A splitting infrastructure for load balancing and
security in an MPLS network

Stefano Avallone, Vittorio Manetti, Marina Mariano and Simon Pietro Romano
COMICS Lab, Dipartimento di Informatica e Sistemistica
Universita di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
Email: {stavallo, vittorio.manetti, spromano } @unina.it, mac.mariano@gmail.com

Abstract— Several multi-path routing algorithms have been
recently proposed to achieve load balancing and increase security.
However, the functionalities required to split traffic flows over
multiple paths have not been standardized yet. Multi-Protocol
Label Switching (MPLS) offers a suitable environment to imple-
ment multi-path routing algorithms, as multiple parallel Label
Switched Paths (LSPs) may be established to carry each a
portion of a traffic flow. This paper focuses on a traffic splitting
mechanism designed for MPLS networks. We propose a set of
new operations to be performed by the edge routers and illustrate
them with reference to a popular open source implementation
of the MPLS stack. We implemented the new operations and
give a demonstration of their functionality using an experimental
testbed.

I. INTRODUCTION

Recently, several multi-path routing algorithms have been
proposed aimed to both increase the security level in case of
malicious attacks and to best utilize the network resources
through load balancing. Such algorithms typically rely on
the possibility to explicitly route flows, which is available,
e.g., in MPLS networks. However, MPLS lacks mechanisms
to split an incoming flow over multiple LSPs. Indeed, the
IETF standard [1] provides that a forwarding equivalence class
(FEC) may be associated with multiple outgoing labels, but
does not specify how this association can be realized. In this
paper we present an engineering approach to the solution of
such a problem by implementing and evaluating a technique
for per-packet load balancing in MPLS networks.

In order to fulfil the main goals we had in mind when
designing our splitting technique, we have to deal with the
two following major aspects: (i) the splitting criterion adopted;
(ii) the specific features of the alternative paths to be selected.
With reference to the first point, it looks clear that an appro-
priate splitting criterion needs to be implemented at the MPLS
edge routers if we want to offer an adequate protection against
potential security threats associated with the possibility that
third parties intercept our traffic in some point of the network.
Indeed, the idea of splitting traffic on a per-flow basis, while
interesting from the load balancing perspective, would prove
completely useless in the above depicted scenario. Hence, our
approach relies on a per-packet splitting technique: packets
arriving in sequence at an edge router are assigned to different
paths inside the MPLS cloud (Fig. 1). Thanks to this choice,
the information content that can be inferred by tampering with
a single flow is almost negligible. A further advantage of

Fig. 1.

Per-packet splitting

the proposed approach resides in the observation that all the
information needed to implement the splitting procedure (as
well as the associated reconstruction at the egress side of the
network) is confined at the edges of the MPLS cloud. The
overall process is completely transparent to the core routers,
which just keep on performing the standard label-swapping
procedure. If our mechanism is put into place, a potential
intruder would have to successfully accomplish all of the the
following tasks: gain access to traffic flowing across each
and every network path in the MPLS cloud; be aware of the
specific splitting criterion adopted; be capable of identifying
the set of LSPs selected to carry a specific traffic aggregate
from the ingress to the egress edges of the cloud.

We remark that the proposed mechanism can improve
security by appropriately dispersing information content across
the network. There is no way to look at it as an alternative
to data encryption. Indeed, we believe it is possible to boost
the security level of a network by using both encryption and a
splitting technique like the one we are proposing in this paper.

Coming to the second aspect mentioned above, it looks
clear that in an ideal situation all of the paths selected for
the transport of the packets pertaining to a single flow that
has been split at the ingress of the MPLS cloud should share
the same properties in terms of parameters such as residual
bandwidth, delay, packet loss, path length. The choice of
paths characterized by significantly differing features definitely
entails issues such as asymmetric balancing of the traffic load
or out of order packet delivery.

The rest of the paper is structured as follows. Section II
reviews some related work. Section III introduces the software
package implementing MPLS in Linux which is the basis
of our work. Section IV illustrates the splitting mechanism,

while Section V details its implementation. Section VI presents
the reordering mechanism. Section VII reviews the step to
configure the splitting of a traffic aggregate in an MPLS
network. Section 8 concludes our work.

II. RELATED WORK

Many research works have recently dealt with the issue of
implementing load balancing techniques in MPLS networks.
Our approach presents many facets which let it clearly depart
from such works, most of which rely on load balancing in
order to improve network resiliency to congestion conditions.
MATE [2], for example, proposes a model for traffic dispersion
along auxiliary paths that have been selected in such a way
as to guarantee QoS requirements related to incoming traffic.
The model presented in [3] works in a quite similar fashion.
DYBLA (DYnamic Load Balancing Algorithm [4]) introduces
the original idea of splitting traffic among multiple paths right
after having released the congested main path. In [5], an inter-
esting model is presented, aimed at balancing traffic through
a mapping process between a flow and a path depending on
the characteristics both of the path itself and of the traffic to
be forwarded.

Our model definitely differs from the aforementioned ap-
proaches aimed at tackling congestion issues (or more in
general at better exploiting network resources), since it has
been conceived at the outset as a means to improve the security
level of the data sent across the splitting paths. With respect
to this point, a related approach has recently been proposed
in [6], which describes a mechanism based on traffic dispersion
across multiple paths to solve the issue of potential eavesdrop-
ping. The mentioned model envisages that a hijacking cost
is associated with each link. For a specific communication
session, a packet dispersion model is elaborated in such a
way as to ensure that the cost associated with eavesdropping
is higher than the maximum hijacking budget available to the
attacker.

Some other related works have been designed with the goal
of serving traffic classes with predefined features. In [7], a load
balancing model for MPLS networks is presented with special
reference to voice traffic support. The focus of the paper is on
the formulation of an appropriate multi-path routing algorithm.

Indeed, only few works propose load balancing solutions
based on a per-packet approach. In [8] a path selection
mechanism is devised, together with a per-packet splitting
procedure based on a hash function applied to information
carried inside network packets. In [9] a different per-packet
splitting technique is presented. Once again, such mechanism
aims to solve congestion issues in MPLS networks.

The following related papers are all based on a per-flow
load balancing approach. A common feature of all such
works is represented by the high level of abstraction of the
proposals. In general, the proposed models and algorithms
are not designed for a specific network architecture; hence,
they do not go in any detail with respect to implementation.
Except for [10], which proposes a load balancing mechanism
for connectionless networks whose effectiveness is assessed

through Linux-based emulations, all other papers just rely on
simulation studies. As an example, in [11] some simulation
results are presented in order to compare the effectiveness of
the application of load balancing techniques both with and
without splitting.

With our approach, the primary goal is to perform real world
experimentations aimed at demonstrating the effectiveness of
the application of a per-packet splitting technique in an actual
operational scenario. Based on this assumption, we delve
into the details of the solution design to the point that the
information needed to implement the splitting mechanism in
a concrete platform is provided. In the light of the above
consideration, we will not deal in this paper with issues such
as the dynamic selection of the most suitable splitting paths
or the automated configuration of the MPLS cloud. In some
cases, we may assume that, by using paths sharing similar
properties, packets keep on being forwarded in the right order
even in the presence of splitting. Though, this assumption does
not apply to all situations. Hence, we decided to implement a
reordering mechanism at the MPLS level (i.e. at the egress of
the MPLS cloud), so to make splitting completely transparent
to the upper layers of the protocol stack. Finally, we would
also like to remark that our splitting technique does not put
any limitation on the number of alternative paths that can be
chosen to forward a single traffic aggregate entering the MPLS
network, as it happens in some research proposals that can be
found in the literature (see, for example, [12] in which the
authors propose to associate each flow with a pair of paths
used, respectively, as the primary and secondary routes).

III. MPLS-LINUX

The splitting technique we propose has been actually im-
plemented by modifying the code developed within the mpls-
linux project (http://sourceforge.net/projects/mpls-linux). This
project provides a patch for the latest Linux kernel series
(2.6.x) to add a full functional MPLS stack. A userspace utility
is also provided to manually configure label switched paths.
To this end, a set of instructions have been defined as follows:

push : adds an MPLS header to the packet with a specified
label;
set : sends a packet down to the data link layer, thus

causing it to be transmitted to the next hop router;

pop : removes an MPLS header from the packet;

fwd : causes a packet to be processed according to the
instructions of a specified NHLFE entry, as will be
explained shortly;

dlv :sends a packet to the IP stack for further processing;

The mpls-linux patch introduces into the kernel the tables
MPLS uses to forward data, as defined in [1]:

o FTN (FEC To NHLFE)];

e ILM (Incoming Label Map);

o NHLFE (Next Hop Label Forwarding Entry);

FTN

The FTN table is made of a number of entries, each of which
refers to a particular Forwarding Equivalence Class (FEC).

Thus, the FTN is looked up when forwarding an unlabeled
packet. Each entry contains a fwd instruction pointing to an
NHLFE entry describing how to process packets belonging to
that FEC.

ILM

The ILM table is looked up when forwarding labeled
packets, i.e. packets containing an MPLS header. The entries
of the ILM table are indexed by a key whose value is defined
as follows:

key = type - 2°0 + label - 2'° + label space

where:

o type identifies the layer-2 technology (Ethernet, ATM or
Frame Relay);

o label is the label included in the MPLS header;

o labelspace is the space of label associated with the
interface the packet has been received from.

The above key is coded on 4 bytes. Each entry of the
ILM contains a fwd instruction pointing to an NHLFE entry
describing how to process packets matching that key.

NHLFE

An entry of the NHLFE table is pointed to by an entry of the
FTN, an entry of the ILM or another entry of the NHLFE and
describes how to process a packet. Each entry of the NHLFE
table is indexed by a key, too. However, here the key value is
not related to any label and is set from a counter.

To illustrate how these tables are used in forwarding packets,
we look at the operation performed by different routers in an
MPLS network:

Ingress LER (Label Edge Router)

An ingress LER receives unlabeled packets, adds an MPLS
header and makes them continue their travel along an appro-
priate LSP. The first step is thus to classify each packet into a
forwarding equivalence class (FEC) and look the FEC up in
the FTN table. As a result, we obtain a key to access the entry
of the NHLFE table which specifies the label to be inserted
into the MPLS header. Then, the packet is sent to the next-hop
router.

LSR (Label Switching Router)

An LSR receives labeled packets, swaps the label and sends
them to another LSR. The label in the MPLS header is used
to calculate the key to access an entry of the ILM table (as
shown above). Such an entry usually contains a pop instruction
to remove the MPLS header and a fwd instruction pointing to
an entry of the NHLFE table. This entry will typically instruct
how to add a new MPLS header and specify the next-hop LSR.

Fig. 2. Reordering packets

Egress LER

An egress LER receives labeled packets, removes the MPLS
header and pass them on to the IP layer. The label in the MPLS
header is used to calculate the key to access an entry of the
ILM table. Such an entry usually contains a pop instruction
to remove the MPLS header and a dlv instruction to deliver
the packet to the IP layer, which is in charge of routing the
packet out of the MPLS network.

IV. REORDERING PACKETS

Splitting the packets belonging to a flow over multiple paths
may cause the packets to arrive at the egress LER out of order.
It is known that such event cannot happen if all the packets are
sent along the same LSP. Since the ordered delivery of packets
is a desirable feature, we provide a reordering mechanisms in
order to emulate the behavior of an MPLS network with no
splitting capabilities. It is clear that the reordering of packets
takes place at the egress LER. However, the ingress LER has
to put some extra information into the packets to allow a
correct reordering of packets. In this section we identify the
information required to allow for appropriate reassembly of the
flow at an egress LER and how to convey such information.

We underline that the packet reordering can complement
our splitting technique, but it is not mandatory. The reordering
mechanism clearly imposes a non-negligible overhead on the
ingress and egress LERs. However, it may prevent delays due
to TCP reconstructing the original data flow. A performance
evaluation of our reordering mechanism is presented in Sec-
tion VIIL

The MPLS label stacking capability can be exploited to
carry some extra information. Indeed, the ingress LER can
insert an additional MPLS header containing such information.
At every hop, only the outer MPLS label is swapped and
processed by the forwarding process. The inner label is carried
unmodified till the egress LER where it is appropriately
processed.

To allow for the reordering of packets at the egress LER,
the most straightforward solution relies on a counter whose
value is incremented and attached to a packet when it crosses
the splitter ingress node. The edge routers responsible for
the reordering procedure interpret such value as a sequence
number and are thus able to reconstruct the correct sequence
of packets representing the original traffic.

However, the adoption of a sequence number to be asso-
ciated with all flows entering the MPLS network through the

LABEL EXP S ITL

‘ 111 | 0 I splitting_id

sequence-n nniber

20 bat bt 1bit
- > e >

Shit

Fig. 3. A “splitting” MPLS header

same ingress LER does not work in case the splitting paths can
be shared. Let us consider the case where two flows belonging
to different equivalence classes share a common splitting path
(Fig. 2). The core LSRs falling along the shared path just
perform standard label swapping operations, hence they do not
elaborate splitting information contained inside the packet. If
the above mentioned flows also have the final destination in
common, then the egress LER must be able to associate each
packet with the particular traffic aggregate to which it belongs.

To allow for a correct reassembly of the flows in the context
depicted above, we need to introduce a novel parameter used to
uniquely identify traffic belonging to a well defined FEC. We
call such parameter splitting-id. A splitting-id uniquely iden-
tifies a traffic aggregate whose packets would be forwarded,
in the absence of splitting, along the same path.

Thus, in case reordering must be performed at the egress
LER, every single packet has to carry both the sequence
number and the splitting-id. We propose to encode such
information in an additional (inner) MPLS header in the
following way (Fig. 3):

« Label : sequence-number;

o EXP (Experimental Use): contains a binary string (e.g.
111) used to identify the label information as a splitting
parameter rather than as a standard labelswapping iden-
tifier;

o S (Stack): must be always zero, to indicate that the label
in question is the last one in the lable stack;

o TTL (Time To Live): such field is actually interpreted as
a splitting-id, which means that it does not have to be
decremented when the tagged packet crosses a router.

In the following sections we detail the implementation of
the splitting technique, stressing the steps necessary for the
reordering to take place. Since the core routers perform their
normal operation (label swapping), we focus on the packet
processing at the ingress and egress LERs.

V. PROCESSING AT THE INGRESS LER

The splitting mechanism we propose is based on a specific
feature of the MPLS protocol, namely the possibility to
associate a single FEC (Forwarding Equivalence Class) with
multiple NHLFEs (Next Hop Label Forwarding Entry). A FEC
identifies a class of flows asking for the same treatment in
terms of forwarding: flows belonging to the same FEC are
actually considered as a single entity in the MPLS cloud.
Clearly, the possibility to associate a single FEC with multiple
entries in the NHLFE table can be seen as a chance to manage

flows on a per-packet basis, since different packets of the flow
can be forwarded along different LSPs (Label Switched Path).

The splitting mechanism thus necessitates the following
functionalities:

o possibility to associate a single FEC with multiple
NHLEFE entries;

« inserting a sequence number and a splitting-id in the
MPLS header in case an ordered delivery at the egress
LER is required;

o forwarding of packets belonging to the same FEC to
different LSPs.

Associating a FEC with a single NHLFE entry is equivalent
to impose that packets belonging to the same equivalence class
will be routed along the same LSP. Thus, providing a means to
associate a FEC with multiple NHLFE entries is fundamental
to make the splitting possible. We propose to perform such
an operation as illustrated in Fig. 4. The basic concept is
quite simple: with respect to the common procedure performed
in an ingress LER (see Section III), here we introduce an
intermediate step consisting of the processing of an additional
NHLFE entry. The FTN entry corresponding to the FEC
of a given packet still points to an entry of the NHLFE.
However, such an entry contains the special instructions we
added and in turn points to a set of NHLFE entries. These last
entries actually contain the push and set instructions to add
an MPLS header and send the packet to the next hop. The
new instructions to be inserted into the intermediate NHLFE
entry are ipush (increment and push) and mfwd (multiple
forward). The first instruction is in charge of managing the
parameters needed to implement the reordering mechanism, so
it present only if needed. The ipush instruction has to perform
two tasks: (i) recognition of the flow the packet belongs to,
and (ii) update of the sequence number and the splitting id.
Then, a splitting MPLS header (as shown in Fig. 3) is added
to the stack of headers. The mfwd instruction actually splits a
flow by associating the intermediate NHLFE entry with other
NHLFE entries. According to the adopted splitting policy,
different NHLFE entries are selected for different packets, thus
splitting the flow over multiple LSPs.

An ingress LER splitting a flow over multiple LSPs per-
forms the following operations:

1) The FEC the packet belongs to is used to access the FTN
table in order to determine the key of the intermediate
NHLFE entry;

2) In case we want to emulate the transmission along
a single LSP, an ipush instruction is present in the
intermediate NHLFE entry and it must be processed. As
a consequence, a splitting MPLS header is added. In any
case, the intermediate NHLFE entry contains an mfwd
instruction which bounds the current FEC to a set of
NHLFE entries (each corresponding to a different LSP).
For each packet to be forwarded, one NHLFE entry in
such set is selected based on the splitting policy (i.e.,
round robin);

3) The instructions contained in the selected NHLFE entry

are processed. These includes adding a swapping MPLS
header and sending the packet to the next hop.

The code related to ipush and mfwd has been inserted in
linux/net/mpls/mpls_opcode.c. The ipush instruction is quite
similar to push, so it has been been possible to reuse some
code. Parameters required by these instructions are provided
by an user-space utility, the ‘mpls’ utility, which we needed
to modify as well.

We remark that at the time of this writing no mechanisms
are available to build and to destroy splitting paths in a
dynamic way. Though, it is possible to exploit a user level tool
named ‘mpls’ (available in the iproute package) that provides
instructions for the configuration of the MPLS tables entries,
and hence of static LSPs. We have modified this tool in order
to provide a splitting paths configuration mechanism. In the
near future, we have in mind to work on the design and
implementation of an automated policy-based configuration
tool capable to carry out configuration of the MPLS cloud.

VI. PROCESSING AT THE EGRESS LER

In case a flow is split and the packet reordering is not
needed, the egress LER must perform no additional operation.
Thus, this section describes the configuration of the egress
LER in case the ordered delivery of packets is required.

When designing such mechanism, once again we decided
to leave unchanged the already available MPLS functions (i.e.
those related to label swapping, label popping and packet
delivery to the higher layers), while introducing brand new
functionality specifically conceived for the splitting/ reordering
procedure.

Coming to the details, we impose that all packets associated
with the same FEC (and thus characterized by the same
splitting-id), once at the egress LER are forwarded to the same
entry in the ILM (Incoming Label Map). Such entry contains
the sequence of instructions needed to correctly reconstruct
the original flow. Given the above constraint of using at the
egress LER special instructions for packets belonging to flows
that have been split, it looks clear that upon configuration
of the MPLS cloud special entries must be added to edge
routers tables. Such tables will then contain both standard
label-swapping entries and experimental splitting entries.

The management of packet reordering in the described
solution is based on the new functionality offered by MPLS
layer in version 1.946 and later, including the mpls protocol
driver mpls4. This module works between MPLS layer and
IP layer, in particular representing the entry point to IPv4
layer. In the solution, the reordering mechanism has been put
at this level, making the reordering mechanism transparent to
all users. Moreover it uses the efficient and general methods
of Linux system to manage data packets and manipulate them.

Making the reordering mechanism transparent is possible
by using the usually instructions related to an ILM entry: if
a packet arrives with several MPLS labels, all of them are
looked up step by step. Each label hooks an ILM entry and the
corresponding instructions are executed. At to bottom of the
stack, a DLV instruction is executed and the packet is sent to

the upper layer. Indeed, the delivery instruction uses the central
structure of network implementation, the so-called socket
buffer, which represents a packet during its entire processing
lifetime in the kernel. In the socket buffer they are defined
hooks dedicated to manage the flow control requiring their
access to mpls4 module (field skb—dst— output is a pointer to
mpls_local_delivery), matching to dst_entry of latest ILM entry.
With few modifications to the function mpls_opcode_peek it
is possible to pass data that are required to protocol driver to
reorder packets. This information has been coded, respectively,
inside the TTL, LABEL and EXP fields, and they are passed
inside control-buffer field of socket buffer, in a similar way to
MPLS layer and IP layer. In current design, the only action
performed by mpls_local_delivery is returning the control to
IP layer, to process the packets to be delivered locally. If the
reorder is required, that is the experimental bits are setted up
to 111, the function mpls_local_deliver() passes IP packets to
mpls_reorder(). The packets are then managed in a packet-
cache, until the packets arrive in a right order, so that all the
packets stored in the list can be delivered to the local machine.
The packet-cache consists of a table hashed by Splitting-id
and refer to an ip-queue structures. Each of these ip-queue
structures store the packets waiting the right packet in the
sequence. The individual socket buffers related to the same
flow are linked in a list. All packets of a flow must to be
ordered in the same sequence as they occur in the original flow.
If an error occurred and the maximum wait time for the packet
has expired, all the packets will be discarded. Note that timeout
for similar protocols, such as IP fragment, is usually set to 30
seconds. The correct sequence has to be re-established starting
from the next packet in the buffer. The following cases have
to be considered:

e (Sv +1) = LABEL: the received packet has arrived
in the correct sequence. In such case, we proceed by
simply invoking the ip_rcv() function on the packet and
then increasing the value of the sequence number variable
(which will now contain information about the latest
received packet);

e (Sy +1) < LABEL: the packet received is subsequent
to the expected one. In such case, we put it in a temporary
buffer and perform a check on the other packets previ-
ously stored in the buffer. For each packets, the following
options are possible:

- (Sy + 1) = LABEL: the packet in question con-
forms to the right sequence. In such case we invoke
the ip_rcv() function on the packet and then increase
the sequence number variable. Finally, we move to
the next packet in the buffer;

- (Sy +1) < LABEL: we just move to the next
packet stored in the buffer;

VII. CONFIGURING THE MPLS CLOUD FOR SPLITTING

We summarize in the following the sequence of actions to
be performed in order to configure the nodes of an MPLS
cloud with splitting capabilities.

NHLFE
OPER: PUSH - SET
NHLFE key v LABEL: 0xl6&
N _H: 152.168.30.2
FTN NHLFE — OPER: PUSH - SET
eV L LABEL: 0z18
FEC IHLFE key = » NHLFE key x IPUSH - MFWD ¥ T 192 16}; 03
OPER.: P.U.SH - 8ET
NHLFE key w LABEL: Ox24
N _H: 192.168.80.2
Fig. 4. Splitting technique
. TABLE I
1) The first step is to identify the forwarding equivalence 8 FLOWS
class of the traffic aggregate we intend to split. A traffic
aggregate is composed of a set of distinct flows having _ _ _ :
in common the same pair ingress LER/egress LER. In label-switching | splitting | splitting function
case the packet reordering is needed, we must associate w reord | wfo reord
the traffic aggregate with the corresponding identifier 0.00260 0.00590 | 0.00370 mpls-output2
(splitting id)‘ 0,00190 0,00290 0,00180 mpls_set_nexthop2
2) A set of LSPs between the ingress LER and the egress ggg?gg gggﬁg gggi;g mpis’seni
LER are to be selected. The traffic aggregate will be 0’00110 0’00140 0’00100 ml; S-pus
. s_output
splitted among the selected LSPs; 0’00110 0’00130 0’00120 n;p s 2“ i .
3) The MPLS tables of the nodes along the selected LSPs ’ ’ ’ mps-ou ’Op’sé
. 0,00073 0,00110 0,00071 mpls_output_shim
must be configured accordingly:
o 0,00032 0,00060 | 0,00049 | mpls_p_f_by_ethtype
ILER : For each LSP, an NHLFE eptry containing 000048 000055 | 0,00067 ipt_mpls
the push and set instructions is to be added. 0.00030 0,00015 | 0,00030 mpls_op_push
The key associated with these entries must be 0,00003 0,00014 0,00003 mpls4_get_ttl
passed as parameters of the mfwd instruction 0 0.,00215 | 0,00144 mpls_op_mfwd
present in the intermediate NHLFE entry. This 0 0,00260 0 mpls_op_ipush
last entry is pointed to by the entry of the FTN 0.01246 002259 | 001454 TOT

associated with the FEC of the traffic aggre-
gate. In case the packet reordering is required,
an ipush instruction must precede the mfwd
instruction in order to add the splitting header.
: No particular operation is required on the core
nodes. They are only required to perform the
label swapping mechanism.
ELER: In case the packet reordering is required, we
need to configure an ILM entry containing the
following instructions: pop, reorder, dlv.

LSR

VIII. EXPERIMENTAL RESULTS

In this section we present the results of some experiments
conducted in a real testbed to show the effectiveness of our
approach. As we explained, in order to perform per-packet
splitting according to our approach, it is only necessary to
perform some additional operations on the MPLS edge routers.
We focus our attention on the splitter ingress node. The
main goal of the experimental trials is to prove that the
splitting mechanism causes a lower overhead and consequently
a lower usage of computational and storage resources when the
reordering mechanism is disabled. We present a comparison
between the classical label-switching mechanism on a single
LSP and the splitting mechanism on several splitting paths,
both with and without the reordering mechanism. The trials

are carried out on a real testbed consisting of eight nodes.
Each node is equipped with a Pentium 4 Xeon processor, with
hyper-treading capability and an estimated speed like 3,392.47
MHz. The Linux-MPLS patch (version 1.950) enhanced with
our modifications was applied to all the nodes.

In order to perform these experiments, we have selected a
monitor (Oprofile) for evaluating the computational resources
used by both user-level and kernel-level functionalities. This
monitor produces a report showing the number of CPU cycles
each function uses (in terms of percentage, related to the
measurement interval).

The experiments consist in configuring the LSP along which
the data flows are forwarded, generating UDP traffic (by using
the D-ITG traffic generator) on the Ingress LER (splitter node),
and evaluating the computational load on the splitter node (by
using the Oprofile monitor).

We compare the performance of the following three mech-
anism: label-switching on a single LSP, splitting over 7 LSP
with reordering, and splitting over 7 LSP without reordering.
Every mechanism is implemented using 8, 12, and 16 data
flows forwarded across the MPLS cloud.

The tables show the cost of every single function/instruction

ILM

FEC

THLFE Fey 034

LABEL 0x17

FTN
I
|
[

POP

FWD key 0:3

|

NHLFE

NHLFE key 0xd

IPUSH
MFWD 02 0:3

NHLFE
MHLFE key 0x2

PUSH 017
SET HWH 1921683032

NHLFE
NHLEE key 0x3

FUSH 0213
SET NH 193168303

Fig.

NHLFE

WHLFE key 03 ‘

PUSH D218

SET NH 192163402

5.

152.168.40.2

Configuration

0.11

0.09

0.08

0.07

0.06

total cost

0.05

0.04

0.02

0.00

[1abel-switching
[l splitting w reord
[splitting wio reord

8 flows

12 flows

16 flows

Performance evalution

Fig. 6.
TABLE 1T
12 FLOWS
label-switching | splitting splitting function
w reord | w/o reord
0,01390 0,02510 0,01960 mpls_output2
0,00730 0,00970 0,00700 mpls_set_nexthop2
0,00910 0,01030 0,00780 mpls_send
0,00970 0,01320 0,00920 mpls_push
0,00740 0,00730 0,00650 mpls_output
0,00560 0,00620 0,00600 mpls_out_op_set
0,00410 0,00590 0,00410 mpls_output_shim
0,00240 0,00330 0,00220 mpls_p_f_by_ethtype
0,00250 0,00270 0,00190 ipt_mpls
0,00190 0,00170 0,00140 mpls_op_push
0,00008 0,00048 0,00014 mpls4_get_ttl
0 0,00940 0,00910 mpls_op-mfwd
0 0,01200 0 mpls_op_ipush
0,06398 0,10728 0,07494 TOT

TABLE III
16 FLOWS
label-switching | splitting splitting function
w reord | w/o reord
0,01100 0,02060 0,01370 mpls_output2
0,00490 0,00910 0,00460 mpls_set_nexthop2
0,00710 0,00850 0,00580 mpls_send
0,00720 0,00970 0,00590 mpls_push
0,00560 0,00520 0,00450 mpls_output
0,00460 0,00490 0,00400 mpls_out_op_set
0,00310 0,00500 0,00270 mpls_output_shim
0,00170 0,00250 0,00140 mpls_p_f_by_ethtype
0,00170 0,00230 0,00140 ipt_mpls
0,00110 0,00089 0,00075 mpls_op_push
0,00013 0,00024 0,00006 mpls4_get_ttl
0 0,00940 0,00910 mpls_op_-mfwd
0 0,01020 0 mpls_op_ipush
0,04813 0,08613 0,05171 TOT

of the MPLS stack for each of the three configurations under
test and for the three scenarios we considered (8, 12 and 16
flows). Such a cost refers to the ratio (multiplied by 100) of
the number of CPU cycles required to execute every single
function to the number of CPU cycles required to execute all
the functions in the sample interval.

The set of MPLS functions clearly comprises those we
introduced for the splitting mechanism, which are indicated
in the tables as mpls_op_mfwd and mpls_op_ipush.

Fig. 6 shows for every scenario and every configuration the
sum of the costs of all the functions. Such value, which we
refer to as total cost, is also reported in the last row of each
table.

We can draw that the splitting mechanism involves a very
low overhead with respect to the classical label-switching
mechanism, and, as we could expect, the reordering mech-
anism requires some computational load.

The results indicate that the total cost shows a very similar
behavior for all the three configurations. It is worth to note
that, given the approach used to determine the computational
load of each function, it is not appropriate to compare the
numeric values for the three scenarios. It is clear indeed that
each of such scenarios is characterized by a different load of
the CPU of the splitter node, relating to which we compute
the cost of the MPLS functions. Also, the CPU load due to
the traffic generator varies with the number of flows involved.

The tables also show that the mpls_output2 function (which
depends on the number of time we access the NHLFE table)
exhibit a similar behavior for all the three scenarios. The
implementation of the splitting mechanism causes a certain
increase in the cost of such a function, especially if we use
the reordering mechanism. This is clearly due to the increased
number of time we access the NHLFE table of the ingress
LER when the splitting is enabled.

IX. CONCLUSION AND FUTURE WORK

In this paper we presented an approach to improve network
security and resource utilization in MPLS networks. The
mechanism we proposed is based on the idea of splitting
flows on a per-packet basis at the ingress of an MPLS cloud,
while reassembling them in the right sequence before they
leave the egress LER. Our main contribution resides in having
devised an engineering solution that has been implemented
in a real-world operational scenario. Indeed, the solution
itself is independent of the specific technology chosen for its
implementation, since it relies ont the introduction of some
new functions which complement the standard MPLS way of
operating. Though, we also presented in the paper an actual
implementation of the splitting mechanism realized by ap-
propriately modifying the available MPLS-Linux experimental
stack. As to packet reordering, we are currently working on
refining our first prototype implementation. Our future work
will be organized along three main directions: (i) complete
the implementation of the reordering mechanism; (ii) perform
a thorough experimental campaign aimed at both assessing
the validity of our approach and the performance of the newly

created MPLS modules; (iii) work on the management part,
by providing an automated policy-based configuration tool
capable to carry out configuration of the MPLS cloud in a
straightforward fashion.

REFERENCES

[1]1 E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-
ing Architecture,” IETE,” RFC 3031, January 2001.

[2] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive
Traffic Engineering,” in Proc. of IEEE INFOCOM 2001, vol. 3, 2001,
pp. 1300-1309.

[3] M. Heusse and A. Gravey, “A Routing and Resource Preservation
Strategy for Traffic Engineering in Communication Networks,” in Proc.
of 18th ITC, September 2003.

[4] E. Salvadori and R. Battiti, “A load balancing scheme for congestion
control in MPLS networks,” in Proc. of ISCC 2003, July 2003, pp. 951-
956.

[5] B. Cui, Z. Yang, and W. Ding, “A Load Balancing Alghorithm Sup-
portino QoS for Traffic Engineering in MPLS Networks,” in Proc.
of The Fourth International Conference on Computer and Information
Technology (CIT’04), 2004.

[6] H. Zlatokrilov and H. Levy, “Session Privacy Enhancement by Traffic
Dispersion,” in Proc. of IEEE INFOCOM 2006, April 2006.

[7]1 B. Yang, C. Casetti, and M. Gerla, “Stateless Load Balancing over Multi-
ple MPLS Paths,” available at http://gregorio.stanford.edu.

[8] X. Hesselbach, R. Fabregat, B. Baran, Y. Doloso, F. Solano, and
M. Huerta, “Hashing based traffic partitioning in a multicast-multipath
MPLS network model,” in Proc. of IFIP/ACM Latin America Networking
Conference 2005 (LANC 2005), 2005.

[9]1 A. Dana, A. K. Zadeh, and M. J. Akhlaghinia, “Performance Evaluation

of a Load Scheme in MPLS Network,” in Proc. of Communication

Systems and Applications 2005, 2005.

H. T. Kaur and S. Kalyanaraman, “A Connectionless Approach to Intra-

and Inter-Domain Traffic Engineering,” in Proc. of 2nd New York Metro

Area Networking Workshop, September 2002.

J. Wang, “Load Balancing in Hop-by-Hop Routing with and without

traffic splitting,” University of Illinois at Urbana-Champaign, Tech. Rep.,

October 2003.

N. Akar, I. Hokelek, M. Atik, and E. Karasan, “A reordering-free

multipath traffic engineering architecture for DiffServ-MPLS networks,”

in Proc. of 3rd IEEE Workshop on IP Operations & Management

(IPOM2003), October 2003, pp. 107-113.

(10]

(11]

[12]

