time.



4 R. Canonico, P. Di Gennaro, V. Manetti, G. Ventre

3 The NEPTUNE emulation system

NEPTUNE is a cluster-based network emulation system developed at Uni-
versity of Napoli [9] that can be used to assess new networking technologies
and protocols (e.g. to test new QoS routing protocols and Traffic Engineering
schemes in MPLS-based networks), as well as new distributed applications
(e.g. multimedia peer-to-peer applications).

At the time of this writing, the NEPTUNE emulation system runs on a
cluster of workstations consisting of 28 biprocessor nodes ProLiant DL380,
each equipped with two Intel Pentium IV Xeon 2.8 GHz CPUs, 5 GB of PC-
2100 RAM, one 100 Mbps Ethernet NIC and one Gigabit Ethernet NIC. Each
node is equipped with a 34.6 GB SCSI disk. A 700GB centralized disk array
is also available to the whole cluster. The cluster nodes are connected each
other through a set of 100/1000 Ethernet switches.

One of the cluster nodes, the NeptuneManager, provides the fundamental
services (like dhcp, dns, tftp, nfs, and so on) needed to properly configure at
boot-time the physical cluster nodes and the virtual machines participating
to the emulation experiments. A web-based system is used to manage and
configure the whole system.

Setting up an emulation experiment in NEPTUNE consists primarily in
defining a “virtual topology” made of emulated intermediate network nodes
(routers) and end-system nodes (user terminals). A testbed mapping module
(much like the one used in Emulab [10]) is responsible of mapping the “vir-
tual” topology onto the cluster physical resources. Virtual network nodes are
implemented in NEPTUNE as Xen virtual machines. The main advantage of
the use of virtualization techniques to instantiate virtual network nodes is the
significant reduction in equipment and management costs. Virtual machines
allow the creation of customized execution environments, where customization
consists in selecting the operating system, installed software packages and user
access policies. Furthermore, virtual machines can be paused or shut down at
any time, and later resumed, even at a different physical location (migration).
Finally, virtual machines support fine-grained mechanism for resource usage
control, allowing to define (and even change at run-time) precise limits to the
the amount of usable RAM and disk space.

In NEPTUNE, a complex networked system is reproduced by allocating
multiple “virtual” network nodes (both routers and end systems) on each of
the cluster physical nodes.

4 Use of virtualization in emulation systems

In a typical cluster-based network emulation system, users submit to the sys-
tem an experiment request. An experiment request contains a “virtual” net-
work description to be reproduced with the available cluster resources. An
experiment description usually contains at least the following information:
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• the “virtual” network topology, including a list of relevant parameters for
each of the nodes and links;

• operating systems and software packages to be loaded in each of the em-
ulated nodes.

When the experiment is activated (swap-in), a system module maps the
logical topology of the experiment onto actual testbed hardware, loads the
requested operating system and software onto the allocated devices and es-
tablishes the network links.

Traditional network emulation systems use conservative resource alloca-
tion and map the emulated “virtual” nodes onto dedicated PCs and emulated
links onto switched ethernet links, thus severely limiting scalability. Nowa-
days, with increasing computational power made available at low-cost, it is
possible to exploit virtualization techniques to map multiple “virtual” nodes
on a single CPU. There are many good reasons for doing that. For exam-
ple many applications need to be evaluated on large topologies, yet they are
not resource hungry. Moreover, multiplexing provides a more efficient use of
communication resources as the bandwidth of the emulated geographic links
is usually much less than that available in the local interconnect used in a
modern cluster [11]. These reasons motivate the use of small-scale clusters to
emulate medium/large size topologies in a inexpensive manner [12].

4.1 Node Multiplexing

Node multiplexing is the problem of emulating more than a network node
on the same physical cluster node. This problem is inherently a problem of
machine virtualization, as it has been described in section 2. Hence, it can
be solved with one of the many available virtualization technics. Aspects to
be taken into account to select the proper one for a cluster-based emulation
system are efficiency, scalability, flexibility, isolation, and operating system
customization.

In Emulab, node multiplexing is implemented by means of a modified
version of FreeBSD Jail. In NEPTUNE we decided to implement node multi-
plexing by means of Xen. We decided that Xen suits our needs because:

• it is highly scalable;
• it potentially supports different kinds of Operating Systems;
• it is transparent to the applications running in the virtual machines;
• it provides good isolation among different virtual machines running con-

currently;
• it supports virtual machine migration, allowing dynamic re-allocation of

experiments on the cluster nodes;
• it implements different optimization techniques in the communication

mechanisms, allowing good communication performance among virtual
machines implemented within the same physical node.
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4.2 Link Multiplexing

The nodes of a cluster are connected by means of one or more switched Eth-
ernet LANs. Each cluster node may be equipped with one or more (Giga
or Fast) Ethernet NIC. These NICs, in turn, may be connected to the same
switch or to different switches. In theory, it would be possible to connect the
cluster nodes in pairs, by means of crossed Ethernet cables, so to physically
reproduce the desired topology. However, such a solution is not viable, for
at least two reasons. Firstly, because changing the network topology would
be extremely impractical, time-consuming and error-prone. Secondly, because
this would make it impossible to emulate network topologies with a number
of links greater than half of the number of Ethernet NICs. Hence, practical
solutions require to emulate multiple point-to-point connections on top of one
or more shared Ethernet LANs. This is usually performed by means of Vir-
tual LANs (VLANs) [11], [13]. Such a solution is implemented by properly
configuring the Ethernet switches and does not require any configuration and
processing in the cluster nodes. This makes, however, the system configuration
software extremely dependent on the characteristics of the network switches.

For the above reasons, we decided not to use VLANs in NEPTUNE and
we adopted two network device independent solutions for link multiplexing:

• IP-aliasing and destination MAC address filtering
• Virtual NICs

Fig. 1. A virtual network with IP aliasing and destination MAC filtering

The first technique consists in activating multiple ”aliased” logical net-
work interfaces for each of the node’s NICs. Figure 1 shows a virtual network
composed by 5 nodes connected by means of 6 ”virtual links”. Each of these
links is associated to a point-to-point IP subnet. The IP-level network topol-
ogy is implemented by setting static IP routes. To emulate links of assigned
capacity, outgoing packets are handled by the CBQ scheduler implemented
in the Linux Traffic Control kernel module. Outgoing packets are assigned to
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the corresponding queue by the ebtables kernel module, that marks packets
according to the MAC address of the destination node.

The second technique is implemented by exploiting the virtualization
mechanisms implemented in Xen. Every time a new virtual machine (domU
in Xen terminology) is instantiated, Xen creates new ”connected virtual eth-
ernet interfaces”, with one end of each pair within the domU and the other
end within the Hypervisor (dom0 in Xen terminology). Virtualised network
interfaces are given different Ethernet MAC addresses. These addresses may
be either assigned at random in the range of unicast ”locally assigned” MAC
addresses (i.e. addresses of the form XY:XX:XX:XX:XX:XX, where X is any
hexadecimal digit, and Y is one of 2, 6, A or E) or they can be assigned a given
value at domU creation time. When using such an approach, it is not necessary
to share a single interface in order to emulate several links, since each virtual
network interface is assigned to one of the two ends of an emulated link in the
virtual topology. Figure 2 shows a virtual network in which link multiplexing
is implemented by means of this latter technique. The figure shows how a
network of six nodes has been emulated by activating three virtual machines
in Physical Host A and three virtual machines in Physical Host B. Six virtual
links have been created, by properly instantiating one, two or three virtual
ethernet interfaces in each of the virtual machines and configuring their IP
addresses so to create six different point-to-point IP subnets.

VM1 VM2 VM3

Physical Host A - VMM1

eth0

eth1

eth2
eth0

eth0

eth1

Real NIC

Physical Host B - VMM2

Real NIC

VM2 VM3VM1

Fig. 2. A virtual network implemented by means of virtual machines

In order to assign a given capacity value to each of the emulated links,
a queuing discipline and a traffic shaper are associated to both ends of an
emulated link. We refer to this technique as the one link per interface tech-
nique. Figure 3 shows with more details the network configuration of a host, in
which two Virtual Machines (domU 1 and domU 2) have been setup and five
different links have been emulated, three of them connected to node domU 1
and the remaining two of them to node domU 2.
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physical machine

xenbr0 domU_1

domU_2

dom0

real NIC

queuing discipline

link1

link2

link3

link4

link5

Fig. 3. one link per interface technique

5 Network Emulation as an on-demand Grid application

Resource allocation is a key aspect of shared testbed infrastructures such as
PlanetLab and Emulab [14]. While designing our system, we recognized that
many resource management issues have already been addressed by the GRID
community.

Traditional cluster-based Network Emulation systems have based their
design on very specific and customized hardware, in order to reproduce the
behaviour of real-life communications equipments.

Grid computing, on the other hand, is evolving on a different path, i.e. it
aims at building a reliable and efficient infrastructure to satisfy different user
requirements by means of shared powerful general-purpose computing facili-
ties. In a Grid system, a middleware like Globus has the role of managing users
requests and of customizing the computational resources available in a cluster
of general purpose computers in order to match the users demands. Such an
approach gives the system a higher degree of flexibility and manageability.

To emulate large-scale heterogeneous networking scenarios, the above men-
tioned features of a Grid infrastructure are also desirable for a cluster-based
Network Emulation system. In the following, we describe what strategies we
are currently pursuing in order to bring some of the technologies developed
for Globus-based Grids into the next version of NEPTUNE.

5.1 Virtual Workspaces in the Grid

Nowadays several production-quality Grids exists, which offer powerful ex-
ecution infrastructures to help solve many science specific problems. Much
progress has been achieved with the deployment of Grid-based applications,
but the preparation of remote execution environment and the enforcement
of Quality of Service (QoS) while still providing manageability is yet a hot
research topic. One problem with most Grid platforms, today, is the lack of
performance isolation and resource usage enforcement: activities relative to
one user or virtual organization [15] can unpredictably influence the perfor-
mance of other processes executing on the same platform. Another issue is the
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impossibility to dynamically customize the execution environments according
to the users requirements, thus compromising their Quality of Life (QoL) [16]
in interactions with Grid software.

To satisfy such a requirement, the Virtual Workspace concept has been re-
cently introduced in the Grid computing model. A Virtual Workspace (VW)
is an abstraction of an execution environment that can be made dynamically
available to authorized clients by using well-defined protocols [17]. The ab-
straction captures resource quota assigned to such execution environment on
deployment (such as CPU, memory share, disk size etc) as well as software con-
figuration aspects of the environment (such as operating system installation
or provided services). This environment abstraction can be implemented by
using various technologies. The Globus Toolkit supports at least two different
techniques: one based on dynamically created user accounts (a.k.a. Dynamic
Accounts) and one based on dynamic deployment of Virtual Machines. Virtual
workspaces implemented as Virtual Machines offer a high degree of isolation,
fine-grained enforcement and configuration: VM image configuration, in fact,
can reflect a workspace’s software requirements, while a hypervisor, such as
Xen, can ensure the enforcement of hardware properties.

In Globus, the so-called Workspace Service allows a Grid client to dynam-
ically create and manage workspaces. The Workspace Service implementation
based on Virtual Machines takes as input a VM image wrapped in meta-data
providing critical deployment information and deploys the VM on one of the
physical hosts administered by it.

An atomic workspace, implementing a single execution environment, con-
tains both the data (VM image) and some metadata describing deployment
information and prerequisites. Atomic workspaces can be combined to form
aggregate workspaces such as virtual clusters [18].

5.2 NEPTUNE as a Virtual Workspace

We are currently working at a next release of NEPTUNE in which node par-
ticipating to a network emulation experiment are part of a virtual cluster
implemented according to the Virtual Workspace concept. This allows the
cluster physical resources to be used concurrently with other Grid applica-
tions. In our very first implementation we are interested in demonstrating the
feasibility of our proposal: a portable cluster-based network emulator easily
deployable as a Grid application. Our goal is to not make use of any hardware-
dependent solution, so that our system may be replicated on any cluster.

The NEPTUNE cluster emulator can be seen as composed of two workspace
sets: the first set contains the head node (NeptuneManager), while the sec-
ond set contains worker nodes. NeptuneManager, the head-node of the virtual
cluster, is instantiated as a virtual workspace by itself. The virtual network
deployment is made by NeptuneManager.

The NEPTUNE worker nodes may be deployed on-demand by authorized
users. Each worker node could have a specialized configuration, but for sim-
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plicity’s sake we can assume in our experiments that all worker nodes share
same virtual workspace image, which can be easily cloned.

The service node of the physical cluster runs a Xen 3.0 virtual machine
monitor, Globus Toolkit 4 (GT4) and the Workspace Service. We are currently
using the TP1.2.1 version (Technology Preview) of the Virtual Workspace
Service. The workspace infrastructure implemented in Globus Toolkit 4 uses
the Web Services Resource Framework(WSRF) model and is composed of:

• the Workspace Factory Service that allows a Grid client to deploy a Xen-
based workspace according to a deployment request specifying resource
allocation and length of deployment;

• the Workspace Service that allows a Grid client to manage a workspace
by starting, stopping, pausing or destroying it.

XEN1

XEN2

XEN3

Fig. 4. An emulated network implemented by means of virtual machines

Fig. 4 shows an overlay network created by means of virtual machines. Af-
ter the head node (NeptuneManager) has been instantiated by the workspace
service, we have performed the following steps:

• definition of the network topology to emulate using the NeptuneManager
services;

• configuration of the virtual node’s features like RAM and virtual interfaces;
• definition of the software image to be loaded into the virtual machines;
• selection of the physical cluster’s worker nodes (equipped by Xen 3);
• deployment of the virtual machines.

As soon as the virtual nodes are available, NeptuneManager configures
the overlay network and activates any services. The link-multiplexing shown
in fig. 4 was realized by the one link per interface technique described above.
In order to test the implemented configuration, we enable OSPF routing by
GNU/quagga on the emulated network; finally, we generate and trace several
traffic flows between the virtual nodes.
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6 Conclusion and Future Works

Synthetic creation, configuration, deployment and management of medium-
large scale virtual networks by means of a cluster-based system requires fine-
grained control of resource utilization and manageability of the instantiated
execution environments. These requirements have much in common with the
challenges addressed in the context of Grid computing: a single virtual-node
participating to an emulation experiment, its computational resources and
its software configuration, can be seen like a Grid’s Virtual Workspace. Re-
cently, in the Grid community, the use of virtualization techniques to support
on-demand instantiation of virtual workspaces has been proposed. In partic-
ular, para-virtualization techniques appear as the most promising, due to the
high degree isolation between the execution environments obtained with low
performance overhead. In the next future, paravirtualization will also benefit
from hardware support implemented by both Intel and AMD in their latest
CPUs, allowing OSes to run natively (i.e. unmodified) and with no overhead
penalties on these CPUs.

In this paper, we have shown how Xen can be used to realize the virtual-
ization of both computational and network resources, justifying the use of this
instrument in the network emulation context. We have also shown how net-
work emulation can be implemented as an on-demand application for a Grid
computing environment. Finally, we have described the strategies we have pur-
sued in order to bring some of the technologies developed for Globus-based
Grids into the next version of NEPTUNE.

In the future, our main goal is to realize a further integration between our
emulation environment (NEPTUNE) and the Globus virtual workspace.
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