
On the Evaluation of VM Provisioning Time in
Cloud Platforms for Mission-Critical Infrastructures
Gabriella Carrozza, Luigi Battaglia, Vittorio Manetti

SESM s.c.a.r.l.
Via Circumvallazione Esterna - 80014
Giugliano in Campania (Naples), Italy

Email: gcarrozza, lbattaglia, vmanetti {@sesm.it}

Antonio Marotta, Roberto Canonico, Stefano Avallone
University of Naples Federico II

Dipartimento di Elettrica e Tecnologie dell’Informazione
Via Claudio, 21 - 80125 - Napoli, Italy

Email: antonio.marotta, roberto.canonico, stavallo {@unina.it}

Abstract—Cloud Computing has risen a great interest over the
last years as it represents an enabling technology for flexible and
ubiquitous access over the network to a set of shared computing
resources. This work comes from an industrial experience aim-
ing at exploiting the cloud potential for virtualizing complex
infrastructures such as an entire Air Traffic Center (ATC), a
clear example of complex SoS (System of Systems). The use
of virtualization is convenient because industry can leverage
in-house test-beds to perform distributed testing campaigns in
pre-operational phases or to design new automatic fail-over
mechanisms for fully distributed systems. In order to realize such
mitigation and recovery techniques in the ATC field, indeed, a
cloud platform is required to guarantee a low VM provisioning
time with the objective of minimizing the service disruption. In
this perspective, after having introduced the principal concepts
and factors of the provisioning time, we propose a deep analysis
and comparison for two different Infrastructure-as-a-Service
(IaaS) platforms, namely OpenStack and OpenNebula (using
KVM as hypervisor), that were selected through a preliminary
scouting phase.

I. INTRODUCTION

Cloud Computing has risen a great interest over the last
years as it represents an enabling technology for flexible
and ubiquitous access over the network to a set of shared
computing resources. Cloud paradigm is known to be consid-
ered according to a service and a deployment model. In the
first case the classification is based on the abstraction level of
the resources the users are able to access over the cloud. In
this work we only focus on the lowest level of abstraction,
which is also referred to as Infrastructure-as-a-Service, in
which clients are given the chance to access resources without
being conscious of the underlying physical infrastructure.
Instead, the discrimination based on the deployment mode is
fundamentally derived by the level of exposure to the global
Internet: there can be public, private or hybrid clouds. Despite
all the advantages that come from the application of the cloud
paradigm, there is some reluctance because of the difficulty in
guaranteeing the quality-oriented requirements expressed by
the client. This is due to the fact that performances are often
dependent on the used configuration and on the existence of
different concurrent workloads. Furthermore, because plenty
of solutions exist, it is often hard to select one of the available
platforms, since it is also difficult to identify the key indicators
for benchmarking cloud-based services in a standard way.

We started our work on Cloud Computing with the aim of
exploiting its potential to build a virtualized environment
for complex and mission-critical systems. Indeed, Air Traffic
Control (ATC) systems are very demanding and software-
intensive: they are safety critical, highly distributed and hard
real-time. In the ATC field, ATC centers belonging to the same
system are often deployed over different cities in a given coun-
try, either for fault tolerance purposes and remote connection
needs at country level. For this reason, cloud can be considered
as an enabling technology for setting up an extended enterprise
private platform and connecting geographically distributed
ATC centers for dependability purposes, e.g., by realizing a
fail-over configuration among centers, in order to increase
the overall system availability. The fail-over techniques we
have in mind [1] rely on live migration which, in turn, is
enabled by using a shared storage. In particular, we used a
storage configuration in which both the image and the instance
datastores are exported to the nodes belonging to the infras-
tructure through the Network File System [2] (NFS) protocol.
In the design of back-up and recovery mechanisms for high
performance, reliability and ultra-high availability demanding
systems, a cloud platform which guarantees minimum impact
on performance and service disruption is needed. Therefore we
decided to draw a comparison between different open-source
IaaS Cloud Computing platforms in terms of the provisioning
time of Virtual Machines, i.e., the time needed by the cloud
platform to create and activate a new VM. We also evaluated
the stress of the physical nodes hosting the VMs in terms of
CPU utilization and memory occupation.
The rest of the paper is structured as follows. In section II the
related work is discussed, while in section III the motivations
that led us to select OpenStack and OpenNebula are presented.
In section IV the concept of provisioning time is explained,
by also stressing out the factors it is affected by. In section V
the deployment of a virtual machine in the two platforms is
illustrated, whereas in section VI the experimental campaign is
presented and the results of the evaluation are debated. In the
last section some conclusions and the future work are drawn.

II. RELATED WORK

Different works use or propose different models and bench-
marking techniques to address the problem of evaluating Cloud



Computing IaaS platforms. Semploski et al. [3] provide a crit-
ical comparison between three open-source projects that offer
Infrastructure-as-a-Service, namely OpenNebula, Eucalyptus
[4] and Nimbus [5]. After having illustrated how they realize
the spawning of a new VM and the differences between them,
the authors present a raw level comparison according to the
provided features. Anyway the paper only considers functional
and qualitative characteristics as discriminating factors, such
as customizability, security and network-related issues.
In [6] a process for implementing a custom benchmark, useful
to understand the performance of various cloud IaaS offerings
(in a pay-per-use model), is presented. The authors face the
lack of precise indicators to assess the performance of the same
VM running on different platforms and the inapplicability
of hardware benchmarking. They show the results of the
proposed benchmarking suite of applications by considering
two instance types (a cheap and an expensive configuration)
and some factors, such as the data-center location and the
provided performance level both in a short-term and a long
term utilization.
In [7] a performance comparison between Eucalyptus and
OpenNebula is conducted. The workload consists of the soft-
ware packages needed to run a web application very similar
to Wikipedia [8] web service and a benchmarking application
which emulates an online stock system. They attempted to
compare the platforms in terms of:

• provisioning time of VMs;
• elapsed time of batch processing;
• throughput of web transactions;

by considering several configurations differing for the location
of VMs images (local disk or NFS storage) and their allocation
type (using dense or sparse files). The experiments prove
that the best results for the three parameters are not always
achieved with the same configuration. Anyway they consider
a start-up time that also includes the booting phase of the VM,
which we do not take into account; besides they do not show
an evaluation of the single steps composing the provisioning
time.
In [9], the authors argue that classical benchmarking tech-
niques, like TPC-W, are not suitable for the characteristics of
the cloud platforms, which lie in scalability, pay-per-use model
and fault tolerance. For the purpose of addressing the lack of a
standard benchmarking technique for Cloud Computing, they
suggest their static metrics to assess the dynamism and the
elasticity which are typical of the cloud paradigm. However
no implementation of the proposed model is given.
Ming et al. [10] propose an analysis of the VM start time,
which they consider as the time needed to find an allocation
for the virtual appliance and to copy, boot and configure all
the required resources. The authors compare the start time
of three different cloud providers (Rackspace [11], Amazon
EC2 [12] and Microsoft Azure [13]). The experiments aim
at evaluating how the start time is influenced by different
parameters, such as the date and time, the size of the image,
the virtual hardware template and the data center location. For

example, they demonstrate in their findings that the start time
is linearly dependent with the OS size and it is also related to
the instance type, while it is quite constant when requesting a
pool of virtual resources.
SMICloud [14] is a framework based on the publicly available
service measurement indexes for comparing and ranking cloud
providers according to the service level agreed with the clients
and the perceived QoS. The framework receives the client’s
requests along with the application deployment requirements.
By monitoring the performance of the cloud services, it is able
to compute the ranking factors for all the providers which are
listed in a service catalogue. After describing the quantifiable
metrics which are of interests for IaaS Cloud Computing, they
solve the problem of ranking services by adopting the Analytic
Hierarchical Process [15] technique, which is often applied in
the context of Multiple Criteria Decision Making (MCDM)
[16].
VMmark [17] is a benchmark to assess the stress load of the
physical nodes’ resources, such as RAM, CPU utilization and
I/O load, by deploying a set of VMs on top of VMware [18]
technology. Also Casazza et al. [19], in their vConsolidate
project, suggest a benchmarking for evaluating the perfor-
mance of different workloads consolidated in cloud hosting
servers.
To the best of our knowledge, so far none of the works in the
literature has proposed a comparison among open-source IaaS
platforms with a deep analysis of the factors composing the
provisioning time.

III. IAAS PLATFORMS UNDER EVALUATION

In the initial scouting phase we established a group of key
features on which we based the selection of a restricted number
of platforms to consider in the experimental campaign. The
key requirements we took into account are:

• full open-source license;
• the support for KVM [20] technology, since we decided

to use this hypervisor;
• the support for OpenvSwitch [21] technology for handling

the creation of the virtual network interfaces;
• a strong community and then

– bug reporting;
– continuous sw maintenance;
– updating process and new releases;

• fully downloadable packages without limitations;
• industrial support and existing experiences.

According to these features we are confident that OpenStack
and OpenNebula are the open-source cloud projects that best
respond to our requirements.
OpenStack is an open Cloud Computing platform, whose
objective is to offer the IaaS paradigm through a collection of
different services which can be deployed in a fully distributed
and scalable fashion. It started as a project under the name
of OpenStack Austin in 2010 and it has been characterized
by different releases (the latest stable one is called Havana).



OpenStack offers a number of services which exchange mes-
sages through an asynchronous communication queue with a
callback mechanism. Among them, we can mention:

• the authentication and authorization module (Keystone);
• the compute service which handles the life-cycle of the

virtual machine from its creation till its deletion (Nova);
• the VM images repository (Glance);
• the volume service for creating and attaching new vol-

umes to a running VM (Cinder);
• the storage service (Swift);
• the virtual networking module (Quantum);
• the web interface exposed to the end-users (Dashboard).

OpenNebula (ONE) was born as a research project in 2005
with the main purpose of designing and implementing an effi-
cient and scalable management platform for virtual machines
on large-scale distributed infrastructures. The ONE platform
assumes that the underlying physical infrastructure is built up
in line with the classical cluster-like architecture, where the
basic components are: front-end, hosts and datastores. The
front-end node is where the ONE installation has been accom-
plished: it is responsible for the execution of the centralized
ONE services (monitoring & management, scheduling, web
interface, and so on). Hosts are the hypervisor-enabled nodes
providing the resources needed by the running VMs, while
datastores are the storage areas holding the VM disk images.

IV. PERFORMANCE INDICATORS: PROVISIONING AND
SCHEDULING TIME

The Cloud Service Measurement Index Consortium
(CSMIC) [22] has identified a set of business oriented key
performance indicators (KPIs) that can be exploited in or-
der to compare all cloud services (IaaS, PaaS, SaaS, etc.).
The framework includes both critical business and technical
features and it has a hierarchical structure: in the top level
there are seven categories, each with a certain number of
attributes. As argued in section I, in our investigation we do
only focus on two different categories, namely agility and
performance. Elasticity is among the attributes included in the
former category and it is crucial to the performance analysis
of cloud platforms: it can be interpreted as the ability of a
service to adapt itself to the changes and the requirements
issued by the applicant. It is also attached to the scalability of
the service, that is a measure of the increase in its performance
when additional resources are granted to the system. By having
in mind the characteristics of the IaaS cloud paradigm and its
application in the context of mission-critical infrastructures,
we evaluated elasticity through the provisioning interval. In
general the provisioning interval can be roughly described as
the time needed to activate/deactivate a generic resource. More
in details, the provisioning time can be viewed as a service
response time: it is the time interval starting with the request
for a specific service and ending with its availability. In our
perspective, the service consists in the creation of a virtual
machine in the cloud platform, according to a well-known
hardware template. Thus, we can consider an average response

time for the creation of the virtual appliance as follows:

1

N

N∑
k=1

Tk (1)

where, considered N subsequent requests of the same VM, TK

stands for the time between the client’s request and the instant
in which the resource is considered in an active status by the
monitoring process of the platform. This is a state in which
the VM operating system was copied in the instances folder
and its creation ended successfully, even if the VM is still in
the booting phase, so it is not ready to serve the first user’s
request.

A. Analysis of the Provisioning Time

The time needed to deploy VM k can be divided in three
different terms, as explained in the following formula:

Tk = T r
k + T s

k + T e
k (2)

where
1) T r

k takes into account the issue of the creation request
by using the APIs of the platforms and instant in which
the command starts to be processed.

2) T s
k is the time it takes for the platforms to select one

of the available physical hosts with enough resources to
host VM k. This time is dependent on the complexity of
the scheduling algorithm implemented by the platform
and on the number of the configured compute hosts. A
general description of the scheduling algorithms used in
the platforms is presented in sections V A-B.

3) T e
k embodies the processing time including all the tasks

necessary to spawn and configure the virtual appliance
(sections V A-B). It can vary according to the type
of storage which has been chosen for holding the VM
images: all the IaaS platforms allow to use different
kinds of storage solutions. It has been proved in [7] that
different configurations, like for example local storage or
NFS, can lead to diverse provisioning times. This factor
is also influenced by the network configuration of the
virtual appliance.

In order to obtain the provisioning and the scheduling times
a Java-based application was developed and deployed on the
controller node. Basically, the application exploits the APIs of
the platform to perform the following tasks:

• constructing one of the virtual hardware flavors which
were taken into consideration (the details of the flavors
are described in section VI B), according to a binary
string that represents all the configuration parameters;

• requesting a new VM with the selected service offering;
• obtaining the status of the deployed VM;
• computing the time between the issue of the creation

request and the ready status response.

B. CPU and RAM Stress

In order to compare the performance of the considered cloud
platforms, we monitored the CPU and RAM utilization of



the compute hosts, hosting the maximum number of VMs,
each one executing the stress command [23]. As first step,
we investigated on how many machines with the same virtual
hardware template the user can instantiate on a single physical
host, without over-provisioning CPU and RAM. The possibil-
ity to over-provision the available resources can be enabled
or disabled in the configuration parameters of the platforms.
We tried to reach a 100% CPU utilization on each VM, by
balancing between user/system and I/O processes. The stress
utility allows to specify the kind of stressing operation through
some parameters, such as:

• cpu, which describes the number of forked processes
executing a sqrt() command (user level);

• vm, the number of forked processes executing mal-
loc()/free() commands (system level);

– vm-bytes is the number of bytes, expressed in MB,
which every vm worker has to allocate;

• hdd, the number of forked processes executing a write()
command (I/O level);

– vm-keep specifies to re-dirty memory, instead of
freeing and reallocating it.

We used a combination of the three parameters which leads to
a 0% time percentage in which CPU is idle and to a trade-off
between user, system and I/O CPU utilization, by setting these
parameters:

• cpu 1;
• vm 1 and vm-bytes 350M;
• hdd 500 and vm-keep.

V. VIRTUAL MACHINE DEPLOYMENT

A. OpenStack

OpenStack only gives the chance to create ephemeral virtual
instances, which means that the VM image no longer exists
after the user deletes it. As a consequence, it is possible to
create multiple VMs from the same image. The only way to
obtain persistent images is to spawn an image from a volume
previously created through the block service (Cinder). When
the user creates a new virtual machine from an image stored in
the Glance repository for the first time, the deployment deals
with these steps:

• request handling;
• virtual network configuration;
• image creation, which in turn is divided into the following

sub-steps:
1) the image is copied from the repository to a direc-

tory (called base) of the VMs datastore;
2) this image is then converted from its original format

to raw;
3) the image is copied again obtaining a different

version for each requested flavor (we can refer to
this as “flavor image”);

4) the image is resized using qemu-img resize accord-
ing to the specifications of the requested flavor;

5) the filesystem of the image is checked and resized
to the specific filesystem;

6) an instance disk is finally created through qemu-img
create by specifying qcow2 as output format.

When the user needs a secondary (ephemeral) disk for the
VM, the additional steps concern the creation of a disk which
is formatted according to a particular filesystem and then
attached to the VM. All the subsequent requests of VMs with
the same image and flavor are not affected by steps from 1
to 5. Instead, when creating a VM with the same image but a
different flavor, only steps 1 and 2 are skipped.
Prior to create the virtual machine, the scheduler needs to
know where to allocate it. OpenStack uses nova-scheduler
to select a host where to spawn the new VM. The cloud
administrator can decide to deploy a specific type of scheduler
by choosing among different policies, such as:

• filter (the default one), which defines a number of filters
the compute nodes have to satisfy and computes a ranking
score for each of them;

• chance, which chooses random one of the available hosts
with enough resources;

• simple, which adopts a spread first policy, by selecting the
least loaded node (it is no longer supported in OpenStack
Grizzly and Havana).

B. OpenNebula
OpenNebula creates and handles two datastores, which

stand for the storage areas holding the VM disks. The original
VM images are registered in a datastore, which we will refer to
as images datastore, whereas those related to the running VMs
are stored into the so-called system datastore. OpenNebula
does offer the possibility to create a persistent image: by
creating a VM with a persistent disk, every modification of
the instance is preserved even if it is destroyed. Obviously,
only one VM at a time can be created starting from a
persistent image. Non-persistent images, instead, are deleted
when the VM is canceled. OpenNebula entrusts part of the
VM creation to a centralized Transfer Manager (TM) which
is pre-configured with various scripts, among which one of
them is executed according to the chosen storage model (NFS
shared in our case). This component is in charge of handling
the transfer of an image between a source (the front-end) and a
destination (a compute host). In particular the actions executed
by the TM when creating a non-persistent/persistent image are:

• clone (non-persistent), which creates an exact copy of a
disk from the images datastore to the system datastore of
the target host;

• ln (persistent), which creates a symbolic link in the target
system datastore that points to the source image.

When a deployment request for a non-persistent VM arrives
to the TM, a clone script is executed: it copies the selected
image it in the system datastore of the target host. On the other
hand, if the user requests a VM with a persistent image, a ln
script is executed and a VM root disk is created as symbolic
link pointing to the original image.
In both cases, after the VM disk is created, the virtual guest
is deployed by using virsh. The second step deals with the
network configuration which basically consists in:



• adding a new port to the virtual switch;
• defining a treatment for the packets that pass through this

port by establishing two flows in the virtual switch.

As argued before, the other factor that can influence the
provisioning time is the scheduling algorithm. In OpenNebula
lots of pre-defined scheduling policies are available, such as
packing, striping and load-aware, in addition to the opportunity
of specifying customized rank expressions. In our investigation
we adopted the so-called packing policy, that allows to use the
whole available CPU and RAM of each physical host. The
platform also defines a configurable time value (scheduling
interval) between two scheduling actions, fixed by default to
30 seconds. We reduced this parameter up to 1s in order to
minimize the whole idle time during consecutive allocations
of VMs.

VI. EXPERIMENTAL CAMPAIGN

A. Hardware and Software Configuration

The whole experimental test-bed has been set up on three
clustered Dell PowerEdge M610 Blade Servers, each of them
equipped with:

• 2 * QUAD-CORE 2.50 GHz Intel Xeon E5420 (totally
eight cores up to 20 GHz);

• 64 bit CentOS 6.4 operating system;
• 8 GB of RAM;
• 4 Gigabit Network Interface Cards (NICs) (even though

only two NICs have been used for our tests).

Those nodes are interconnected by means of Gigabit Switches,
namely DELL PowerConnect M6220, which are themselves
linked to the Storage Area Network (SAN) module by fiber op-
tic cables. As a consequence, the underlying physical network
infrastructure provides 1Gbps as theoretical throughput.
Storage for both images and instances folders is implemented
by using an OpenFiler (version 2.99.1) server which exposes
two different partitions through NFS protocol (version 4.0).
The adoption of a shared filesystem-based datastore allows to
enable the live-migration, but it can also become a bottleneck
in the infrastructure and degrade VMs performance if the
virtualized services perform disk-intensive workloads.
As explained before, the experimental infrastructure consists
of three clustered nodes, of which one plays the role of the
front-end (or controller in the OpenStack terminology), while
the others act as hosts (or compute nodes). All the nodes
are interconnected by means of gigabit LAN interfaces. We
used a couple of OpenvSwitch (version 1.11) bridge interfaces,
suitably configured to separate the exchange of data among
VMs from the traffic related to the external network.
With regards to OpenStack, we used Folsom version with a
controller on which Nova, Keystone, Glance, Cinder, Dash-
board and Quantum packages with OpenvSwitch plug-in were
installed. The compute nodes only have Nova software and
the OpenvSwitch plug-in. Concerning OpenNebula software
configuration, instead, we used version 4.2.

B. Experimental Parameters

Before setting up our experimental campaign, we initially
tuned the parameters involved in the creation of a virtual
machine, in order to evaluate their influence on the provi-
sioning and scheduling time measures. This allowed us to
neglect the variability of some parameters and to set a specific
combination of values. In particular we considered:

• the server load, as concerns the number of VMs already
instantiated on the host;

• over-provisioning, that indicates if the amount of RAM
and CPU physical resources can be virtually exceeded;

• the virtual machine image:
1) type (qcow2 and raw);
2) size;
3) persistence;

• the scheduling algorithm;
• the instance type, also referred to as “flavor” or virtual

machine template, through which the user can assign:
1) the number of vCPUs (expressed as CPU slots);
2) the amount of RAM (expressed in MB);
3) an optional ephemeral secondary storage;
4) the number of virtual network interfaces.

Our first experiments showed no appreciable variation in the
results due to the server load, the over-provisioning option and
the VM flavor, so we decided to consider them as fixed. The
picked values are shown in table I. Since we aimed at obtaining
the relevance of the basic steps of the elaboration time (T e

k ) on
the provisioning interval, we did not focus on the variability
of the time measures due to different sizes and formats of the
VM image. The dependence of the provisioning time on these
parameters was well studied in [7] and [10]. We excluded the
variability analysis of the copy of the image, because this case
scenario is of poor interest to us: the provisioning time, indeed,
is obviously affected by the copy of the image, which is in
turn dependent on the network load of the switch connecting
the clustered nodes and the NFS storage server. For this reason
in the experimental campaign, we only consider one case that
involves the copy of the image, by fixing the size and the
format.

C. Experimental Scenarios

As explained in the previous sections, the two platforms are
intrinsically different when spawning a new virtual machine.
When a user requests a VM with a non-persistent image in
OpenNebula, the deployment basically consists in copying the
original image into the target system datastore and creating
the VM by using virsh. On the other hand, the first time a
user deploys a VM in OpenStack, a full copy of the image
stored in the Glance back-end is needed; then the image is
converted and resized according to the flavor, created using
qemu-img and spawned. In this perspective the time it takes
to have a running VM can be comparable with the deployment
of a non-persistent image in OpenNebula.
Instead, if the VM is deployed starting from a persistent
image in OpenNebula, a symbolic link to the original image



Table I: Fixed Parameters

Host Load Scheduling Algorithm OverProvisioning
VM Instance Type

vCPU RAM(MB) vNIC

No VM Fill First Scheduler Disabled 1 512 1

Table II: Variable Parameter

Secondary Storage

Yes/No

Table III: VM Allocation

VM Allocation

OpenNebula OpenStack

Persistent Non-Persistent 1st Allocation 2nd Allocation

is generated (without copying it). In OpenStack, after the first
creation of a VM, all the subsequent requests for the same
image does not involve its copy. Here is why the provisioning
time in the latter case can be compared to the one achieved
with the deployment of a persistent image in OpenNebula.
By having this analysis in mind, we took into account three
different cases in our investigation:

1) case 1 involves the deployment of a persistent qcow2
image with a virtual disk size of 1.7 GB (effective size
of 8.0 GB) in OpenNebula without a secondary disk and
the allocation subsequent to the first one of the same VM
type in OpenStack;

2) case 2 differs from case 1 because of adding a secondary
ephemeral disk to the instance;

3) case 3 deals with the creation of a non-persistent image
without a secondary disk in OpenNebula and the first
allocation of such a VM in OpenStack.

D. Results and Analysis

1) Provisioning Times: as remarked by figure 1(a), the
creation of an additional ephemeral disk does not have a sig-
nificant impact on the provisioning time in both the platforms.
Therefore, in the analysis of the remaining case, we neglected
the presence of the secondary disk. In the first considered case
(the deployment of a VM with a persistent image in OpenNeb-
ula and the second creation of the same VM in OpenStack)
OpenNebula outperforms OpenStack: for the latter, the mean
provisioning time is about 42% longer (1,85 seconds). By
default, OpenStack gives the chance of injecting metadata and
an asymmetric key (for SSH password-less access) into the
VM: anyway in our analysis we avoided this possibility and
we used no firewall for the VMs. In figure 1(c) the variability
of the obtained measures is illustrated: OpenStack has more
stable results compared to OpenNebula, and this is due to
a greater impact of the hosts monitoring process. The deep
analysis of the logs of the platforms allowed us to obtain the
principal contributions of the provisioning time. As shown in
figure 1(e), we were able to identify four factors that are: the

time to issue the VM request, the communication overhead in
the platform, the scheduling time and the creation of the VM.
In both the platforms the creation of the VM accounts for about
80% of the entire time and the presence of different modules
in OpenStack also allowed to recognize a 12% additional
overhead, which is related to the communication with the
scheduler and the compute module. Nevertheless, the time
it takes for OpenStack to spawn a new VM is longer with
respect to OpenNebula and it is the reason why we investigated
on the influence in percentage terms of the VM deployment
tasks (figure 1(f)). OpenStack requires about 39% of the whole
time for handling the VM creation and interacting with the
other services, such as Glance and Quantum to manage the
image and to get network-related information respectively. The
management of the virtual networking (basically OpenvSwitch
and tun/tap drivers) and the virtualization drivers accounts for
about 30%, just as the creation of the VM image. OpenNebula,
on the contrary, shows a simpler internal architecture and
employs fewer commands for the management of the network
and virtualization drivers. Anyway it should be observed that
we were not able to estimate the additional overhead in the
OpenNebula platform, because of the smaller amount of data
which can be deduced from the logs. The greatest impact
on the provisioning time is related to the interaction with
KVM and OpenvSwitch drivers and the execution of the VM
deployment script.
Figures 1(b), 1(d) and 1(g) show the provisioning times of the
third case, which deals with the creation of a non-persistent
virtual appliance in OpenNebula and the first allocation of the
same VM in OpenStack. The time needed for the creation of
the instance are prominently different for the two platforms:
the time it takes for OpenStack almost doubles the one
achieved in OpenNebula (1(h)). This time takes into account
the copy of the whole image, which is executed between two
directories, both exported via NFS protocol. Anyway the time
required by OpenStack is double because (as stated in section
V.A) the image, which is qcow2, is converted to raw and this
conversion demands for about 20 seconds additional time.



(a) Cases I-II (b) Case III

(c) Cases I-II (d) Case III

(e) Provisioning Components CASE I (f) VM Creation CASE I

(g) Provisioning Components CASE III (h) VM Creation CASE III

Figure 1: Provisioning Times Results

2) Scheduling Times: in figure 2 the mean values for the
scheduling times in both the platforms are presented: the
scheduling algorithm implemented by OpenNebula is affected
by slightly longer times with respect to OpenStack. Neverthe-
less we expected these results by comparing the complexity of
the algorithms which are implemented by the two platforms.

The OpenStack scheduling algorithm consists in two stages:
the first one has the goal of selecting hosts according to the
filters specified in the Nova configuration file. We configured
RAM and CPU filters with an “allocation ratio” of 1.0, in
order to disable over-provisioning. Afterwards, all the hosts
that did not pass the filtering phase are excluded from the final



Figure 2: Scheduling Times Results

(a) CPU Stress (b) RAM Stress

Figure 3: Stress Results

decision. In the second phase there is a weighting process of all
the filtered hosts according to the specified cost functions. The
default one returns the amount of free RAM of the host and
has a weight, which represents the behaviour of the algorithm
(fill-first 1.0 or spread-first -1.0). So for each cost function,
every host obtains a score and the final ranking is calculated
as follows:

ranki =
∑
j

wjsij ∀i (3)

where sij is the score of node i related to cost function j and
wj is the weight of the j-th function. Besides the default cost
function, we also included another one for CPU slots usage, in
order to choose a target with the largest combined utilization
of CPU and RAM.
OpenNebula uses a match making scheduler which implements
the rank scheduling policy. The allocation decision is taken
after these steps:

• VM filtering, in which the VMs that request more storage
than the available amount are filtered out and assume a
pending state;

• host filtering, during which the servers that do not meet
VM requirements or do not have enough resources (CPU
and RAM) are filtered;

• hosts ranking, that is the evaluation of the remaining
hosts, using a ranking score policy obtained through the
information periodically collected by the monitor driver.

Regarding the ranking factors, OpenNebula allows to configure
the policy by using a predefined or a custom one. We chose
the packing policy which has the objective of minimizing VMs
fragmentation and the number of active nodes, by selecting the
node with more VMs running on it.
Anyway it should be pointed out that the scheduling time
accounts on the provisioning interval for about 2,78% in
OpenStack and about 7,15% in OpenNebula.

3) Stress: the experiments aimed at evaluating the impact
in terms of CPU and RAM utilization when stressing the
two platforms. We deployed the maximum number of VMs
and we executed the linux stress command on each of them,
by applying the parameters explained in section VI A and a
duration interval set to 300 seconds. In figure 3(a), it can be
noticed that, during almost all the stress time, the level of CPU
utilization remains quite stable for both the platforms, even
if the mean percentage achieved by OpenNebula is 97,45%,
while for OpenStack it is slightly inferior, by settling on
93,2%. Figure 3(b) exhibits, instead, the occupation of RAM
(in MB) after the allocation of 8 virtual machines and during
the stress test. The graph compares two (almost consecutive)
stress tests: in the OpenNebula case, during the stress, the
curves mostly overlap and they are characterized by a mean
value of 4895 MB. OpenStack experiments shows a higher
RAM occupation (5694 MB as mean value) and the second
test exhibits a 10% increment in the pick RAM occupation
value with respect to the first experiment.



VII. CONCLUSIONS AND FUTURE WORK

In this work we propose a comparison of a restricted number
of IaaS open-source projects, with the main goal of selecting
the one that properly meets the distinctive features that are
typical of virtualized mission-critical infrastructures. When
dealing with the virtualization of this kind of infrastructures,
characterized by a great complexity and fault tolerance needs,
a platform that assures a low provisioning time is preferable.
This is obviously a leading factor when a system, composed
of a consistent number of nodes greatly coupled among them,
has to be virtualized. For this reason, bearing in mind these
requirements, we planned and implemented an experimental
campaign, aiming at performing a deep analysis of the pro-
visioning time. After a raw-level evaluation of the available
IaaS open-source projects, we picked OpenNebula and Open-
Stack and we set up two identical test-beds with the same
hardware configuration in order to achieve our objectives. To
be sure to guarantee the exact reproducibility of the proposed
experiments, we tried to deeply describe all the parameters
taken into account to perform our campaign. Our efforts were
directed at evaluating the impacts of the different key factors
of the provisioning time, by pointing out their relevance in
each of the platforms. In this perspective, the results can also
be read in order to find out the most impacting contribution
to the provisioning time and to realize if there is room to
improve the creation of a VM. Our evaluation showed that,
although the great success of OpenStack, OpenNebula offers
slightly more suitable performances when creating a virtual
machine in some cases. The next steps consist in assessing and
also proposing new metrics and new benchmarking techniques
which can be applied with the objective of extending the
proposed experimental campaign.

REFERENCES

[1] G. Carrozza, V. Manetti, A. Marotta, R. Canonico, and S. Avallone,
“Exploiting sdn approach to tackle cloud computing security issues
in the atc scenario,” in Dependable Computing, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, vol. 7869, pp.
54–60.

[2] G. Arnold, “Internet protocol implementation experiences in pc-nfs,” in
Proceedings of the ACM Workshop on Frontiers in Computer Communi-
cations Technology, ser. SIGCOMM ’87. New York, NY, USA: ACM,
1988, pp. 8–14.

[3] P. Sempolinski and D. Thain, “A comparison and critique of eucalyptus,
opennebula and nimbus,” in Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on, 2010, pp.
417–426.

[4] Eucaliptus web site. [Online]. Available: http://www.eucalyptus.com/
[5] Nimbus web site. [Online]. Available: http://www.nimbusproject.org/
[6] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann, “What are you

paying for? performance benchmarking for infrastructure-as-a-service
offerings,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference on, 2011, pp. 484–491.

[7] Y. Ueda and T. Nakatani, “Performance variations of two open-source
cloud platforms,” in Workload Characterization (IISWC), 2010 IEEE
International Symposium on, 2010, pp. 1–10.

[8] Wikipedia web site. [Online]. Available: http://en.wikipedia.org/wiki/
Main Page

[9] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather
tomorrow?: towards a benchmark for the cloud,” in Proceedings of
the Second International Workshop on Testing Database Systems, ser.
DBTest ’09. New York, NY, USA: ACM, 2009, pp. 9:1–9:6.

[10] M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012, pp. 423–430.

[11] Rackspace web site. [Online]. Available: http://www.rackspace.com/
[12] Amazon ec2 web site. [Online]. Available: http://aws.amazon.com/ec2/
[13] Microsoft azure web site. [Online]. Available: http://www.

windowsazure.com/
[14] S. Garg, S. Versteeg, and R. Buyya, “Smicloud: A framework for

comparing and ranking cloud services,” in Utility and Cloud Computing
(UCC), 2011 Fourth IEEE International Conference on, 2011, pp. 210–
218.

[15] E. H. Forman. and S. I. Gass, “The analytic hierarchy process–an
exposition,” Oper. Res., vol. 49, no. 4, pp. 469–486, Jul. 2001.

[16] U. e Habiba and S. Asghar, “A survey on multi-criteria decision making
approaches,” in Emerging Technologies, 2009. ICET 2009. International
Conference on, 2009, pp. 321–325.

[17] P. S. L. R. E. Z. V. Makhija, B. Herndon and J. Anderson, “VMmark:
A scalable benchmark for virtualized systems,” VMware Inc, CA, Tech.
Rep., September 2006.

[18] Wmware virtualization web site. [Online]. Available: http://www.
vmware.com/

[19] J. P. Casazza, M. Greenfield, and K. Shi, “Redefining server performance
characterization for virtualization benchmarking,” Intel Technology Jour-
nal, vol. 10, no. 3, pp. 243–251, Aug. 2006.

[20] A. Kivity, “kvm: the Linux virtual machine monitor,” in OLS ’07: The
2007 Ottawa Linux Symposium, Jul. 2007, pp. 225–230.

[21] Openvswitch web-site. [Online]. Available: http://openvswitch.org/
[22] The cloud service measurement index consortium. [Online]. Available:

http://csmic.org/
[23] Stress utility repository for centos. [Online]. Available: http://

openvswitch.org/
[24] Openstack web site. [Online]. Available: http://www.openstack.org/
[25] Opennebula web site. [Online]. Available: http://opennebula.org/about:

about


