Dynamic Virtual Cluster reconfiguration
for efficient IaaS provisioning

Vittorio Manetti, Pasquale Di Gennaro, Roberto Bifulco,
Roberto Canonico, and Giorgio Ventre

University of Napoli Federico II, Italy
Dipartimento di Informatica e Sistemistica
Via Claudio, 21 - 80125 - Napoli, Italy
{name.surname}@unina.it

Abstract. Cloud computing is an emerging paradigm to provide Infras-
tructure as a Service (IaaS). In this paper we present NEPTUNE-IaaS, a
software system able to support the whole lifecycle of TaaS provisioning
in a Virtual Cluster environment. Our system allows interactive design
of complex system topologies and their efficient mapping onto the avail-
able physical resources of a cluster. It also provides transparent VM
migration features across geographically distributed datacenters, thanks
to the adoption of the Service Switching paradigm. We also evaluate the
effectiveness of the VM mapping procedures and compare our solution
against other existing TaaS solutions.

Key words: Cloud Computing, TaaS, Xen, Virtual Networking.

1 Introduction

Cloud Computing is an innovative computing model in which “dynamically
scalable and often virtualised resources are provided as a service over the In-
ternet” [1]. Following what happened in the last century with electric power or
water distribution infrastructures, Cloud Computing enables users to access com-
puting resources on an as-needed basis, relieving them from the responsibility of
buying and managing a dedicated computing infrastructure. Cloud providers, on
the other hand, can take advantage of scale economies to organize and manage
big datacenters, whose ICT resources can be efficiently used by partitioning and
renting them to a number of customers. Depending on the abstraction level of
the provided resources, Cloud Computing takes different names: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS).

Originally born as a cluster based network emulation system [2], NEPTUNE-
TaaS is a software system developed at University of Napoli Federico II that
allows interactive design of networked virtual infrastructures on geographically
distributed datacenters, to help provisioning of “Infrastructures as a Service”.
Our system consists of an interactive client/server software system used to pro-
vide users with the possibility of describing and designing the desired virtual

2 V. Manetti, P. Di Gennaro, R. Bifulco, R. Canonico, G. Ventre

infrastructure and of a set of other components that make it possible for services
deployed at a given datacenter to be transparently migrated in remote datacen-
ters for load balancing or fault/disaster recovery. NEPTUNE-IaaS is based on
the use of Xen for virtualization of computing elements. Xen features are also
used to multiplex the communication resources (e.g. network interfaces) available
in the cluster nodes among several logically distinct virtualized nodes. Transpar-
ent migration of Virtual Machines in NEPTUNE-IaaS is implemented through
the adoption of Service Switching, a novel paradigm that aims at extending the
concept of virtualization to network services, by decoupling service execution
environments and their physical location.

The rest of the paper is organized as follows. In Section II we present NEP-
TUNE-Iaa$S, its architecture, the web-based management application we have
developed to manage the whole lifecycle of virtual infrastructures. In Section IIT
we present Service Switching and its role in our system. In Section IV we present
the algorithm we use to efficiently map Virtual Machines onto a cluster’s physical
resources. Finally, in Section V we briefly compare NEPTUNE-IaaS against two
reference TaaS solutions and draw our conclusions.

2 NEPTUNE-IaaS

NEPTUNE-IaaS is a software system for provisioning of IaaS services. In the
context of NEPTUNE-TaaS, a Virtual Infrastructure is a collection of Virtual
Machines provided as a service to an end-user. Virtual Machines are deployed on
a subset of a cluster’s physical nodes and properly configured according to the
user requirements in terms of computational resources, software configuration,
virtual network topology, and so on. A Virtual Infrastructure presents at least
one public IP address, that is used to make the infrastructure accessible from
the public Internet (Entry Point). In general, public IP addresses are assigned
only to a subset of the nodes of a Virtual Infrastructure. Other nodes are as-
signed private IP addresses and can be reached only through the Entry Point
nodes. A typical Virtual Infrastructure comprises a NAT /firewall node and a
set of backend service nodes, whose NICs are assigned private IP addresses. We
will describe later in this paper that the necessity of supporting transparent mi-
gration of Virtual Infrastructures across geographically distributed datacenters
calls for unique assignment of private IP addresses within a Service Switching
domain.

To achieve higher degrees of scalability and resource efficiency, Virtual Infras-
tructures are instantiated by allocating multiple Virtual Machines onto each of
the cluster’s real nodes (node multiplexing). Likewise, multiple virtual links are
multiplexed onto the same shared physical link by associating each virtual link
endpoint to a different virtual NIC (link multiplexing). Multiple fully isolated
Virtual Infrastructures can be concurrently hosted by NEPTUNE-IaaS in the
same datacenter, providing users with the illusion of having allocated a dedicated
infrastructure.

Dynamic Virtual Cluster reconfiguration for efficient IaaS provisioning 3

2.1 NEPTUNE-IaaS Architecture

A cluster managed by NEPTUNE-IaaS (Figure 1) is composed of three compo-
nents: i) a set of worker nodes providing computational resources used to repro-
duce emulated networks, ii) a centralized repository providing storage space to
worker nodes and iii) a front-end node, Neptune Manager. By NEPTUNE-IaaS
we intend the whole collection of system software, of which the management
software running in the Neptune Manager front-end is the most relevant part.
All the physical components of the cluster are connected by two switched LANs,
one for “control traffic” (e.g. node configuration) and another for “operational
traffic” (i.e. traffic generated by users’ applications).

w Neptune A
Neptune Manager

Virtual > — E— &f\
Machine , User ¢
Repository \ I o

User €9

™ 5

é‘) User €9
Administrator

7 Virtual machine

Fig.1. NEPTUNE architecture.

2.2 Virtual Infrastructure life-cycle

A Virtual Infrastructure life-cycle can be described by a Finite State Machine
(Figure 2). A Virtual Infrastructure life-cycle begins with the definition of a
virtual network topology. Once the topology is defined, the infrastructure can
be allocated onto the cluster’s physical nodes. On user demand, a running Vir-
tual Infrastructure can be either suspended for future reallocation or definitively
terminated. Allocation of infrastructures onto the cluster is made under control
of system administrators, who need to explicitly accept users requests. Once
accepted, an infrastructure’s topology allocation process starts. Such allocation
process is automatic, involving tasks like virtual nodes mapping on cluster’s
physical nodes and IP addresses assignments.

To define a Virtual Infrastructure, users can either write a topology descrip-
tion in a custom XML format (Figure 3) or use an interactive graphic tool
embedded into the web user interface (Figure 4). It is also possible for users to
select pre-defined topologies for fast infrastructure definition. To define virtual

4 V. Manetti, P. Di Gennaro, R. Bifulco, R. Canonico, G. Ventre

DEPLOYING
DEFINED WAITING

UNDEFIN

PAUSED

SWAPPED

ouT RUNNIN

()

DESTROYED

MODIFIED
Fig. 2. Virtual Infrastructure lifecycle.
nodes software configuration, users can access a “Virtual Nodes Template Im-

ages Repository” and select a VM template for each of the virtual nodes. VM
templates can be modified and saved as new templates for reuse.

D T —

Postion: Ln2i%, Chd. Tetat Ln21s,Ch77%6 5 aivclieat-mons Ll - SEMSI

Fig. 3. XML description. Fig. 4. Interactive editor.

2.3 Implementation details

Node multiplexing is implemented in NEPTUNE-IaaS by means of Xen [3].
Our current implementation relies on the libvirt virtualization API [4], mak-
ing it feasible supporting different virtualization technologies in the future. The
NEPTUNE-IaaS Management Node is responsible of managing Virtual Machines
lifecycle.

Mapping of virtual nodes onto the cluster physical nodes is described by an al-
location map which can be generated either manually by a system administrator
or automatically, by means of a software module implementing a Lin-Kernighan
derived optimization algorithm (described in Section 4).

Dynamic Virtual Cluster reconfiguration for efficient IaaS provisioning 5

When a virtual network is to be deployed on the physical cluster, Neptune
Manager distributes Virtual Machine template instances to the physical cluster
nodes. This distribution process is composed of two phases for each virtual node:
1) raw copy of the virtual machine image file containing VM template, and 2)
VM creation on the target virtual machine monitor. During this last phase,
virtual hardware resources are provided to the virtual node according to node
definition provided by the Virtual Infrastructure topology description.

A major problem when dealing with the creation of virtual links is the need
to assign IP addresses to both ends of virtual links, according to a general IP
addressing scheme. NEPTUNE-IaaS provides an algorithm that automatically
assigns subnets to links and IP addresses to their end-points. Furthermore, since
several infrastructures can be running on the same shared infrastructure, this
algorithm also ensures non overlapping of address spaces used by different in-
frastructures.

3 The Service Switching Paradigm

Service mobility is a key feature for new generation networks. In distributed ser-
vice hosting environments, service mobility allows satisfaction of requirements
like: efficient management of available resources, computational load balancing,
service continuity even in presence of critical conditions. Service Switching aims
at extending the concept of virtualization to network services by decoupling ser-
vice execution environments and their physical location [5]. Service instances in
a Service Switching environment may be dynamically migrated across geograph-
ically dispersed datacenters, to achieve more efficient utilization of both net-
work and computing resources. The Service Switching paradigm allows creation
and management of Service Ezecution Environments across different datacenters
with minimal impact on service continuity.

The architectural implementation of the Service Switching paradigm is cen-
tered around a main component, that we call Service Switch. Such a component
is a network node that, in addition to the plain packet and/or flow switching
capabilities, has more advanced features, including the ability to forward pack-
ets towards migrated Service Execution Environments. Service Switches can be
located both at the edges of a network and in its core. Deployment of Service
Switches in the core of the network of course requires cooperation of Internet
Service Providers, but allows faster reconfiguration and migration of services.

Our current implementation of the Service Switching model relies on a com-
bination of system-level virtualization technologies and of the Mobile IP model.
In the following we firstly introduce a brief description of Mobile IP, and then
the Service Switching architecture.

IP version 4 assumes that the IP address of a node uniquely identifies its point
of attachment to the Internet: a node must be located on the network indicated
by its IP address in order to receive datagrams which are destined to it. IP
Mobility Support (or Mobile IP) provides a mechanism which allows Mobile
Nodes to change their point of attachment to the Internet without changing

6 V. Manetti, P. Di Gennaro, R. Bifulco, R. Canonico, G. Ventre

their IP address [6]. This mechanism relies on two intermediary entities: the
Home Agent and the Foreign Agent. The role of the Home Agent is to maintain
current location information of the mobile node, and to re-transmit in a tunnel
all packets addressed to the Mobile Node to the Foreign Agent to which the
Mobile Node is currently registered. The role of the Foreign Agent, in turn, is
to deliver datagrams to the Mobile Node.

Service Switching allows services to be deployed at different geographic lo-
cations, each of which hosts a cluster of physical machines. A physical cluster
is connected to the Internet through a special router, that we call Edge Service
Switch. In the context of NEPTUNE-IaaS we are interested in transparently
migrate a collection of related Virtual Machines (a Virtual Infrastructure, ac-
cording to the definition we gave in Section 2). When a Virtual Infrastructure is
deplyed for the first time, it is associated to one of the available datacenters. This
allocation choice assigns one or more public IP addresses to the Entry Points of
the Virtual Infrastructures. These IP addresses will be kept for the entire lifecy-
cle of the Virtual Infrastructure, even in case of migration. Such IP addresses are
referred to as the Virtual Infrastructure’s Home Addresses. The Edge Service
Switch located at the edge of the datacenter in which the Virtual Infrastruc-
ture is initially deployed will be referred to as the Virtual Infrastructure’s Home
Service Switch. An Edge Service Switch not only behaves as a normal IP edge
router, forwarding incoming packets to the VMs hosted in the cluster and out-
going packets to a next hop router according to its current routing table, but
also implements specific traffic flow readdressing mechanisms to support service
migration. Such mechanisms have been derived as extensions of the classical Mo-
bile IP model. A generic end user terminal accessing a service will be referred to
as Correspondent Node.

In order to access a given service, a Correspondent Node sends packets to
the Virtual Infrastructure’s Entry Point, using the VM’s Home Address as IP
Destination Address. Incoming packets will be processed by the VM’s Home
Service Switch. In case a Virtual Infrastructure had to be migrated to a dif-
ferent datacenter, the Virtual Infrastructure’s Home Service Switch creates an
entry in its Mobility Binding Table (MBT in short) for each of the Virtual Ma-
chines belonging to the Virtual Infrastructure. The MBT keeps the association
between the VM’s Home Address and the corresponding Care-of Address. Such
Care-of Address is the TP address of the Edge Service Switch associated to the
datacenter hosting the migrated Virtual Infrastructure, that we may call the
Virtual Infrastructure’s Foreign Service Switch. Migrated VMs keep using their
own Home Address as IP source address for outgoing packets. Migration of a
Virtual Infrastructure is performed through a procedure consisting in updating
the Home Network’s MBT and in managing the migration of all the VMs be-
longing to the Virtual Infrastructure. Migration is transparent to Correspondent
Nodes, that keep sending packets to the Virtual Infrastructure’s Home Address.
Once these packets reach the Home Service Switch, this latter forwards them
to the Foreign Service Switch, by encapsulating such packets in a point-to-point
tunnel (figure 5). The Foreign Service Switch, in turn, de-tunnels the incoming

Dynamic Virtual Cluster reconfiguration for efficient IaaS provisioning 7

packets and delivers them to the migrated VM. As it happens in the Mobile IP
scheme, reverse traffic is sent by the migrated VM directly to the Correspondent
Nodes.

Fig. 5. Tunneling mechanism implemented on the edge.

4 Optimal VM allocation in a datacenter

One of the key steps in the Virtual Infrastructure deployment process is the
mapping of Virtual Machines onto the physical resources of the target datacenter.
This problem is known in literature as the network testbed mapping problem|[7].
Due to its complexity, the challenge is to find a good solution in acceptable
computational times. Our approach to manage complexity consists in splitting
the mapping problem in two sub-problems: topology partitioning and a partition
mapping.

Several graph partitioning algorithms have been proposed in the literature.
An algorithm that provides good results with reasonable times of calculation is
the Lin-Kernighan (LK) heuristic algorithm [8]. Theoretical complexity of LK is
O(n?logn). We implemented this algorithm in JAVA to evaluate its applicability
to cluster environments and to assess its performance. A first test was performed
to estimate the solver execution time while varying number of nodes in the graph.
Size of the matrix was varied between 100x100 and 1000x1000 with steps of 100.
The graph was been partitioned into subsets of cardinality equal to 5 while non-
zero elements incidence for considered matrix were 2%. Computational times
represented in Figure 6 were calculated by using a system equipped with 2 GB
of RAM and an Intel CPU T2250 running at 1.73 GHz.

Our algorithm implementation requires that once found a minimum cost
solution, the procedure is restarted with a new initial solution. After running
5 iterations the algorithm stops and returns the minimum cost solution. This
test highlights the relationship between the iteration :* at which the optimal
solution is found with the size and density (arcs/nodes ratio) of the matrix.

8 V. Manetti, P. Di Gennaro, R. Bifulco, R. Canonico, G. Ventre

90
secondi

0 200 200 600 800 1000
n

Fig. 6. LK best mapping solution times

Virtual links and physical links bandwidths have been respectively fixed at
10 and 100. Matrices are generated randomly and before subjecting the matrix
to the solver, it is verified that each node has at least one connection. Matrices
are generated randomly and before subjecting a matrix to the solver, it is ver-
ified that each node has at least one connection and that the sum of the costs
associated to all the outgoing arcs from one same node does not exceed 90%
of the physical connections bandwidth. Tests organization is shown in Table 1,
while tests results are shown in Table 2.

arc/nodes=4|arc/nodes=6|arc/nodes=8
Matrix 20x20 |100run 100run 100run
Matrix 100x100|{100run 100run 100run
Matrix 400x400|100run 100run 100run

Table 1. Tests organization

Results for the case 4 arcs/node and 6 arcs/node are further shown in Figure 7
and in Figure 8.

This test demonstrates that for matrices of small size (20x20), our solver
returns in almost 50% of the cases the least-cost solution at the first iteration.
When the matrix increases in size (100x100 and 400x400), the probability of
finding good solutions at the first iteration is lower. In these cases, better results
could be obtained by running more iterations, but the rapid increase of compu-
tational times does not encourage this approach. The Lin-Kernighan algorithm
does not guarantee that it is always possible to find an admissible solution, so it
could happen that the found solution does not meet the admissibility constraints.
However, in our tests, the solver always returned an acceptable solution.

Dynamic Virtual Cluster reconfiguration for efficient IaaS provisioning 9

=1|i=2|i*=3|i*=4|i*=5
Matrix 20x20 arc/nodes=4 |47 |21 |18 |7 |7

Matrix 20x20 arc/nodes=6 |52 |21 |13 6
Matrix 20x20 arc/nodes=8 |43 |27 |14 |6 |10
Matrix 100x100 arc/nodes=4(23 |21 |21 |23 |12
Matrix 100x100 arc/nodes=6(23 |21 |28 |20 |8
Matrix 100x100 arc/nodes=8|18 |16 |26 |18 |22
Matrix 400x400 arc/nodes=4(18 |24 |16 |18 |24
Matrix 400x400 arc/nodes=6(20 |24 |18 |16 |22
Matrix 400x400 arc/nodes=8|22 |28 |14 |12 |24

Table 2. Tests results

(o]

4 archi/nodo 6 archi/nodo

100

T T T 100 T T T

T T i .
20x20 I : : 2020
80 L0:¢100 : : " 1005100 : : :
RS — : : L e

Prob.
Prob.

2 | - - - : 1

Fig. 7. Four-arcs/node case Fig. 8. Six-arcs/node case

5 Related Work and Conlcusions

In the last few months the term “Cloud computing” is transforming from a
buzzword into real world engineering solutions and commercial products. In this
paper we mention two established solutions that have some features in common
with NEPTUNE-IaaS: Amazon EC2 and Eucalyptus.

Amazon’s Elastic Compute Cloud (EC2) [9] is an TaaS commercial system
that first introduced the utility computing model, where computation, storage
and bandwidth resources are rent on an as-needed basis. As well as NEPTUNE-
IaaS, EC2 is based on Xen. Users select an Amazon Machine Image (AMI),
including the machine’s software configuration from a set of AMIs proposed by
Amazon, or create a new one from scratch. To each AMI instance (i.e. a Xen
Virtual Machine) is associated an “instance type” that defines the resources of
the machine in terms of CPU, RAM, HD. Resources are paid on a consumption
basis: a machine is paid for each hour of activity, bandwidth is paid per-gigabyte
of traffic and so on. Amazon provides two ways to access EC2 services: via a
web interface or through web services. A complete set of tools and programming
libraries are provided to access these service.

10 V. Manetti, P. Di Gennaro, R. Bifulco, R. Canonico, G. Ventre

Eucalyptus [10] is an open-source cloud-computing framework, built to be
interface-compatible with Amazon EC2: users can interact with Eucalyptus us-
ing same tools and interfaces that they use with Amazon EC2. Because the main
goal of Eucalyptus is to provide a common open-source framework that enables
researchers to do experiments and studies, even by replacing or modifying the
implementation of system modules, the system is based on three components,
each with a well defined Web-service interface. The software architecture is hier-
archical: the base level is composed by Instance Managers (IM), responsible to
manage virtual machines running on top of a physical machines, the middle layer
contains Group Managers (GM), each of which manages a set of IMs residing
on the same physical subnet. The top layer is the Cloud Manager (CM), that
manages all the GM making high-level scheduling decisions and represents the
entry-point to Eucalyptus for users as well as for administrators.

NEPTUNE-IaaS has some features in common with both EC2 and Euca-
lyptus, but also some important differences. In particular, we want to highlight
that NEPTUNE-IaaS provides tools to interactively design virtual networked
infrastructures and supports transparent and efficient migration of infrastruc-
tures across geographically dispersed datacenters. NEPTUNE-TaaS is an ongo-
ing project, whose future development include more complex management pro-
cedure to handle migration of complex virtual infrastructures in a reliable way.
Integration of NEPTUNE-IaaS with storage services, such as those provided by
Amazon’s S3 are also being investigated.

References

1. Wikipedia: Cloud computing. http://en.wikipedia.org/wiki/Cloud_computing

2. Di Gennaro, P., Bifulco, R., Canonico, R., Ventre, G.: Neptune: Network emulation
for protocol tuning and evaluation. Poster presented at (SIMUTOOLS09), Rome,
March 2009.

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Procs. of the 19th
ACM Symposium on Operating Systems Principles, SOSP’03. (2003) 164-177

4. RedHat, et others: LibVirt virtualization API. http://www.libvirt.org

5. Manetti, V., Canonico, R., Ventre, G., Stavrakakis, I.: System-level virtualization

and mobile ip to support service mobility. In: Proceedings of the International

Workshop on Design, Optimization and Management of Heterogeneous Networked

Systems (DOM-HetNetS09). (September 2009)

Perkins, C., et al.: IP mobility support (1996)

7. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM Comput. Commun. Rev. 33(2) (2003) 65-81
8. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
The Bell system technical journal 49(1) (1970) 291-307
9. Amazon: EC2 web site. http://aws.amazon.com/ec2/
10. Eucalyptus Systems: Eucalyptus web site. http://www.eucalyptus.com/

o

